二次函数复习专题讲义全

合集下载

二次函数复习ppt课件

二次函数复习ppt课件
点坐标是(1/2,1) ; (2)若抛物线y = a (x+m) 2+n 开口向下,顶点在第四象限,则 a <刀
3.求下列二次函数的开口方向,对称轴,顶点坐标.
y=x2 - 2x + 3 y= -2x2 - 4x - 6
解:y=x2-2x+1+2 =(x-1)2+2
y
o
x
a <0,b 0<,c 0. =
y
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点,
且它的顶点在第三象限,则a、b、c满足
的条件是:a >0,b 0>,c 0. =
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0,
那么这个二次函数图象的顶点必在第 四象限
y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想)
二次函数复习
6.二次函数的应用
1. 如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有 二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少?
解:(1) ∵ AB为x米、篱笆长为24米
x
7.已知二次函数的图像如图所示,下列结论: ⑴a+b+c=0 ⑵a-b+c﹥0 ⑶abc ﹥0 ⑷ b=2a 其中正确的结论的个数是( D) A 1个 B 2个 C 3个 D 4个
y
-1 0 1
x
要点:寻求思路时,要着重观察抛物线的开口方 向,对称轴,顶点的位置,抛物线与x轴、y轴的 交点的位置,注意运用数形结合的思想。

二次函数复习讲义(完美)

二次函数复习讲义(完美)

二次函数最全面的复习讲义学习目标1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.知识网络要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数. 要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.二、用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式:(1)一般式:(a,b,c为常数,a≠0);(2)顶点式:(a,h,k为常数,a≠0);(3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).三、2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如或,或,其中a≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.类型一:二次函数的概念1、下列函数中,是关于x的二次函数的是__________________(填序号).(1)y=-3x2;(2);(3)y=3x2-4-x3; (4);(5)y=ax2+3x+6;(6).【变式1】下列函数中,是二次函数的是( )A. B. C.D.【变式2】如果函数是二次函数,求m的值类型二、求二次函数的解析式1.已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为______________.【答案】或.【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的函数解析式及其顶点M的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).课堂练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax2+bx+c(a≠0),由题意得:解得∴所求的二次函数的解析式为y=-x2+3x-5.2 在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【答案】(1).(2)令,得,解方程,得,.∴二次函数图象与轴的两个交点坐标分别为和.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与轴的另一个交点坐标为3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为(a≠0),由图象知函数图象经过点(3,0),(0,3).则有解得∴抛物线解析式为.解法二:设抛物线解析式为(a≠0).由图象知,抛物线与x轴两交点为(-1,0),(3,0).则有,即.又,∴∴抛抛物物解析式为.课后巩固练习一、选择题1. 二次函数的图象经过点A(0,0),B(-1,-11),C(1,9)三点,则它的解析式为( ).A. B. C. D.2.二次函数有( )A.最小值-5 B.最大值-5 C.最小值-6 D.最大值-63.把抛物线y=3x2先向上平移2个单位再向右平移3个单位,所得的抛物线是()A.y=3(x-3)2+2B.y=3(x+3)2+2C.y=3(x-3)2-2D.y=3(x+3)2-24.如图所示,已知抛物线y=的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数的图象向右平移a(a>0)个单位,得到函数的图象,则a的值为( )A.1 B.2 C.3 D.46.若二次函数的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2Y -27 -13 -3 3 5 3则当x=1时,y的值为 ( )A.5 B.-3 C.-13 D.-27二、填空题7.抛物线的图象如图所示,则此抛物线的解析式为______________.第7题第10题8.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),则这个二次函数的关系式为______.9.已知抛物线.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x的取值范围是______________.11.已知二次函数(a≠0)中自变量x和函数值y的部分对应值如下表:…-1 0 1 ……-2 -2 0 …则该二次函数的解析式为______________.12.已知抛物线的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为______________.三、解答题13.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y=-2x+2分别与x轴、y轴交于点A,B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,求过A、B、C三点的抛物线的解析式.15.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在的直线为轴和轴建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k >0)的图象与AC边交于点E.(1)求证:AE×AO=BF×BO;(2)若点E的坐标为(2,4),求经过点O,E,F三点的抛物线的解析式.一、选择题1.【答案】D;【解析】设抛物线的解析式为(a≠0),将A、B、C三点代入解得,,c=0.2.【答案】C;【解析】首先将一般式通过配方化成顶点式,即,∵a=1>0,∴x=-1时,.3.【答案】A;4.【答案】D;【解析】∵点A,B均在抛物线上,且AB与x轴平行,∴点A与点B关于对称轴x=2对称,又∵A(0,3),∴AB=4,y B=y A=3,∴点B的坐标为(4,3).5.【答案】B;【解析】抛物线的平移可看成顶点坐标的平移,的顶点坐标是,的顶点坐标是,∴移动的距离.6.【答案】D;【解析】此题如果先用待定系数法求出二次函数解析式,再将x=1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x=-4和x=-2时,函数值均为3,由此可知对称轴为x=-3,再由对称性可知x=1的函数值必和x=-7的函数值相等,而x=-7时y=-27.∴x=1时,y=-27.二、填空题7.【答案】;【解析】由图象知抛物线与x轴两交点为(3,0),(-1,0),则.8.【答案】;【解析】设顶点式,再把点(0,0)代入所设的顶点式里即可.9.【答案】(1)x=1;(1,3);【解析】代入对称轴公式和顶点公式即可.10.【答案】;【解析】将(-1,0),(1,-2)代入中得b=-1,∴对称轴为,在对称轴的右侧,即时,y随x的增大而增大.11.【答案】;【解析】此题以表格的形式给出x、y的一些对应值.要认真分析表格中的每一对x、y值,从中选出较简单的三对x、y的值即为(-1,-2),(0,-2),(1,0),再设一般式,用待定系数法求解.设二次函数解析式为(a≠0)由表知解得∴二次函数解析式为.12.【答案】【解析】由题意知抛物线过点(1,0)和(5,0).三、解答题13.【答案与解析】(1)∵顶点是(1,2),∴设(a≠0).又∵过点(2,3),∴,∴a=1.∴,即.(2)设二次函数解析式为(a≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得解得故所求的函数解析式为.(3)由抛物线与x轴交于点(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0),又∵过点(0,-3),∴a(0-1)(0-3)=-3,∴a=-1,∴y=-(x-1)(x-3),即.14.【答案与解析】过C点作CD⊥x轴于D.在y=-2x+2中,分别令y=0,x=0,得点A的坐标为(1,0),点B的坐标为(0,2).由AB=AC,∠BAC=90°,得△BAO≌△ACD,∴AD=OB=2,CD=AO=1,∴C点的坐标为(3,1).设所求抛物线的解析式为,则有,解得,∴所求抛物线的解析式为.15.【答案与解析】(1)证明:由题意知,点E、F均在反比例函数图象上,且在第一象限,所以AE×AO=k,BF×BO=k,从而AE×AO=BF×BO.(2)将点E的坐标为(2,4)代入反比例函数得k=8,所以反比例函数的解析式为.∵OB =6,∴当x=6时,点F的坐标为.设过点O、E、F三点的二次函数表达式为(a≠0),将点0(0,0),E(2,4),三点的坐标代入表达式得:解得∴经过O、E、F三点的抛物线的解析式为:.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.类型一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=x2的图象对称轴左侧上有两点A(a,15),B(b,),则a-b_______0(填“>”、“<”或“=”号).【解析】将A(a,15),分别代入y=x2中得:∴;,又A、B在抛物线对称轴左侧,∴a<0,b<0,即,∴【变式1】二次函数与的形状相同,开口大小一样,开口方向相反,则______.【答案】2.【变式2】不计算比较大小:函数的图象右侧上有两点A(a,15),B(b,0.5),则a______b.答案】>.2.已知y=(m+1)x是二次函数且其图象开口向上,求m的值和函数解析式.【答案与解析】由题意,,解得m=1,∴二次函数的解析式为:y=.3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y轴对称的抛物线.【答案与解析】(1)由于待求抛物线形状相同,开口方向相反,可知二次项系数为,又顶点坐标是(0,-5),故常数项,所以所求抛物线为.(2)因为抛物线的顶点为(0,1),所以其解析式可设为,又∵该抛物线过点(3,-2),∴,解得.∴所求抛物线为.4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x____时,随x的增大而减小;当x____时,函数y有最____值,其最____值是____.【答案与解析】函数与的图象如图所示:(1)下;l ;(2)向下;y轴;(0,1);(3)>0;=0;大;大;1.课堂练习一、选择题1. 关于函数y=的图象,则下列判断中正确的是()A. 若a、b互为相反数,则x=a与x=b的函数值相等;B. 对于同一个自变量x,有两个函数值与它对应;C. 对任一个实数y,有两个x和它对应;D. 对任意实数x,都有y>0.2. 下列函数中,开口向上的是()A. B. C. D.3. 把抛物线向上平移1个单位,所得到抛物线的函数表达式为().A.B.C.D.4. 下列函数中,当x<0时,y值随x值的增大而增大的是()A. B. C. D.5. 在同一坐标系中,作出,,的图象,它们的共同点是().A.关于y轴对称,抛物线的开口向上B.关于y轴对称,抛物线的开口向下C.关于y轴对称,抛物线的顶点都是原点D.关于原点对称,抛物线的顶点都是原点6. 晴天时,汽车的刹车距离s (m)与开始刹车时的速度v(m/s)之间满足二次函数,若汽车某次的刹车距离为2.25m,则开始刹车时的速度为( ).A. 10m/sB. 15m/sC. 20m/sD. 25m/s二、填空题7. 已知抛物线的解析式为y=-3x2,它的开口向______,对称轴为______,顶点坐标是________,当x>0时,y随x的增大而________.8. 若函数y=ax2过点(2,9),则a=________.9. 已知抛物线y=x2上有一点A,A点的横坐标是-1,过点A作AB∥x轴,交抛物线于另一点B,则△AOB的面积为________.10. 写出一个过点(1,2)的函数解析式_________________.11. 函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12. 若对于任意实数x,二次函数的值总是非负数,则a的取值范围是____________.三、解答题13.已知是二次函数,且当x>0时,y随x的增大而增大.(1)求m的值;(2)画出函数的图象.14. 已知抛物线经过A(-2,-8).(1)求此抛物线的函数解析式;(2)判断B(-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.函数y=ax2 (a≠0)的图象与直线y=2x-3交于点(1,b).(1)求a和b的值;(2)求抛物线y=ax2的解析式,并求顶点坐标和对称轴;(3)x取何值时,y随x的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.一、选择题1.【答案】A.2.【答案】D;【解析】开口方向由二次项系数a决定,a>0,抛物线开口向上;a<0,抛物线开口向下.3.【答案】A;【解析】由抛物线的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为.4.【答案】B;【解析】根据抛物线的图象的性质,当a<0时,在对称轴(x=0)的左侧,y值随x值的增大而增大,所以答案为B.5. 【答案】C;【解析】y=2x2,y=-2x2,的图象都是关于y轴对称的,其顶点坐标都是(0,0).6. 【答案】B;【解析】当s=2.25时,,v=15.二、填空题7.【答案】下;y轴;(0,0);减小;8.【答案】;【解析】将点(2,9)代入解析式中求a.9.【答案】1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则.10.【答案】【解析】答案不唯一.11.【答案】,,.【解析】先比较,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y=3x2,y=x2,.12.【答案】a>-1;【解析】二次函数的值总是非负数,则抛物线必然开口向上,所以a+1>0.三、解答题13. 【解析】解:(1)∵为二次函数,且当x>0时,y随x的增大而增大,∴,∴,∴m=1.(2)由(1)得这个二次函数解析式为,自变量x的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14. 【解析】解:(1)∵抛物线经过A(-2,-8),∴-8=4a,∴a=-2,抛物线的解析式为:.(2)当x=-1时,y=-2=-2≠-4,∴点B(-1,-4)不在此抛物线上.(3)当y=-6时,即,得,∴此抛物线上纵坐标为-6的点的坐标是(,-6)和(,-6).15. 【解析】解:(1)将x=1,y=b代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x2,顶点坐标为(0,0),对称轴为直线x=0(即y轴).(3)当x<0时,y随x的增大而增大.(4)设直线y=- 2与抛物线y=-x2相交于A、B两点,抛物线顶点为O(0,0).由,,得∴A(,-2),B(,-2).∴AB=|-(-)|=2,高=|-2|=2.∴.类型二、二次函数y=a(x-h)^2+k(a≠0)的图象与性质1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向;(3)以x轴为对称轴,将原抛物线开口方向反向.【答案与解析】抛物线的顶点为(1,3).(1)将抛物线向左平移2个单位,再向下平移3个单位后,顶点为(-1,0),而开口方向和形状不变,所以a=2,得到抛物线解析式为.(2)顶点不动为(1,3),开口方向反向,则,所得抛物线解析式为.(3)因为新顶点与原顶点(1,3)关于x轴对称,故新顶点应为(1,-3).又∵抛物线开口反向,∴.故所得抛物线解析式为.2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【答案与解析】根据题意得,y=(x-4)2-2=x2-8x+14, 所以【变式】二次函数的图象可以看作是二次函数的图象向平移4个单位,再向平移3个单位得到的.【答案】上;右.3.已知与的图象交于A、B两点,其中A(0,-1),B(1,0).(1)确定此二次函数和直线的解析式;(2)当时,写出自变量x的取值范围.【答案与解析】(1)∵,的图象交于A、B两点,∴且解得且∴二次函数的解析式为,直线方程为.(2)画出它们的图象如图所示,由图象知当x<0或x>1时,.4.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,-m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是x=-).【答案与解析】解:(1)设二次函数的解析式为y=a(x-2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=-.所以二次函数的解析式为y=-(x-2)2+1;(2)∵抛物线y=-(x-2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴S△AOB =×4×1=2;(3)∵点P(m,-m)(m≠0)为抛物线y=-(x-2)2+1上一点,∴-m=-(m-2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,-8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(-4,-8).如下图.课堂巩固一、选择题1.抛物线的顶点坐标是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.函数y=x2+2x+1写成y=a(x-h)2+k的形式是()A.y=(x-1)2+2 B.y=(x-1)2+C.y=(x-1)2-3D.y=(x+2)2-13.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=(x+3)2-2B.y=(x-3)2+2C.y=(x-3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为()A. B.C.D.5.由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.其最小值为1D.当时,y随x的增大而增大6.在同一坐标系中,一次函数与二次函数的图象可能是()二、填空题7. 抛物线y=-(•x+•3)2•-•5•的开口向_______,•对称轴是________,•顶点坐标是_______.8.已知抛物线y=-2(x+1)2-3,如果y随x的增大而减小,那么x的取值范围是_ _____.9.抛物线y=-3(2x2-1)的开口方向是_____,对称轴是_____.10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线向上平移3个单位,再向右平移4个单位得到的抛物线是__ _____.12.抛物线的顶点为C,已知的图象经过点C,则这个一次函数的图象与两坐标轴所围成的三角形面积为________.三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式.14. 已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线;(1)求出a,h,k的值;(2)在同一直角坐标系中,画出与的图象;(3)观察的图象,当________时,y随x的增大而增大;当________时,函数y有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y的取值范围吗?15.已知抛物线的顶点为A,原点为O,该抛物线交y轴正半轴于点B,且,求:(1)此抛物线所对应的函数关系式;(2)x为何值时,y随x增大而减小?一、选择题1.【答案】D;【解析】由顶点式可求顶点,由得,此时,.2.【答案】D;【解析】通过配方即可得到结论.3.【答案】A;【解析】抛物线y=x2向左平移3个单位得到y=(x+3)2,再向下平移2个单位后,所得的抛物线表达式是y=(x+3)2-2.4.【答案】B【解析】通过配方即可得到结论.5.【答案】C;【解析】可画草图进行判断.6.【答案】C;【解析】A中的符号不吻合,B中抛物线开口不正确.D中直线与y 轴交点不正确.二、填空题7.【答案】下;直线x=-3 ;(-3,-5);【解析】由二次函数的图象性质可得结论.8.【答案】x≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y随x的增大而减小,故x≥-1.9.【答案】向下,y轴;10.【答案】;【解析】设过点(1,-14)得,所以.11.【答案】;【解析】先化一般式为顶点式,再根据平移规律求解.12.【答案】1;【解析】C(2,-6),可求与x轴交于,与y轴交于(0,3),∴.三、解答题13.【答案与解析】∵抛物线的顶点为(-1,-2)∴设其解析式为,又图象经过点(1,10),∴,∴,∴解析式为.14.【答案与解析】(1)由向上平移2个单位,再向右平移1个单位所得到的抛物线是.∴,,.(2)函数与的图象如图所示.(3)观察的图象,当时,随x的增大而增大;当时,函数有最大值,最大值是.(4)由图象知,对于一切的值,总有函数值.15.【答案与解析】(1)由题意知A(2,1),令,则,所以.由得,所以,因此抛物线的解析式为.(2)当时,y随x增大而减小.类型三:二次函数y=ax^2+bx+c(a≠0)的图象与性质类型一、二次函数的图象与性质1.求抛物线的对称轴和顶点坐标.【变式】把一般式化为顶点式.(1)写出其开口方向、对称轴和顶点D的坐标;(2)分别求出它与y轴的交点C,与x轴的交点A、B的坐标.2.如图所示,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(,0),则点A的坐标是_______.类型二、二次函数的最值3.求二次函数的最小值.类型三、二次函数性质的综合应用4.已知二次函数的图象过点P(2,1).(1)求证:;(2)求bc的最大值.【答案与解析】(1)∵的图象过点P(2,1),∴1=4+2b+c+1,∴c=-2b-4.(2).∴当时,bc有最大值.最大值为2.课堂巩固一、选择题1. 将二次函数化为的形式,结果为().A.B.C.D.2.已知二次函数的图象,如图所示,则下列结论正确的是().A.B.C.D.3.若二次函数配方后为,则b、k的值分别为().A.0,5B.0,1 C.-4,5D.-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b、c的值为().A.b=2,c=2B.b=2,c=0C.b= -2,c= -1 D.b= -3,c=25.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值()A. 等于0B.等于1C. 等于-1D. 不能确定6.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )二、填空题7.二次函数的最小值是________.8.已知二次函数,当x=-1时,函数y的值为4,那么当x=3时,函数y的值为________.9.二次函数的图象经过A(-1,0)、B(3,0)两点,其顶点坐标是________.10.二次函数的图象与x轴的交点如图所示.根据图中信息可得到m 的值是________.第10题第11题11.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是___;第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是___ __.12.已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则C点的坐标为__ __.三、解答题13.(1)用配方法把二次函数变成的形式;(2)在直角坐标系中画出的图象;(3)若,是函数图象上的两点,且,请比较、的大小关系.14.如图所示,抛物线与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.15.已知抛物线:(1)求抛物线的开口方向、对称轴和顶点坐标;(2)画函数图象,并根据图象说出x取何值时,y随x的增大而增大?x取何值时,y随x 的增大而减小?函数y有最大值还是最小值?最值为多少?一、选择题1.【答案】D;【解析】根据配方法的方法及步骤,将化成含的完全平方式为,所以.【解析】由图象的开口方向向下知;图象与y轴交于正半轴,所以;2.【答案】D;又抛物线与x轴有两个交点,所以;当时,所对应的值大于零,所以.3.【答案】D;【解析】因为,所以,,.4.【答案】B;【解析】,把抛物线向左平移2个单位长度,再向上平移3个单位长度后得抛物线,∴,∴,.5.【答案】A;【解析】因为抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),所以过点(1,0)代入解析式得a+b+c=0.6.【答案】A;【解析】分类讨论,当a>0,a<0时分别进行分析.二、填空题7.【答案】-3;【解析】∵,∴函数有最小值.当时,.8.【答案】4【解析】由对称轴,∴x=3与x=-1关于x=1对称,∴x=3时,y=4.9.【答案】(1,-4) ;【解析】求出解析式.10.【答案】4;【解析】由图象发现抛物线经过点(1,0),把,代入,得,解得.11.【答案】①④,②③④;12.【答案】(-2,5)或(4,5);【解析】先通过且△ABC的面积等于10,求出C点的纵坐标为5,点C在抛物线y=x2-2x-3上,所以x2-2x-3=5,解得x=-2或x=5,则C点的坐标为(-2,5)或(4,5).三、解答题13.【答案与解析】(1).(2)略.(3)∵,∴当时,y随x增大而减小,又,∴.14.【答案与解析】(1)把点C(5,4)代入抛物线得,,解得.∴该二次函数的解析式为.∵,∴顶点坐标为.(2)(答案不唯一,合理即正确)如先向左平移3个单位,再向上平移4个单位,得到二次函数解析式为,即.15.【答案与解析】(1)∵,b=-3,∴,把x=-3代入解析式得,.∴抛物线的开口向下,对称轴是直线x=-3,顶点坐标是(-3,2).(2)由于抛物线的顶点坐标为A(-3,2),对称轴为x=-3.抛物线与x轴两交点为B(-5,0)和C(-1,0),与y轴的交点为,取D关于对称轴的对称点,用平滑曲线顺次连结,便得到二次函数的图象,如图所示.从图象可以看出:在对称轴左侧,即当x<-3时,y随x的增大而增大;在对称轴右侧,即当x>-3时,y随x的增大而减小.因为抛物线的开口向下,顶点A是抛物线的最高点,所以函数有最大值,当x=-3时,.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解类型一、函数与方程4.已知抛物线与x轴没有交点.①求c的取值范围;②试确定直线经过的象限,并说明理由.【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( )A.B.C.D.【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.类型一、利用二次函数求实际问题中的最大(小)值1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖出这种商品每天的销售利润y与每件的销售价x之间的函数关系;。

高考数学一轮专项复习讲义(新高考用)-幂函数与二次函数(含解析)

高考数学一轮专项复习讲义(新高考用)-幂函数与二次函数(含解析)

幂函数与二次函数目录01考情透视.目标导航 (2)02知识导图.思维引航 (3)03考点突破.题型探究 (4)知识点1:幂函数 (4)知识点2:二次函数 (5)解题方法总结 (7)题型一:幂函数的定义及其图像 (10)题型二:幂函数性质的综合应用 (12)题型三:由幂函数的单调性比较大小 (15)题型四:二次函数的解析式 (18)题型五:二次函数的图象、单调性与最值 (22)题型六:二次函数定轴动区间和动轴定区间问题 (24)题型七:二次方程实根的分布及条件 (27)题型八:二次函数最大值的最小值问题 (29)04真题练习.命题洞见 (34)05课本典例.高考素材 (35)06易错分析.答题模板 (38)易错点:解二次型函数问题时忽视对二次项系数的讨论 (38)答题模板:含参二次函数在区间上的最值问题 (38)考点要求考题统计考情分析(1)幂函数的定义、图像与性质(2)二次函数的图象与性质2020年天津卷第3题,5分2020年江苏卷第7题,5分从近五年全国卷的考查情况来看,本节内容很少单独命题,幂函数要求相对较低,常与指数函数、对数函数综合,比较幂值的大小,多以选择题、填空题出现.复习目标:(1)通过具体实例,了解幂函数及其图象的变化规律.(2)掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).知识点1:幂函数1、幂函数的定义一般地,()a y x a R =∈(a 为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.2、幂函数的特征:同时满足一下三个条件才是幂函数①a x 的系数为1;②a x 的底数是自变量;③指数为常数.(3)幂函数的图象和性质3、常见的幂函数图像及性质:函数y x =2y x =3y x =12y x =1y x -=图象定义域R R R {|0}x x ≥{|0}x x ≠值域R {|0}y y ≥R {|0}y y ≥{|0}y y ≠奇偶性奇偶奇非奇非偶奇单调性在R 上单调递增在(0)-∞,上单调递减,在(0+)∞,上单调递增在R 上单调递增在[0+)∞,上单调递增在(0)-∞,和(0+)∞,上单调递减公共点(11),【诊断自测】若幂函数()y f x =的图象经过点()2,则()16f =()A 2B .2C .4D .12【答案】C 【解析】设幂函数()y f x x α==,因为()f x 的图象经过点(2,所以22α=12α=,所以()12f x x =,所以()1216164f ==.故选:C 知识点2:二次函数1、二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程.(3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标.2、二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2b x a=-,顶点坐标为24(,24b ac b a a --.(1)单调性与最值①当0a >时,如图所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2b x a =-时,2min 4()4ac b f x a-=;②当0a <时,如图所示,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a-+∞上递减,当2b x a =-时,2max 4()4ac b f x a-=(2)与x 轴相交的弦长当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,212121212||||()4||M M x x x x x x a ∆=-=+-=.3、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,令02p q x +=:(1)若2b p a-≤,则(),()m f p M f q ==;(2)若02b p x a <-<,则(),()2b m f M f q a=-=;(3)若02b x q a ≤-<,则(),()2b m f M f p a =-=;(4)若2b q a-≥,则(),()m f q M f p ==.【诊断自测】下列四个图象中,有一个图象是函数()()()32214803f x x ax a x a =-+-+≠的导数的图象,则()2f -的值为()A .173B .173-C .83D .83-【答案】D【解析】函数3221()(4)83f x x ax a x =-+-+,求导得222()24()4f x x ax a x a '=-+-=--,于是函数()y f x '=的图象是开口向上,对称轴为x a =的抛物线,①②不满足,又0a ≠,即函数()y f x '=的图象对称轴不是y 轴,④不满足,因此符合条件的是③,函数()y f x '=的图象过原点,且0a >,显然(0)0f '=,从而2a =,321()283f x x x =-+,所以3218(2)(2)2(2)833f -=⨯--⨯-+=-.故选:D解题方法总结1、幂函数()a y x a R =∈在第一象限内图象的画法如下:①当0a <时,其图象可类似1y x -=画出;②当01a <<时,其图象可类似12y x =画出;③当1a >时,其图象可类似2y x =画出.2、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a =<3、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2b x a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根0∆<12120x x mx x m∆==≤=≥或02()0b m af m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩2()0b naf n∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f mf n≤⎧⎨≤⎩在区间(,)m n内有且只有一个实根()0()0f mf n>⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩4、有关二次函数的问题,关键是利用图像.(1)要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2)对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型一:幂函数的定义及其图像【典例1-1】(2024·山东日照·二模)已知幂函数图象过点()2,4,则函数的解析式为()A .2xy =B .2y x =C .2log y x =D .sin y x =【答案】B 【解析】设幂函数的解析式为y x α=,由于函数过点()2,4,故42α=,解得2α=,该幂函数的解析式为2y x =;故选:B【典例1-2】已知幂函数pq y x =(,Z p q ∈且,p q 互质)的图象关于y 轴对称,如图所示,则()A .p ,q 均为奇数,且0p q>B .q 为偶数,p 为奇数,且0p q <C .q 为奇数,p 为偶数,且0p q>D .q 为奇数,p 为偶数,且0p q<【答案】D 【解析】因为函数p q y x =的定义域为(,0)(0,)-∞+∞ ,且在(0,)+∞上单调递减,所以p q <0,因为函数p qy x =的图象关于y 轴对称,所以函数pq y x =为偶函数,即p 为偶数,又p 、q 互质,所以q 为奇数,所以选项D 正确,故选:D.【方法技巧】确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.【变式1-1】已知函数()()11m f x m x +=-为幂函数,则()()2222f a a f a a -+-=()A .0B .1-C .2aD .64a a -【答案】A【解析】由题意有11m -=,可得()32,m f x x ==,其定义域为R ,且()()()33f x x x f x -=-=-=-,则函数()f x 为奇函数,所以()()22220f a a f a a -+-=.故选:A.【变式1-2】(多选题)(2024·新疆喀什·一模)若函数()231y m m x =--是幂函数,则实数m 的值可能是()A .2m =-B .2m =C .1m =-D .1m =【答案】BC【解析】()231y m m x =--是幂函数,则211m m --=,解得2m =或1m =-.故选:BC.【变式1-3】给出幂函数:①()f x x =;②2()f x x =;③()3f x x =;④()f x =()1f x x=.其中满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭的函数的个数是()A .1B .2C .3D .4【答案】A【解析】由题,满足条件()()()121221022f x f x x x f x x ++⎛⎫>>> ⎪⎝⎭表示函数图象在第一象限上凸,结合幂函数的图象特征可知只有④满足.故选:A题型二:幂函数性质的综合应用【典例2-1】已知幂函数()()21n m x f x =-的图象经过点()2,8,下面给出的四个结论:①()3f x x -=;②()f x 为奇函数;③()f x 在R 上单调递增;④()()211f a f +<,其中所有正确命题的序号为()A .①④B .②③C .②④D .①②③【答案】B【解析】对于①:由幂函数的定义可知211m -=,解得1m =,将点()2,8代入函数()nf x x =得28n =,解得3n =,所以()3f x x =,故①错误;对于②:因为定义域为R ,且()()()33f x x x f x -=-=-=-,所以()f x 为奇函数,故②正确;对于③:由幂函数的图象可知,()f x 在R 上单调递增,故③正确;对于④:因为211a +≥,且()f x 在R 上单调递增,所以()()211f a f +≥,故④错误,综上可知,②③正确,①④错误.故选:B.【典例2-2】已知幂函数()()212223a a f x a x +-=-在()0,∞+上单调递减,函数()3xh x m =+,对任意[]11,3x ∈,总存在[]21,2x ∈使得()()12f x h x =,则m 的取值范围为.【答案】268,9⎡⎤--⎢⎥⎣⎦【解析】因为函数()()212223a a f x a x+-=-是幂函数,则231a -=,2a =±,()f x 在()0,∞+上单调递减,则21202a a +-<,可得2a =-,()221f x x x -∴==,()f x \在[]1,3上的值域为1,19⎡⎤⎢⎥⎣⎦,()h x 在[]1,2上的值域为[]3,9m m ++,根据题意有918126399m m m m +≥≥-⎧⎧⎪⎪⇒⎨⎨+≤≤-⎪⎪⎩⎩,m ∴的范围为268,9⎡⎤--⎢⎥⎣⎦.故答案为:268,9⎡⎤--⎢⎥⎣⎦.【方法技巧】紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.【变式2-1】已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭.若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则α=.【答案】1-【解析】因为幂函数()f x x α=在(0,)+∞上递减,所以12,1,2α=---,又幂函数()f x x α=为奇函数,可知α为奇数,即1α=-.故答案为:1-【变式2-2】已知函数()()3222332ln34ln31x x f x x x --=-+-+-+,则满足()()832f x f x +->的x 的取值范围是.【答案】(),2-∞【解析】由题意得()()()32223322ln 31x x f x x x --=-+-+-+,设()3332ln 3x xg x x x -=+-+,则()()21f x g x =-+,()g x 的定义域为R ,且()()3332ln 3x xg x x x g x --=-+--=-,所以()g x 为奇函数,3,3,3,2ln 3x x y x y y y x -===-=都是增函数,所以()g x 是增函数,()f x 的图象是由()g x 的图象先向右平移2个单位长度,再向上平移1个单位长度得到的,所以()f x 图象的对称中心为()2,1,所以()()42f x f x +-=.易知()f x 在R 上单调递增,因为()()()()8324f x f x f x f x +->=+-,所以()()834f x f x ->-,所以834x x ->-,解得2x <,故答案为:(),2∞-.【变式2-3】已知幂函数()223mm f x x --=(其中,m ∈Z )为偶函数,且()f x 在()0,∞+上单调递减,则m的值为.【答案】1【解析】因为函数幂函数()f x 在()0,∞+上单调递减,所以2230m m --<,解得13m -<<,又m ∈Z ,所以0m =或1或2,当0m =或2时,()331f x x x -==定义域为{}0x x ≠,且()()()3311f x f x x x -==-=--,此时函数()f x 为奇函数,不符合题意;当1m =时,()441f x x x -==定义域为{}0x x ≠,且()()()4411f x f x x x -===-,此时函数()f x 为偶函数,符合题意;综上所述,1m =.故答案为:1.【变式2-4】已知函数()13f x x =,则关于t 的表达式()()222210f t t f t -+-<的解集为.【答案】1,13⎛⎫- ⎪⎝⎭【解析】由题意可知,()f x 的定义域为(),-∞+∞,所以()()()1133f x x x f x -=-=-=-,所以函数()f x 是奇函数,由幂函数的性质知,函数()13f x x =在函数(),-∞+∞上单调递增,由()()222210f t t f t -+-<,得()()22221f t t f t -<--,即()()22212f t t f t -<-,所以22212t t t -<-,即23210t t --<,解得113t -<<,所以关于t 的表达式()()222210f t t f t -+-<的解集为1,13⎛⎫- ⎪⎝⎭.故答案为:1,13⎛⎫- ⎪⎝⎭.【变式2-5】满足1133(1)(32)m m --+<-的实数m 的取值范围是().A .23,32⎛⎫ ⎪⎝⎭B .23,1,32⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .2,3⎛⎫+∞ ⎪⎝⎭D .23(,1),32⎛⎫-∞-⋃ ⎪⎝⎭【答案】D【解析】幂函数13y x -=在(0,)+∞为减函数,且函数值为正,在(,0)-∞为减函数,且函数值为负,1133(1)(32)m m --+<-等价于,320132m m m ->⎧⎨+>-⎩或10132m m m +<⎧⎨+>-⎩或32010m m ->⎧⎨+<⎩,解得2332m <<或m ∈∅或1m <-,所以不等式的解集为23(,1),32⎛⎫-∞-⋃ ⎪⎝⎭.故选:D.题型三:由幂函数的单调性比较大小【典例3-1】(2024·天津红桥·二模)若132()3a =,122log 5b =,143c -=,则a ,b ,c 的大小关系为()A .a b c >>B .b c a >>C .b a c >>D .a b c<<【答案】C 【解析】112221log log 152b =>=,111121411214321631[()()()818122()()]333c a ==>===,而1312()3a =<,所以a ,b ,c 的大小关系为b a c >>.故选:C【典例3-2】设232555322555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则,,a b c 大小关系是.【答案】a c b>>【解析】因为()25f x x =在()0,∞+单调增,所以22553255⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即a c >,因为()25xg x ⎛⎫= ⎪⎝⎭在(),-∞+∞单调减,所以32552255⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即,c b >综上,a c b >>.故答案为:a c b >>.【方法技巧】在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.【变式3-1】(2024·河北衡水·三模)已知1log 14a <,114a⎛⎫< ⎪⎝⎭,141a <,则实数a 的取值范围为()A .10,4⎛⎫⎪⎝⎭B .()0,1C .()1,+¥D .1,14⎛⎫ ⎪⎝⎭【答案】A 【解析】由1log 14a<,得1a >或10a 4<<,由114a⎛⎫< ⎪⎝⎭,得0a >,由141a <,得01a <<,∴当1log 14a <,114a⎛⎫< ⎪⎝⎭,141a <同时成立时,取交集得10a 4<<,故选:A.【变式3-2】已知πe a =,e πb =,eπc =,则这三个数的大小关系为.(用“<”连接)【答案】c b a<<【解析】由ln πa =,ln eln πb =,令ln ()xf x x=且[e,)x ∈+∞,则21ln ()0x f x x -'=≤,所以()f x 在[e,)x ∈+∞上递减,则ln e ln ππeln πe π>⇒>,即ln ln a b >,所以b a <,由e πb =,πe ]c =,只需比较π与π的大小,根据x y =与y x =,相交于(2,2),(4,4)两点,图象如下,由2π4<<,结合图知ππ>,故πe e []πb c ==>,综上,c b a <<.故答案为:c b a<<【变式3-3】已知幂函数()f x的图象过点()()()1122121,,,,,024P x y Q x y x x ⎛<< ⎝⎭是函数图象上的任意不同两点,则下列结论中正确的是()A .()()1122x f x x f x >B .()()1221x f x x f x <C .()()1221f x f x x x >D .()()1212f x f x x x <【答案】D【解析】设幂函数()f x x α=,因为()f x的图象经过点124⎛ ⎝⎭,则124α⎛⎫= ⎪⎝⎭,解得32α=,所以()32f x x =.因为函数()32f x x =在定义域()0,∞+内单调递增,则当120x x <<时,()()120f x f x <<,所以()()1122x f x x f x <,且()()1221f x f x x x <,故选项A,C 错误;又因为函数()12f x x x=单调递增,则当120x x <<时,()()1212f x f x x x <,且()()2112x f x x f x <,故选项D 正确,选项B 错误.故选:D.【变式3-4】(2024·高三·河北邢台·期中)已知函数()()2231mm f x m m x+-=--是幂函数,且在()0,∞+上单调递减,若,a b ∈R ,且0,a b a b <<<,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断【答案】B【解析】由211m m --=得2m =或1m =-,2m =时,3()f x x =在R 上是增函数,不合题意,1m =-时,3()-=f x x ,在(0,)+∞上是减函数,满足题意,所以3()-=f x x ,0,a b a b <<<,则0b a >->,()()f a f b ->,3()f x x =-是奇函数,因此()()f a f a -=-,所以()()f a f b ->,即()()0f a f b +<,故选:B.题型四:二次函数的解析式【典例4-1】(2024·高三·海南海口·开学考试)已知二次函数()f x 的图象经过点()4,3,在x 轴上截得的线段长为2,并且对任意x ∈R ,都有()()22f x f x -=+,则()f x =.【答案】243x x -+【解析】因为()()22f x f x -=+对x ∈R 恒成立,所以()y f x =的图象关于2x =对称.又()y f x =的图象在x 轴上截得的线段长为2,所以()0f x =的两根为211-=或213+=,所以二次函数()f x 与x 轴的两交点坐标为()1,0和()3,0,因此设()()()13f x a x x =--.又点()4,3在()y f x =的图象上,所以33a =,则1a =,故()()()21343f x x x x x =--=-+.故答案为:243x x -+【典例4-2】写出同时满足下列条件①②③的一个函数()f x =.①()f x 是二次函数;②(1)xf x +是奇函数;③()f x x在(0,)+∞上是减函数.【答案】22x x-+【解析】因为()f x 是二次函数,所以令2()2f x x x =-+,()0x ≠,令()()()23(1)121g x xf x x x x x x ⎡⎤=+=-+++=-+⎣⎦,()()()3g x x x g x -=---=-,故满足条件②;令()222()x f x h x x x xx+===-+-在(0,)+∞上是减函数,满足条件③,故答案为:22x x-+【方法技巧】求二次函数解析式的三个技巧(1)已知三个点的坐标,选择一般式.(2)已知顶点坐标、对称轴、最大(小)值等,选择顶点式.(3)已知图象与x 轴的两交点的坐标,选择零点式.【变式4-1】已知函数()2f x ax bx c =++(0a ≠)的图象关于y 轴对称,且与直线y x =相切,写出满足上述条件的一个函数()f x =.【答案】214x +(答案不唯一)【解析】已知()()20f x ax bx c a =++≠,∵()f x 的图象关于y 轴对称,∴对称轴02bx a=-=,∴0b =,∴()2f x ax c =+,联立2y ax c y x⎧=+⎨=⎩,整理得2ax c x +=,即20ax x c -+=,∵()f x 的图象与直线y x =相切,∴140ac ∆=-=,∴14ac =,当1a =时,14c =.∴满足条件的二次函数可以为()214f x x =+.故答案为:214x +.【变式4-2】已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,二次函数的解析式是.【答案】f (x )=-4x 2+4x +7.【解析】法一(利用“一般式”解题)设f (x )=ax 2+bx +c (a ≠0).由题意得2421,1,48,4a b c a b c ac b a⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得4,4,7.a b c =-⎧⎪=⎨⎪=⎩∴所求二次函数为f (x )=-4x 2+4x +7.法二(利用“顶点式”解题)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为2(1)122x +-==,所以m =12.又根据题意,函数有最大值8,所以n =8,所以y =f (x )=21(82a x -+.因为f (2)=-1,所以21(2812a -+=-,解得a =-4,所以f (x )=214(82x --+=-4x 2+4x +7.法三(利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1)(a ≠0),即f (x )=ax 2-ax -2a -1.又函数有最大值8,即24(21)()84a a a a----=.解得a =-4或a =0(舍).故所求函数的解析式为f (x )=-4x 2+4x +7.故答案为:f (x )=-4x 2+4x +7.【变式4-3】已知函数2()(2)(0)f x mx m x n m =+-+>,当11x -≤≤时,都有()1f x ≤恒成立,则1=3f ⎛⎫⎪⎝⎭.【答案】79-【解析】因为当11x -≤≤时,都有()1f x ≤恒成立,所以(0)1(1)1f f ⎧≤⎪⎨≤⎪⎩,即121n n ⎧≤⎪⎨+≤⎪⎩,所以1131n n -≤≤⎧⎨-≤≤-⎩,解得1n =-,所以(0)1,(1)1f f =-=,由()f x 图象可知,要满足题意,则图象的对称轴为直线x =0,所以20m -=,解得m =2,所以2()21f x x =-,所以117=21399f ⎛⎫⨯-=- ⎪⎝⎭.故答案为:79-【变式4-4】已知()f x 是二次函数,()20f -=,且()2422x x f x +≤≤,则()10f =.【答案】36【解析】法一:由()20f -=,可设()()()()2222f x x ax b ax a b x b =++=+++,则由()2f x x ≥得()22220ax a b x b ++-+≤,所以0a ≥且2(22)8a b ab +-≤,整理后即为2244844a b ab a b +≤++-,由()242x f x +≤得()()22142440a x a b x b -+++-≤,若210a -=则必有420a b +=,此时与2(22)8a b ab +-≤矛盾,所以210a -≤且()()2(42)42144a b a b +≤--,整理后为2244844a b ab a b +≤--+,与2244844a b ab a b +≤++-相加即得2244a b ab +≤,即2(2)0a b -≤,所以2a b =,所以()()()222(2)f x x ax a a x =++=+,又由于在原不等式中令2x =可得()424f ≤≤,所以()24f =,由此解得14a =.所以()()21(2),10364f x x f =+=.法二:()()2241202(2)22x x f x f x x x +≤≤⇒≤-≤-,令()()2g x f x x =-,则()()24,20g g -==,设()()()()20g x a x x m a =--≠.若2m ≠,则()()()()'22122202x x g x g a m =⎡⎤--=-'=-≠⎢⎥⎣⎦,于是()20a m ->时,存在02x <使得()()2001202x g x --<,矛盾;()20a m -<时,存在02x >使得()()2001202x g x --<,矛盾;故2m =,令2x =-,则()116244a g a =-=⇒=.于是()()22112(2)2(2)44f xg x x x x x =+=-+=+,进而()1036f =.故答案为:36.题型五:二次函数的图象、单调性与最值【典例5-1】已知()1()()f x x a x b =---,并且m 、n 是方程()0f x =的两根,则实数a 、b 、m 、n 的大小关系可能是()A .m a b n <<<B .a m n b <<<C .a m b n <<<D .m a n b<<<【答案】A【解析】设()()()g x x a x b =---,又()1()()f x x a x b =---,分别画出这两个函数的图象,其中()f x 的图象可看成是由()g x 的图象向上平移1个单位得到,如图,由图可知:m a b n <<<.故选:A .【典例5-2】(2024·高三·江苏苏州·期中)满足2{}{,}x m x n y y x m x n ≤≤==≤≤的实数对m ,n 构成的点(,)m n 共有()A .1个B .2个C .3个D .无数个【答案】C【解析】由2{}{,}x m x n y y x m x n ≤≤==≤≤,又20y x =≥,则0m ≥,所以2y x =在[,]m n 单调递增,故值域为[(),()]f m f n ,即,m n 是2x x =的两根,解得120,1x x ==,当0m n ==时,点(,)m n 为(0,0),当1m n ==时,点(,)m n 为(1,1),当0,1m n ==时,点(,)m n 为(0,1).故选:C【方法技巧】解决二次函数的图象、单调性与最值常用的方法是数形结合.【变式5-1】(2024·全国·模拟预测)若函数2()(2)1f x x m x =--+在11,22⎡⎤-⎢⎥⎣⎦上单调,则实数m 的取值范围为()A .19,13,22⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦B .19,23,22⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ C .19,13,22⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦D .19,23,22⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦【答案】C【解析】令()()221g x x m x =--+,则21,22102m g -⎧≥⎪⎪⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩或21,22102m g -⎧≥⎪⎪⎨⎛⎫⎪-≤ ⎪⎪⎝⎭⎩或21,22102m g -⎧≤-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩或21,2210,2m g -⎧≤-⎪⎪⎨⎛⎫⎪≤ ⎪⎪⎝⎭⎩解得392m ≤≤或112m -≤≤,即实数m 得取值范围为1[,1][3,]229- .故选:C .【变式5-2】(2024·高三·山东济宁·期中)函数()f x =的单调递增区间为()A .1,4⎛⎤-∞ ⎥⎝⎦B .(,1)-∞-C .3,2⎡⎫+∞⎪⎢⎣⎭D .1,4⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由题意,令223t x x =--=()()2310x x -+≥,即1x ≤-或32x ≥,根据二次函数性质知:223t x x =--在(,1]-∞-上递减,在3,+2⎡⎫∞⎪⎢⎣⎭上递增又y 在定义域上递增,故()f x 3,+2⎡⎫∞⎪⎢⎣⎭.故选:C【变式5-3】(2024·广东珠海·模拟预测)已知函数()221f x x mx x =+-+在区间[)2,+∞上是增函数,则实数m 的取值范围是.【答案】[)2,-+∞【解析】二次函数()()221f x x m x =+-+的图象开口向上,对称轴为直线22m x -=-,因为函数()f x 在区间[)2,+∞上是增函数,则222m --≤,解得2m ≥-.因此,实数m 的取值范围是[)2,-+∞.故答案为:[)2,-+∞.【变式5-4】若函数()2224,02,0x x x f x x x ⎧-+>=⎨≤⎩在区间()1,32a a --上有最大值,则实数a 的取值范围是.【答案】[0,1)【解析】令()224g x x x =-+,0x >,所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,又(1)2(1)f f ==-,作出函数()f x的大致图象,由于函数()2224,02,0x x x f x x x ⎧-+>=⎨≤⎩在区间()1,32a a --上有最大值,结合图象,由题意可得321111a a ->⎧⎨-≤-<⎩,解得01a ≤<,所以实数a 的取值范围是[0,1),故答案为:[0,1)题型六:二次函数定轴动区间和动轴定区间问题【典例6-1】已知函数2()2(0)f x x ax a =->.(1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值.【解析】(1)当3a =时,不等式5()7f x -<<,即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x ,所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃.(2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥,若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥,所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.【典例6-2】已知函数221y x ax =++在12x -≤≤上的最大值为4,求a 的值.【解析】函数()222211y x ax x a a =++=++-的图象为对称轴为x a =-,开口向上的抛物线,当12a -≤时,即12a ≥-时,此时2x =离对称轴更远,所以当2x =时有最大值,最大值为45a +,由已知454a +=,故14a =-,当12a ->时,即12a <-时,此时=1x -离对称轴更远,所以当=1x -时有最大值,最大值为22a -,由已知224a -=,故1a =-,所以14a =-或1a =-.【方法技巧】“动轴定区间”、“定轴动区间”型二次函数最值的方法:(1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果得到最终答案.【变式6-1】已知函数()2f x x ax =+,其中a 是实数.(1)()f x 在区间[]1,2-上的最大值记为()M a ,求()M a 的表达式;(2)()f x 在区间[]1,2-上的最小值记为()m a ,求()m a 的表达式;(3)若()()3M a m a -=,求实数a 的值.【解析】(1)()222()24a x a f x x ax =+=+-,对称轴为2a x =-,当122a -≤,即1a ≥-时,()(2)42M a f a ==+,当122a ->,即1a <-时,()(1)1M a f a =-=-,综上,()42,11,1a a M a a a +≥-⎧=⎨-<-⎩.(2)当12a-≤-,即2a ≥时,函数()f x 在区间[]1,2-上单调递增,()(1)1m a f a =-=-,当22a-≥,即4a ≤-时,函数()f x 在区间[]1,2-上单调递减,()(2)42m a f a ==+,当122a -<-<,即42a -<<时,()2()24a a m a f =-=-,综上,()242,4,4241,2a a am a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩.(3)当4a ≤-时,()1M a a =-,()42m a a =+,由()()3M a m a -=,得()1423a a --+=,解得2a =-(舍);当41a -<<-时,()1M a a =-,()24a m a =-,由()()3M a m a -=,得2134a a -+=,即2480a a --=,解得2a =-2=+a ;当12a -≤<时,()42M a a =+,()24a m a =-,由()()3M a m a -=,得()24234aa ++=,即2840a a ++=,解得4a =--4a =-+当2a ≥时,()42M a a =+,()1m a a =-,由()()3M a m a -=,得()()4213a a +--=,解得0a =(舍),综上,2a =-4-+题型七:二次方程实根的分布及条件【典例7-1】若关于x 的一元二次方程()23180x a x a +-++=有两个不相等的实根12,x x ,且121,1x x <>.则实数a 的取值范围为.【答案】2a <-【解析】令函数2()(31)8f x x a x a =+-++,依题意,()0f x =的两个不等实根12,x x 满足121,1x x <>,而函数()f x 图象开口向上,因此(1)0f <,则21(31)180a a +-⨯++<,解得2a <-,所以实数a 的取值范围为2a <-.故答案为:2a <-【典例7-2】方程()2110mx m x --+=在区间()0,1内有两个不同的根,m 则的取值范围为.【答案】3m >+【解析】令()()211f x mx m x =--+,图象恒过点()0,1,方程()211mx m x --+=0在区间()0,1内有两个不同的根,()()2010********Δ0m m m m m f m m >⎧⎧⎪>-⎪⎪<<⎪⎪∴⇒>⎨⎨⎪⎪>-->⎪⎪⎩>⎪⎩,解得3m >+故答案为:3m >+【方法技巧】结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.【变式7-1】(2024·四川雅安·模拟预测)已知关于x 的方程()20,x bx c b c R ++=∈在[]1,1-上有实数根,且满足033b c ≤+≤,则b 的取值范围是.【答案】[]0,2【解析】问题等价于()()2,g x bx c h x x =+=-在[]1,1-上有公共点.()[]330,3g b c =+∈ ,设(3,0),(3,3)C D ,(3)3g b c =+,点(3,(3))g 在线段CD 上,()y g x ∴=的图象是过线段CD 和抛物线AB 弧上各一点的直线(如图),其中()()()()1,1,1,1,3,0,3,3A B C D ---.∴[]max min 2;00,2.BD CO b k b k b ====⇒∈故答案为:[0,2].【变式7-2】关于x 的方程2(3)0x m x m +-+=满足下列条件,求m 的取值范围.(1)有两个正根;(2)一个根大于1,一个根小于1;(3)一个根在(2,0)-内,另一个根在(0,4)内;(4)一个根小于2,一个根大于4;(5)两个根都在(0,2)内.【解析】(1)令2()(3)f x x m x m =+-+,设()0f x =的两个根为12,x x .由题得()12122300Δ340x x m x x m m m ⎧+=->⎪⎪=>⎨⎪=--≥⎪⎩,解得01m <≤.(2)若方程2(3)0x m x m +-+=的一个根大于1,一个根小于1,则(1)220f m =-<,解得1m <(3)若方程2(3)0x m x m +-+=一个根在(2,0)-内,另一个根在(0,4)内,则(2)100(0)0(4)540f m f m f m -=->⎧⎪=<⎨⎪=+>⎩,解得405m -<<(4)若方程2(3)0x m x m +-+=的一个根小于2,一个根大于4,则(2)320(4)540f m f m =-<⎧⎨=+<⎩,解得45<-m (5)若方程2(3)0x m x m +-+=的两个根都在(0,2)内,则()()()22320003022Δ340f m f m m m m ⎧=->⎪=>⎪⎪-⎨<-<⎪⎪=--≥⎪⎩,解得213m <≤题型八:二次函数最大值的最小值问题【典例8-1】已知函数2()f x x ax b =++在区间[0,4]上的最大值为M ,当实数a ,b 变化时,M 最小值为.【答案】2【解析】22()4(4)4[(4)]f x x x a x b x x a x b =-+++=---+-,上述函数可理解为当横坐标相同时,函数2()4g x x x =-,[0x ∈,4]与函数()(4)h x a x b =-+-,[0x ∈,4]图象上点的纵向距离,则M 即为函数2()4g x x x =-与函数()(4)h x a x b =-+-图象上点的纵向距离的最大值中的最小值,作出函数(),()g x h x图象,如图,由图象可知,当函数()h x 的图象刚好为=2y -时此时4,2a b =-=,M 取得最小值为2.故答案为:2【典例8-2】已知函数(),,f x ax b a b =-∈R ,若对任意的[]00,4x ∈,使得()0f x M ≥,求实数M 的取值范围是.【答案】1,4⎛⎤-∞ ⎥⎝⎦2,t x t ==,则()()[]()2,0,2f x g t at t b t ==-+-∈,取三点控制得()()()012g M g M g M ⎧≥⎪≥⎨⎪≥⎩,进而142b M a b M a b M⎧≥⎪-+-≥⎨⎪-+-≥⎩,化简得33444442b Ma b M a b M ⎧≥⎪-+-≥⎨⎪-+-≥⎩,可得8344442M b a b a b ≤+-+-+-+-,即()()83444422M b a b a b ≤+-+---+-=,解得14M ≤.故答案为:1,4⎛⎤-∞ ⎥⎝⎦【方法技巧】解决二次函数最大值的最小值问题常用方法是分类讨论、三点控制、四点控制.【变式8-1】二次函数()f x 为偶函数,()11f =,且()232f x x x +≤恒成立.(1)求()f x 的解析式;(2)R a ∈,记函数()()21h x f x ax =-+在[]0,1上的最大值为()T a ,求()T a 的最小值.【解析】(1)依题设()2f x ax c =+,由()11f =,得1a c +=,()232f x x x +≤,得()23210a x x a -++-≥恒成立,∴30Δ44(1)(3)0a a a ->⎧⎨=---≤⎩,得()220a -≤,所以2a =,又1a c +=,所以1c =-,∴()221f x x =-;(2)由题意可得:()222h x x ax =-,[]0,1x ∈,若0a ≤,则()222h x x ax =-,则()h x 在[0,1]上单调递增,所以()()122T a h a ==-;若0a >,当12a≥,即2a ≥时,()h x 在[0,1]上单调递增,()()122T a h a ==-当12a <,只须比较222a a h ⎛⎫= ⎪⎝⎭与()122h a =-的大小,由()22202a a -->,得:21a <<,此时()22a T a =,02a <≤时,2222a a -≤,此时()22T a a =-,综上,()222,2,22222,2a a aT a a a a -≥⎧⎪⎪=<<⎨⎪⎪-<⎩,2a ≥时,()2T a ≥,22a <<时,()62T a -<<,2a ≤时,()6T a -,综上可知:()T a的最小值为6-【变式8-2】已知函数()(2)||(R)f x x x a a =-+∈,(1)当1a =-时,①求函数()f x 单调递增区间;②求函数()f x 在区间74,4⎡⎤-⎢⎥⎣⎦的值域;(2)当[3,3]x ∈-时,记函数()f x 的最大值为()g a ,求()g a 的最小值.【解析】(1)当1a =-时,函数()(2)|1|f x x x =--,当1x >时,函数2()(2)(1)32f x x x x x =--=-+,此时,函数()f x 在3,2⎡⎫+∞⎪⎢⎣⎭上单调递增,当1x ≤时,函数2()(2)(1)32f x x x x x =--=-+-,此时,函数()f x 在(],1-∞上单调递增,所以函数()f x 单调递增区间为(],1-∞和3,2⎡⎫+∞⎪⎢⎣⎭;因为函数()f x 单调递增区间为(],1-∞和3,2⎡⎫+∞⎪⎢⎣⎭,所以函数()f x 在区间[]4,1-上单调递增,在区间31,2⎛⎫⎪⎝⎭上单调递减,在区间37,24⎡⎤⎢⎥⎣⎦上单调递增,所以min 3()min (4),()2f x f f ⎧⎫=-⎨⎬⎩⎭,max 7()max (1),()4f x f f ⎧⎫=⎨⎬⎩⎭,因为(4)(42)(14)30f -=--+=-,1((2)()43331222f -=-=-,(1)(12)(11)0f =--=,3()(2)()167771444f ==---,所以函数()f x 在区间74,4⎡⎤-⎢⎥⎣⎦的值域为[]30,0-;(2)由已知可得,()()()()()()()22222,222,x x a x a x a x a f x x x a x a x a x a ⎧-+=+--≥-⎪=⎨--+=-+-+<-⎪⎩,当3a -≥时,即3a ≤-时,2()(2)2f x x a x a =-+-+,对称轴为2522a x -=≥,当232a-≥时,即4a ≤-时,函数()f x 在区间[3,3]-上单调递增,所以()(3)3g a f a ==--,当52322a -≤<时,即43a -<≤-时,函数()f x 在区间23,2a -⎡⎫-⎪⎢⎣⎭上单调递增,在区间2,32a -⎛⎤ ⎥⎝⎦上单调递减,所以242244()()a a g a f a ++=-=,当2a -≤时,即2a ≥-时,若[3,2]x ∈-,()0f x ≤,若[2,3]x ∈,()0f x >,因为当(]2,3x ∈时,2()(2)2f x x a x a =+--,对称轴为222ax -=≤,所以函数()f x 在区间(]2,3上单调递增,所以()(3)3g a f a ==+,当23a <-<,即32a -<<-时,此时25222a -<<,函数()f x 在区间23,2a -⎡⎫-⎪⎢⎣⎭上单调递增,在区间2,2a a -⎛⎫- ⎪⎝⎭上单调递减,在区间(],3a -上单调递增,所以()()2244max 3,max 3,24a a a g x f f a ⎧⎫⎧⎫-++⎛⎫==+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭若24434a a a +++≥,即2a -≤<-时,()3g a a =+,若24434a a a +++<,即3a -≤<-时,244()4a a g a ++=,综上所述,23,44(),443,4a a a a g a a a a ⎧+≥-⎪++⎪=-<<-⎨⎪--≤-⎪⎩,函数()3g a a =--在区间(],4-∞-上单调递减,函数244()4a a g a ++=在区间(4,--上单调递减,函数()3g a a =+在区间)⎡-+∞⎣上单调递增,所以min 33()(g a g -=-=-=【变式8-3】(2024·高三·江苏南通·开学考试)记函数()2f x x ax =-在区间[]0,1上的最大值为()g a ,则()g a 的最小值为()A.3-B1-C .14D .1【答案】A【解析】以下只分析函数()2f x x ax =-在[]0,1x ∈上的图象及性质,分类讨论如下:①当0a ≤时,函数()22=f x x ax x ax =--在区间[]0,1上单调递增,即()()11g a f a ==-,此时()g a 单调递减,()()min 01g a g ==;②当01a <≤时,()222,1=,0x ax a x f x x ax ax x x a ⎧-<≤=-⎨-≤<⎩,所以()()2max 1,max 1,24a a g a f f a ⎧⎫⎧⎫⎛⎫==-⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,易知当0222a <≤-时,()2114a a g a a -≥⇒=-,当221a <≤,()22144a a a g a -<⇒=,此时()()()()2min22222212223224g a g ===--=-③当1a >时,()22=f x x ax ax x =--,即()()2max 1,max 1,24a a g a f f a ⎧⎫⎧⎫⎛⎫==-⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,易知当12a <≤时,()22144a a a g a -≤⇒=,当2a <,()2114a a g a a ->⇒=-,此时()()min 114g a g ==;而113224>>-()g a 的最小值为322-.故选:A1.(2023年新课标全国Ⅰ卷数学真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【解析】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D2.(2023年天津高考数学真题)设0.50.60.51.01, 1.01,0.6a b c ===,则,,a b c 的大小关系为()A .a b c <<B .b a c <<C .c b a <<D .c a b<<【答案】D【解析】由 1.01x y =在R 上递增,则0.50.61.01 1.01a b =<=,由0.5y x =在[0,)+∞上递增,则0.50.51.010.6a c =>=.所以b a c >>.故选:D3.(2011年普通高等学校招生全国统一考试文科数学(陕西卷))函数13y x =的图象是A .B.C .D .【答案】B【解析】函数图象上的特殊点(1,1),故排除A,D;由特殊点(8,2),11(,)82,可排除C.故选B.1.画出函数y的图象,并判断函数的奇偶性,讨论函数的单调性.【解析】xyx≥==<y∴=设()f x y==()f x的定义域为R.()()f x f x-===,()y f x∴==.当[0,)x∈+∞时,y=设任意的12,[0,)x x∈+∞,且12x x<,则12y y-= 12,[0,)x x∈+∞,且12,x x≥12120,0,0x x y y>-<∴-<即12y y<. y∴[0,)+∞上为增函数.当(,0]x∈-∞时,y=设任意的12,(,0]x x ∈-∞,且12x x <,则12y y -===12,(,0]x x ∈-∞,且12,0x x <>,21120.0x x y y ->∴->即12y y >.y ∴(,0]-∞上是减函数.2.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率v ,(单位:3/cm s )与管道半径r (单位:cm )的四次方成正比.(1)写出气体流量速率v ,关于管道半径r 的函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为3400/cm s ,求该气体通过半径为r 的管道时,其流量速率v 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率(精确到31/cm s ).【解析】(1)设比例系数为k ,气体的流量速率v 关于管道半径r 的函数解析式为4v kr =.(2)将3r =与400v =代入4v kr =中,有44003k =⨯.解得40081k =,所以,气体通过半径为r 的管道时,其流量速率v 的表达式为440081v r =.(3)当=5r 时,43400250000530868181/s v cm =⨯=≈.所以,当气体81通过的管道半径为5cm 时,该气体的流量速率约为33086/cm s .3.试用描点法画出函数2()f x x -=的图象,求函数的定义域、值域;讨论函数的单调性、奇偶性,并证明.【解析】21()f x x =.列表:x…-3-2-1123…()f x …1914111419…描点,连线.图象如图所示.定义域:{|0}x x ≠,值域:{|0}y y >.2()f x x -=在(,0)-∞上是增函数,在(0,)+∞上是减函数.证明如下:设任意的12,(,0)x x ∈-∞,且12x x <.则()()()()222121211222222212121211x x x x x x f x f x x x x x x x +---=-==.22121212210,0,0,0x x x x x x x x <<∴+<>-> .。

二次函数复习讲义(整理)

二次函数复习讲义(整理)

二次函数复习讲义(整理)-CAL-FENGHAI.-(YICAI)-Company One1二次函数知识点复习知识点1.二次函数的定义1、一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的 次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.2、当b=c=0时,二次函数y=ax 2是最简单的二次函数. 练习(1)下列函数中,二次函数的是( )A .y=ax 2+bx+cB 。

2)1()2)(2(---+=x x x yC 。

xx y 12+= D 。

y=x(x —1) 练习(2)如果函数1)3(232++-=+-mx xm y m m 是二次函数,那么m 的值为知识点2.二次函数的图像及性质1、已知一个二次函数,确定它的图象名称、开口方向、对称轴、顶点坐标、增减范围、极值。

已知条件中含二次函数开口方向或对称轴、顶点坐标、增减范围、极值,求解析中待定系数的取值。

(1)、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. (2)、二次函数 c bx ax y ++=2,当0>a 时⇔抛物线开口向上⇔顶点为其最低点;当0<a 时⇔抛物线开口向下⇔顶点为其最高点(3)、对于y=ax 2+bx+c 而言,其顶点坐标为( ,).对于y=a (x -h )2+k 而言其顶点坐标为( , )。

二次函数c bx ax y ++=2用配方法或公式法(求h 时可用代入法)可化成:k h x a y +-=2)(的形式,其中h= ,k=练习(3)抛物线1822-+-=x x y 的图象的开口方向是_____, 顶点坐标是_ ___. 练习(4)若抛物线232)1(2-++-=m mx x m y 的最低点在x 轴上,则m 的值为 (4)、二次函数 c bx ax y ++=2的对称轴为直线x=-2ba运用抛物线的对称性求对称轴,由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线段的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.若抛物线上有两点A (m,n )、B(p,n)的纵坐标相等,则它的对称轴为直线x=-2pm +练习(5)已知A 、B 是抛物线243y x x =-+上位置不同的两点,且关于抛物线的对称轴对称,则点A 、B 的坐标可能是_____________.(写出一对即可)(5)增减性:二次函数 c bx ax y ++=2的增减性分对称轴左右两侧描述(数形结合理解它的增减性)若0>a ,当x 时(在对称轴 侧),y 随x 的增大而增大,当x 时(在对称轴 侧),y 随x 的增大而减小,若0<a ,当x 时(在对称轴 侧),y 随x 的增大而增大,当x 时(在对称轴 侧),y 随x 的增大而减小,练习(6)已知抛物线2y ax bx c =++(a >0)的对称轴为直线1x =,且经过点()()212y y -1,,,,试比较1y 和2y 的大小:1y _2y (填“>”,“<”或“=”)练习(7)二次函数542+-=mx x y ,当2-<x 时,y 随x 的增大而减小;当2->x 时,y 随x 的增大而增大。

二次函数复习讲义

二次函数复习讲义

AB F ED C二次函数复习讲义一、知识框架二、具体问题讲解(一)解析式的获取问题 1. 列取例1:正方形ABCD 的边长为4,E 为BC 上一点,F 是CD 上一点,且AE=AF ,设⊿AEF 的面积为y ,EC 的长为x ,求y 与x 的函数关系式,写出自变量的取值范围。

例2:某种品牌的服装进价为每件150元,当售价为每件210元时,每天可售出20件。

现需降价处理,经过市场调查:每件服装每降价2元,每天可多售出1件。

在确保盈利的前提下,若设每件服装降价x 元,每天售出服装的利润为y 元,确定y 与x 之间的函数关系式,并确定自变量的取值范围。

例3:如图,在⊿ABC 中,∠B=900,AB=12cm ,BC=24cm ,动点P 从点A 开始沿着AB 向B 以2cm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿着BC 向C 以4cm/s 的速度移动(不与点C 重合)。

假设P 、O 分别从A 、B 同时出发,设运动的时间为x s ,四边形APQC 的面积为ycm 2. ⑴求y 与x 之间的关系式,并确定自变量的取值范围;⑵四边形APQC 面积能否成为172cm 2?若能,求出运动的时间;若不能,说明理由。

练:1.在半径为4米的圆中,挖一个半径为xcm 的圆,剩下的圆环面积为ycm 2,则y 与x 的函数关系式为 2.国家决定对某种药品价格分两次降价,若设平均每次的降价率为x ,该药品的原价为18元,降价后的药价为y 元,则y 与x 的函数关系式为 。

3.如图,一矩形场地,两边长分别是80m 、60m ,先欲在场地内修两条宽为xm 的小路,剩余局部的面积为ym 2,则y 与x 之间的关系式为 。

4.某市园丁居民小区要在一块一边靠墙(墙长为15m )的空地上修建一个矩形花园ABCD 。

花园的一边靠墙,另三边用总长为40m 的栅栏围成。

如下列图,若设花园BC 边的边长为xm ,花园的面积为Sm 2.则S 与x 的函数关系式为 ;自变量的取值范围为 。

二次函数复习讲义

二次函数复习讲义

二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。

其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。

2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a, f(-b/2a))。

3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。

抛物线的顶点坐标即为对称轴的交点。

二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。

设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。

2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。

设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。

3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。

顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。

标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。

三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。

2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。

3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

二次函数讲义详细.doc

二次函数讲义详细.doc

第一讲二次函数的定义知识点归纳:二次函数的定义:一般地,如果y ax2 bx c(a, b,c 是常数, a 0) ,那么y叫做x 的二次函数. 二次函数具备三个条件,缺一不可:( 1)是整式方程;( 2)是一个自变量的二次式;(3)二次项系数不为0考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式例 1、函数y=(m+ 2 )x m2 2+2x-1是二次函数,则m=.例 2、下列函数中是二次函数的有()1 1①y=x+x;② y=3( x- 1)2+ 2;③ y=( x+ 3)2-2x2;④ y= x2+x.A.1 个B.2 个C.3 个D.4 个例 3、某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x,请你得出每天销售利润 y 与售价的函数表达式.例 4 、如图,正方形 ABCD 的边长为 4, P 是 BC 边上一点, QP⊥ AP 交 DC 于 Q,如果 BP=x ,△ ADQ 的面积为 y,用含 x 的代数式表示 y.训练题 :1、已知函数 y=ax 2+ bx + c (其中 a , b , c 是常数),当 a 当 a, b, c时,是正比例函数.2、若函数 y=(m 2+2m - 7)x 2+4x+5 是关于 x 的二次函数,则时,是二次函数;当m 的取值范围为a , b。

时,是一次函数;3、已知函数 y=(m - 1)x2m +1+5x -3 是二次函数,求 m 的值。

4、已知菱形的一条对角线长为 a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线 a 的关系.5、请你分别给a ,b ,c 一个值,让yax 2bxc 为二次函数,且让一次函数y=ax+b的图像经过一、二、三象限6.下列不是二次函数的是()1A . y=3x2+ 4 B . y= -3 x 2 C . y=x 25 D . y= (x + 1)( x - 2)7.函数 y= ( m - n )x 2 +mx + n 是二次函数的条件是()A . m 、 n 为常数,且 m ≠0B .m 、 n 为常数,且 m ≠ nC . m 、 n 为常数,且 n ≠0D . m 、n 可以为任何常数8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135° 的两面墙,另外两边是总长为 30 米的铁栅栏.(1)求梯形的面积 y 与高 x 的表达式;( 2)求 x 的取值范围.9.如图,在矩形 ABCD 中, AB=6cm ,BC=12cm .点 P 从点 A 开始沿 AB 方向向点 B 以 1cm/s 的速度移动,同时,点 Q 从点 B 开始沿 BC 边向 C 以 2cm/s 的速度移动.如果P 、 Q 两点分别到达 B 、 C 两点停止移动,设运动开始后第 t 秒钟时,五边形 APQCD 的面积为 Scm 2,写出 S 与 t 的函数表达式,并指出自变量t 的取值范围.10.已知:如图,在 Rt△ ABC 中,∠ C=90 °, BC=4 , AC=8 .点 D 在斜边 AB 上,分别作DE ⊥ AC , DF⊥ BC ,垂足分别为 E、F,得四边形 DECF .设 DE=x , DF=y .( 1)AE 用含y 的代数式表示为:AE= ;( 2)求y 与 x 之间的函数表达式,并求出x 的取值范围;( 3)设四边形DECF 的面积为S,求 S 与 x 之间的函数表达式.第二讲二次函数的图像和性质知识点归纳:1、求抛物线的顶点、对称轴的方法22 4ac b2( 1)公式法:y ax 2 b 4ac b ,∴顶点是 b ,对称轴是直线bx c a x4a (,)2a 2a 4abx.2a(2)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.2、二次函数的图象及性质:( 1)二次函数 y=ax 2 (a≠ 0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当 a> 0 时,抛物线开口向上,顶点是最低点;当 a<0 时,抛物线开口向下,顶点是最高点; a 越小,抛物线开口越大.(2)二次函数 y ax2 bx c的图象是一条对称轴平行 y 轴或者与 y 轴重合的抛物线.要会根据对称轴和图像判断二次函数的增减情况。

二次函数复习讲义

二次函数复习讲义

二次函数最全面的复习讲义学习目标1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2.会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3.会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4.会利用二次函数的图象求一元二次方程的近似解.知识网络要点一、二次函数的定义一般地,如果是常数,,那么叫做的二次函数.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.二、用待定系数法求二次函数解析式三、1.二次函数解析式常见有以下几种形式:四、(1)一般式:(a,b,c为常数,a≠0);五、(2)顶点式:(a,h,k为常数,a≠0);六、(3)交点式:(,为抛物线与x轴交点的横坐标,a≠0).七、八、2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下九、第一步,设:先设出二次函数的解析式,如或,十、或,其中a≠0;十一、第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);十二、第三步,解:解此方程或方程组,求待定系数;十三、第四步,还原:将求出的待定系数还原到解析式中.类型一:二次函数的概念1、下列函数中,是关于x的二次函数的是__________________(填序号).2、(1)y=-3x2;(2);(3)y=3x2-4-x3; (4);(5)y =ax2+3x+6;3、(6).【变式1】下列函数中,是二次函数的是( )A. B. C.D.【变式2】如果函数是二次函数,求m的值类型二、求二次函数的解析式1.已知二次函数的图象经过原点及点,且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为______________.【答案】或.【变式】已知:抛物线y=x2+bx+c的对称轴为x=1,交x轴于点A、B(A在B的左侧),且AB=4,交y轴于点C.求此抛物线的函数解析式及其顶点M的坐标.【答案】∵对称轴x=1,且AB=4∴抛物线与x轴的交点为:A(-1,0),B(3,0)∴y=x2-2x-3为所求,∵x=1时y=-4,∴M(1,-4).课堂练习1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式【答案与解析】本题已知三点求解析式,可用一般式.设此二次函数的解析式为y=ax2+bx+c(a≠0),由题意得:解得∴所求的二次函数的解析式为y=-x2+3x-5.2 在直角坐标平面内,二次函数图象的顶点为,且过点.(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.【答案】(1).(2)令,得,解方程,得,.∴二次函数图象与轴的两个交点坐标分别为和.∴二次函数图象向右平移1个单位后经过坐标原点.平移后所得图象与轴的另一个交点坐标为3.已知二次函数的图象如图所示,求此抛物线的解析式.【答案与解析】解法一:设二次函数解析式为(a≠0),由图象知函数图象经过点(3,0),(0,3).则有解得∴抛物线解析式为.解法二:设抛物线解析式为(a≠0).由图象知,抛物线与x轴两交点为(-1,0),(3,0).则有,即.又,∴∴抛抛物物解析式为.课后巩固练习一、选择题1. 二次函数的图象经过点A(0,0),B(-1,-11),C(1,9)三点,则它的解析式为( ).A. B. C. D.2.二次函数有( )A.最小值-5 B.最大值-5 C.最小值-6 D.最大值-63.把抛物线y=3x2先向上平移2个单位再向右平移3个单位,所得的抛物线是()A.y=3(x-3)2+2 =3(x+3)2+2 =3(x-3)2-2 D.y=3(x+3)2-24.如图所示,已知抛物线y=的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为 ( )A.(2,3)B.(3,2)C.(3,3)D.(4,3)5.将函数的图象向右平移a(a>0)个单位,得到函数的图象,则a的值为( )A.1 B.2 C.3 D.46.若二次函数的x与y的部分对应值如下表:x -7 -6 -5 -4 -3 -2Y -27 -13 -3 3 5 3则当x=1时,y的值为 ( )A.5 B.-3 C.-13 D.-27二、填空题7.抛物线的图象如图所示,则此抛物线的解析式为______________.第7题第10题8.已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),则这个二次函数的关系式为______.9.已知抛物线.该抛物线的对称轴是________,顶点坐标________;10.如图所示已知二次函数的图象经过点(-1,0),(1,-2),当y 随x的增大而增大时,x的取值范围是______________.11.已知二次函数(a≠0)中自变量x和函数值y的部分对应值如下表:…-1 0 1 ……-2 -2 0 …则该二次函数的解析式为______________.12.已知抛物线的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为______________.三、解答题13.根据下列条件,分别求出对应的二次函数解析式.(1)已知抛物线的顶点是(1,2),且过点(2,3);(2)已知二次函数的图象经过(1,-1),(0,1),(-1,13)三点;(3)已知抛物线与x轴交于点(1,0),(3,0),且图象过点(0,-3).14.如图,已知直线y=-2x+2分别与x轴、y轴交于点A,B,以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,求过A、B、C三点的抛物线的解析式.15.在矩形AOBC中,OB=6,OA=4,分别以OB,OA所在的直线为轴和轴建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数(k >0)的图象与AC边交于点E.(1)求证:AE×AO=BF×BO;(2)若点E的坐标为(2,4),求经过点O,E,F三点的抛物线的解析式.一、选择题1.【答案】D;【解析】设抛物线的解析式为(a≠0),将A、B、C三点代入解得,,c=0.2.【答案】C;【解析】首先将一般式通过配方化成顶点式,即,∵a=1>0,∴x=-1时,.3.【答案】A;4.【答案】D;【解析】∵点A,B均在抛物线上,且AB与x轴平行,∴点A与点B关于对称轴x=2对称,又∵A(0,3),∴AB=4,y B=y A=3,∴点B的坐标为(4,3).5.【答案】B;【解析】抛物线的平移可看成顶点坐标的平移,的顶点坐标是,的顶点坐标是,∴移动的距离.6.【答案】D;【解析】此题如果先用待定系数法求出二次函数解析式,再将x=1代入求函数值,显然太繁,而由二次函数的对称性可迅速地解决此问题.观察表格中的函数值,可发现,当x=-4和x=-2时,函数值均为3,由此可知对称轴为x=-3,再由对称性可知x=1的函数值必和x=-7的函数值相等,而x=-7时y=-27.∴x=1时,y=-27.二、填空题7.【答案】;【解析】由图象知抛物线与x轴两交点为(3,0),(-1,0),则.8.【答案】;【解析】设顶点式,再把点(0,0)代入所设的顶点式里即可.9.【答案】(1)x=1;(1,3);【解析】代入对称轴公式和顶点公式即可.10.【答案】;【解析】将(-1,0),(1,-2)代入中得b=-1,∴对称轴为,在对称轴的右侧,即时,y随x的增大而增大.11.【答案】;【解析】此题以表格的形式给出x、y的一些对应值.要认真分析表格中的每一对x、y值,从中选出较简单的三对x、y的值即为(-1,-2),(0,-2),(1,0),再设一般式,用待定系数法求解.设二次函数解析式为(a≠0)由表知解得∴二次函数解析式为.12.【答案】【解析】由题意知抛物线过点(1,0)和(5,0).三、解答题13.【答案与解析】(1)∵顶点是(1,2),∴设(a≠0).又∵过点(2,3),∴,∴a=1.∴,即.(2)设二次函数解析式为(a≠0).由函数图象过三点(1,-1),(0,1),(-1,13)得解得故所求的函数解析式为.(3)由抛物线与x轴交于点(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0),又∵过点(0,-3),∴a(0-1)(0-3)=-3,∴a=-1,∴y=-(x-1)(x-3),即.14.【答案与解析】过C点作CD⊥x轴于D.在y=-2x+2中,分别令y=0,x=0,得点A的坐标为(1,0),点B的坐标为(0,2).由AB=AC,∠BAC=90°,得△BAO≌△ACD,∴AD=OB=2,CD=AO=1,∴C点的坐标为(3,1).设所求抛物线的解析式为,则有,解得,∴所求抛物线的解析式为.15.【答案与解析】(1)证明:由题意知,点E、F均在反比例函数图象上,且在第一象限,所以AE×AO=k,BF×BO=k,从而AE×AO=BF×BO.(2)将点E的坐标为(2,4)代入反比例函数得k=8,所以反比例函数的解析式为.∵OB=6,∴当x=6时,点F的坐标为.设过点O、E、F三点的二次函数表达式为(a≠0),将点0(0,0),E(2,4),三点的坐标代入表达式得:解得∴经过O、E、F三点的抛物线的解析式为:.要点二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置.当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则.类型一、二次函数y=ax2(a≠0)的图象与性质1.二次函数y=x2的图象对称轴左侧上有两点A(a,15),B(b,),则a-b_______0(填“>”、“<”或“=”号).【解析】将A(a,15),分别代入y=x2中得:∴;,又A、B在抛物线对称轴左侧,∴a<0,b<0,即,∴【变式1】二次函数与的形状相同,开口大小一样,开口方向相反,则______.【答案】2.【变式2】不计算比较大小:函数的图象右侧上有两点A(a,15),B(b,),则a______b.答案】>.2.已知y=(m+1)x是二次函数且其图象开口向上,求m的值和函数解析式.【答案与解析】由题意,,解得m=1,∴二次函数的解析式为:y=.3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y轴对称的抛物线.【答案与解析】(1)由于待求抛物线形状相同,开口方向相反,可知二次项系数为,又顶点坐标是(0,-5),故常数项,所以所求抛物线为.(2)因为抛物线的顶点为(0,1),所以其解析式可设为,又∵该抛物线过点(3,-2),∴,解得.∴所求抛物线为.4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x____时,随x的增大而减小;当x____时,函数y有最____值,其最____值是____.【答案与解析】函数与的图象如图所示:(1)下;l ;(2)向下;y轴;(0,1);(3)>0;=0;大;大;1.课堂练习一、选择题1. 关于函数y=的图象,则下列判断中正确的是()A. 若a、b互为相反数,则x=a与x=b的函数值相等;B. 对于同一个自变量x,有两个函数值与它对应;C. 对任一个实数y,有两个x和它对应;D. 对任意实数x,都有y>0.2. 下列函数中,开口向上的是()A. B. C. D.3. 把抛物线向上平移1个单位,所得到抛物线的函数表达式为().A.B.C.D.4. 下列函数中,当x<0时,y值随x值的增大而增大的是()A. B. C. D.5. 在同一坐标系中,作出,,的图象,它们的共同点是().A.关于y轴对称,抛物线的开口向上B.关于y轴对称,抛物线的开口向下C.关于y轴对称,抛物线的顶点都是原点D.关于原点对称,抛物线的顶点都是原点6. 晴天时,汽车的刹车距离s (m)与开始刹车时的速度v(m/s)之间满足二次函数,若汽车某次的刹车距离为,则开始刹车时的速度为( ).A. 10m/sB. 15m/sC. 20m/sD. 25m/s二、填空题7. 已知抛物线的解析式为y=-3x2,它的开口向______,对称轴为______,顶点坐标是________,当x>0时,y随x的增大而________.8. 若函数y=ax2过点(2,9),则a=________.9. 已知抛物线y=x2上有一点A,A点的横坐标是-1,过点A作AB∥x轴,交抛物线于另一点B,则△AOB的面积为________.10. 写出一个过点(1,2)的函数解析式_________________.11. 函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.12. 若对于任意实数x,二次函数的值总是非负数,则a的取值范围是____________.三、解答题13.已知是二次函数,且当x>0时,y随x的增大而增大.(1)求m的值;(2)画出函数的图象.14. 已知抛物线经过A(-2,-8).(1)求此抛物线的函数解析式;(2)判断B(-1,-4)是否在此抛物线上?(3)求此抛物线上纵坐标为-6的点的坐标.15.函数y=ax2 (a≠0)的图象与直线y=2x-3交于点(1,b).(1)求a和b的值;(2)求抛物线y=ax2的解析式,并求顶点坐标和对称轴;(3)x取何值时,y随x的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.一、选择题1.【答案】A.2.【答案】D;【解析】开口方向由二次项系数a决定,a>0,抛物线开口向上;a<0,抛物线开口向下.3.【答案】A;【解析】由抛物线的图象知其顶点坐标为(0,0),将它向上平移1个单位后,抛物线的顶点坐标为(0,1),因此所得抛物线的解析式为.4.【答案】B;【解析】根据抛物线的图象的性质,当a<0时,在对称轴(x=0)的左侧,y值随x值的增大而增大,所以答案为B.5. 【答案】C;【解析】y=2x2,y=-2x2,的图象都是关于y轴对称的,其顶点坐标都是(0,0).6. 【答案】B;【解析】当s=时,,v=15.二、填空题7.【答案】下;y轴;(0,0);减小;8.【答案】;【解析】将点(2,9)代入解析式中求a.9.【答案】1 ;【解析】由抛物线的对称性可知A(-1,1),B(1,1),则.10.【答案】【解析】答案不唯一.11.【答案】,,.【解析】先比较,|1|,|3|的大小关系,由|a|越大开口越小,可确定从里向外的三条抛物线所对应的函数依次是y=3x2,y=x2,.12.【答案】a>-1;【解析】二次函数的值总是非负数,则抛物线必然开口向上,所以a+1>0.三、解答题13. 【解析】解:(1)∵为二次函数,且当x>0时,y随x的增大而增大,∴,∴,∴m=1.(2)由(1)得这个二次函数解析式为,自变量x的取值范围是全体实数,可以用描点法画出这个函数的图象.如图所示.14. 【解析】解:(1)∵抛物线经过A(-2,-8),∴-8=4a,∴a=-2,抛物线的解析式为:.(2)当x=-1时,y=-2=-2≠-4,∴点B(-1,-4)不在此抛物线上.(3)当y=-6时,即,得,∴此抛物线上纵坐标为-6的点的坐标是(,-6)和(,-6).15. 【解析】解:(1)将x=1,y=b代入y=2x-3,得b=-1,所以交点坐标是(1,-1).将x=1,y=-1代入y=ax2,得a=-1,所以a=-1,b=-1.(2)抛物线的解析式为y=-x2,顶点坐标为(0,0),对称轴为直线x=0(即y轴).(3)当x<0时,y随x的增大而增大.(4)设直线y=- 2与抛物线y=-x2相交于A、B两点,抛物线顶点为O(0,0).由,,得∴A(,-2),B(,-2).∴AB=|-(-)|=2,高=|-2|=2.∴.类型二、二次函数y=a(x-h)^2+k(a≠0)的图象与性质1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向;(3)以x轴为对称轴,将原抛物线开口方向反向.【答案与解析】抛物线的顶点为(1,3).(1)将抛物线向左平移2个单位,再向下平移3个单位后,顶点为(-1,0),而开口方向和形状不变,所以a=2,得到抛物线解析式为.(2)顶点不动为(1,3),开口方向反向,则,所得抛物线解析式为.(3)因为新顶点与原顶点(1,3)关于x轴对称,故新顶点应为(1,-3).又∵抛物线开口反向,∴.故所得抛物线解析式为.2.把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,求b,c的值.【答案与解析】根据题意得,y=(x-4)2-2=x2-8x+14, 所以【变式】二次函数的图象可以看作是二次函数的图象向平移4个单位,再向平移3个单位得到的.【答案】上;右.3.已知与的图象交于A、B两点,其中A(0,-1),B(1,0).(1)确定此二次函数和直线的解析式;(2)当时,写出自变量x的取值范围.【答案与解析】(1)∵,的图象交于A、B两点,∴且解得且∴二次函数的解析式为,直线方程为.(2)画出它们的图象如图所示,由图象知当x<0或x>1时,.4.如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)求△AOB的面积;(3)若点P(m,-m)(m≠0)为抛物线上一点,求与P关于抛物线对称轴对称的点Q 的坐标.(注:抛物线y=ax2+bx+c的对称轴是x=-).【答案与解析】解:(1)设二次函数的解析式为y=a(x-2)2+1,将点O(0,0)的坐标代入得:4a+1=0,解得a=-.所以二次函数的解析式为y=-(x-2)2+1;(2)∵抛物线y=-(x-2)2+1的对称轴为直线x=2,且经过原点O(0,0),∴与x轴的另一个交点B的坐标为(4,0),∴S△AOB =×4×1=2;(3)∵点P(m,-m)(m≠0)为抛物线y=-(x-2)2+1上一点,∴-m=-(m-2)2+1,解得m1=0(舍去),m2=8,∴P点坐标为(8,-8),∵抛物线对称轴为直线x=2,∴P关于抛物线对称轴对称的点Q的坐标为(-4,-8).如下图.课堂巩固一、选择题1.抛物线的顶点坐标是()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)2.函数y=x2+2x+1写成y=a(x-h)2+k的形式是()A.y=(x-1)2+2 B.y=(x-1)2+C.y=(x-1)2-3D.y=(x+2)2-13.抛物线y=x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )A.y=(x+3)2-2B.y=(x-3)2+2C.y=(x-3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为()A. B.C.D.5.由二次函数,可知()A.其图象的开口向下B.其图象的对称轴为直线C.其最小值为1D.当时,y随x的增大而增大6.在同一坐标系中,一次函数与二次函数的图象可能是()二、填空题7. 抛物线y=-(•x+•3)2•-•5•的开口向_______,•对称轴是________,•顶点坐标是_______.8.已知抛物线y=-2(x+1)2-3,如果y随x的增大而减小,那么x的取值范围是_ _____.9.抛物线y=-3(2x2-1)的开口方向是_____,对称轴是_____.10.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为.11.将抛物线向上平移3个单位,再向右平移4个单位得到的抛物线是__ _____.12.抛物线的顶点为C,已知的图象经过点C,则这个一次函数的图象与两坐标轴所围成的三角形面积为________.三、解答题13.已知抛物线的顶点(-1,-2),且图象经过(1,10),求抛物线的解析式.14. 已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线;(1)求出a,h,k的值;(2)在同一直角坐标系中,画出与的图象;(3)观察的图象,当________时,y随x的增大而增大;当________时,函数y有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y的取值范围吗?15.已知抛物线的顶点为A,原点为O,该抛物线交y轴正半轴于点B,且,求:(1)此抛物线所对应的函数关系式;(2)x为何值时,y随x增大而减小?一、选择题1.【答案】D;【解析】由顶点式可求顶点,由得,此时,.2.【答案】D;【解析】通过配方即可得到结论.3.【答案】A;【解析】抛物线y=x2向左平移3个单位得到y=(x+3)2,再向下平移2个单位后,所得的抛物线表达式是y=(x+3)2-2.4.【答案】B【解析】通过配方即可得到结论.5.【答案】C;【解析】可画草图进行判断.6.【答案】C;【解析】A中的符号不吻合,B中抛物线开口不正确.D中直线与y 轴交点不正确.二、填空题7.【答案】下;直线x=-3 ;(-3,-5);【解析】由二次函数的图象性质可得结论.8.【答案】x≥-1;【解析】由解析式可得抛物线的开口向下,对称轴是x=-1,对称轴的右边是y随x的增大而减小,故x≥-1.9.【答案】向下,y轴;10.【答案】;【解析】设过点(1,-14)得,所以.11.【答案】;【解析】先化一般式为顶点式,再根据平移规律求解.12.【答案】1;【解析】C(2,-6),可求与x轴交于,与y轴交于(0,3),∴.三、解答题13.【答案与解析】∵抛物线的顶点为(-1,-2)∴设其解析式为,又图象经过点(1,10),∴,∴,∴解析式为.14.【答案与解析】(1)由向上平移2个单位,再向右平移1个单位所得到的抛物线是.∴,,.(2)函数与的图象如图所示.(3)观察的图象,当时,随x的增大而增大;当时,函数有最大值,最大值是.(4)由图象知,对于一切的值,总有函数值.15.【答案与解析】(1)由题意知A(2,1),令,则,所以.由得,所以,因此抛物线的解析式为.(2)当时,y随x增大而减小.类型三:二次函数y=ax^2+bx+c(a≠0)的图象与性质类型一、二次函数的图象与性质1.求抛物线的对称轴和顶点坐标.【变式】把一般式化为顶点式.(1)写出其开口方向、对称轴和顶点D的坐标;(2)分别求出它与y轴的交点C,与x轴的交点A、B的坐标.2.如图所示,抛物线的对称轴是x=1,与x轴交于A、B两点,点B的坐标为(,0),则点A的坐标是_______.类型二、二次函数的最值3.求二次函数的最小值.类型三、二次函数性质的综合应用4.已知二次函数的图象过点P(2,1).(1)求证:;(2)求bc的最大值.【答案与解析】(1)∵的图象过点P(2,1),∴1=4+2b+c+1,∴c=-2b-4.(2).∴当时,bc有最大值.最大值为2.课堂巩固一、选择题1. 将二次函数化为的形式,结果为().A.B.C.D.2.已知二次函数的图象,如图所示,则下列结论正确的是().A.B.C.D.3.若二次函数配方后为,则b、k的值分别为().A.0,5B.0,1 C.-4,5D.-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b、c的值为().A.b=2,c=2B.b=2,c=0C.b= -2,c= -1 D.b= -3,c=25.已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值()A. 等于0B.等于1C. 等于-1D. 不能确定6.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是( )二、填空题7.二次函数的最小值是________.8.已知二次函数,当x=-1时,函数y的值为4,那么当x=3时,函数y的值为________.9.二次函数的图象经过A(-1,0)、B(3,0)两点,其顶点坐标是________.10.二次函数的图象与x轴的交点如图所示.根据图中信息可得到m 的值是________.第10题第11题11.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是___;第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是___ __.12.已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,在x轴上方的抛物线上有一点C,且△ABC的面积等于10,则C点的坐标为__ __.三、解答题13.(1)用配方法把二次函数变成的形式;(2)在直角坐标系中画出的图象;(3)若,是函数图象上的两点,且,请比较、的大小关系.14.如图所示,抛物线与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.15.已知抛物线:(1)求抛物线的开口方向、对称轴和顶点坐标;(2)画函数图象,并根据图象说出x取何值时,y随x的增大而增大?x取何值时,y随x 的增大而减小?函数y有最大值还是最小值?最值为多少?一、选择题1.【答案】D;【解析】根据配方法的方法及步骤,将化成含的完全平方式为,所以.【解析】由图象的开口方向向下知;图象与y轴交于正半轴,所以;2.【答案】D;又抛物线与x轴有两个交点,所以;当时,所对应的值大于零,所以.3.【答案】D;【解析】因为,所以,,.4.【答案】B;【解析】,把抛物线向左平移2个单位长度,再向上平移3个单位长度后得抛物线,∴,∴,.5.【答案】A;【解析】因为抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),所以过点(1,0)代入解析式得a+b+c=0.6.【答案】A;【解析】分类讨论,当a>0,a<0时分别进行分析.二、填空题7.【答案】-3;【解析】∵,∴函数有最小值.当时,.8.【答案】4【解析】由对称轴,∴x=3与x=-1关于x=1对称,∴x=3时,y=4.9.【答案】(1,-4) ;【解析】求出解析式.10.【答案】4;【解析】由图象发现抛物线经过点(1,0),把,代入,得,解得.11.【答案】①④,②③④;12.【答案】(-2,5)或(4,5);【解析】先通过且△ABC的面积等于10,求出C点的纵坐标为5,点C在抛物线y=x2-2x-3上,所以x2-2x-3=5,解得x=-2或x=5,则C点的坐标为(-2,5)或(4,5).三、解答题13.【答案与解析】(1).(2)略.(3)∵,∴当时,y随x增大而减小,又,∴.14.【答案与解析】(1)把点C(5,4)代入抛物线得,,解得.∴该二次函数的解析式为.∵,∴顶点坐标为.(2)(答案不唯一,合理即正确)如先向左平移3个单位,再向上平移4个单位,得到二次函数解析式为,即.15.【答案与解析】(1)∵,b=-3,∴,把x=-3代入解析式得,.∴抛物线的开口向下,对称轴是直线x=-3,顶点坐标是(-3,2).(2)由于抛物线的顶点坐标为A(-3,2),对称轴为x=-3.抛物线与x轴两交点为B(-5,0)和C(-1,0),与y轴的交点为,取D关于对称轴的对称点,用平滑曲线顺次连结,便得到二次函数的图象,如图所示.从图象可以看出:在对称轴左侧,即当x<-3时,y随x的增大而增大;在对称轴右侧,即当x>-3时,y随x的增大而减小.因为抛物线的开口向下,顶点A是抛物线的最高点,所以函数有最大值,当x=-3时,.要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解4.已知抛物线与x轴没有交点.①求c的取值范围;②试确定直线经过的象限,并说明理由.【变式1】无论x为何实数,二次函数的图象永远在x轴的下方的条件是( )A.B.C.D.【变式2】对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数(m为实数)的零点的个数是( )A.1 B.2 C.0 D.不能确定要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.类型一、利用二次函数求实际问题中的最大(小)值1.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖出这种商品每天的销售利润y与每件的销售价x之间的函数关系;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?【答案与解析】(1)∵每件商品利润为(x-30)元.∴销售m件商品利润为m(x-30)元,又∵m=162-3x,∴每天利润y=(162-3x)(x-30).即y=-3x2+252x-4860.(2)∵y=-3x2+252x-4860=-3(x-42)2+432,又∵a=-3<0,∴当x=42时,=432(元).答:(1)函数关系式为y=-3x2+252x-4860;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数复习专题讲义全1.二次函数概念:指形如y=ax^2(a≠0)的函数。

2.简单二次函数:其图像为过原点的一条抛物线,对称轴为y轴,最值依赖于a的正负性。

3.增减性:当a>0时,在对称轴左边(x0),y随x的增大而增大;当a0),y随x的增大而减小。

4.一般二次函数概念:指形如y=ax^2+bx+c(a≠0)的函数,注意还有顶点式、交点式以及它们之间的转换。

5.二次函数图像:是一条抛物线,开口方向依赖于a的正负性,顶点坐标为(-b/2a。

c-b^2/4a)。

6.对称轴:为x=-b/2a。

7.最值:当a>0时,y的最小值为c-b^2/4a;当a<0时,y 的最大值为c-b^2/4a。

8.增减性:当a>0时,在对称轴左边(x-b/2a),y随x的增大而增大;当a-b/2a),y随x的增大而减小。

9.待定系数法可以用来求解析式,二次函数可以应用于建立函数模型解决实际问题。

10.二次函数的三种解析式:一般式、顶点式和交点式。

其中,顶点式和交点式可以相互转换。

注意,a≠0,而b和c可以为零。

1.系数a决定抛物线的开口方向和大小。

当a>0时,开口向上;当a<0时,开口向下。

绝对值|a|决定开口大小,|a|越大,开口越小;|a|越小,开口越大。

2.系数c决定抛物线与y轴的交点位置。

当c>0时,交点在y轴正半轴;当c=0时,交点在抛物线顶点上方;当c<0时,交点在y轴负半轴。

3.系数a和b共同决定抛物线对称轴的位置。

当- b/2a>0时,对称轴在y轴右侧;当- b/2a<0时,对称轴在y轴左侧;当- b/2a=0时,对称轴为y轴。

4.特别地,当a=1时,顶点坐标为(-b/2.a+b+c),当x=-1时,有y=a-b+c。

5.抛物线y=ax^2+bx+c(a≠0)与一元二次方程ax^2+bx+c=0(a≠0)的关系:若抛物线与x轴有两个交点,则方程有两个不相等的实根;若抛物线与x轴有一个交点,则方程有两个相等的实根;若抛物线与x轴无交点,则方程无实根。

6.二次函数y=ax^2+bx+c(a≠0.a、b、c为常数)的图像与性质:顶点坐标为(-b/2a。

c-b^2/4a),对称轴为x=-b/2a;当a>0时,图像开口向上,增函数;当a<0时,图像开口向下,减函数。

二次函数是一种形式为$y=ax^2+bx+c$的函数,其中$a$不为零。

其图像为一个开口朝上或朝下的抛物线。

具体来说,在对称轴左侧,即$x-b/2a$或$x>h$时,$y$随$x$的增大而减小。

对于二次函数$y=ax^2+bx+c$,其对称轴的方程为$x=-b/2a$,最值为$y=c-b^2/4a$,当$x=-b/2a$时取到。

在考试中,我们可以通过待定系数法来求解二次函数的解析式。

具体来说,我们根据已知条件列出方程,然后通过解方程组来求解未知系数。

例如,已知点$(a,8)$在二次函数$y=ax^2$的图像上,我们可以代入点的坐标,得到$a^3=8$,从而求出$a=2$。

又例如,若已知二次函数的部分对应值,我们可以设其解析式为$y=ax^2+bx+c$,然后代入对应值得到方程组,通过解方程组来求解未知系数。

2+5,当x=3时,y=-27.例1】已知二次函数y=ax²+bx+c的顶点为(2,-1),则二次函数的解析式为________。

解析】根据二次函数的顶点公式,可得a>0,顶点坐标为(-b/2a,-Δ/4a),带入已知条件可得2=-b/2a,-1=c-Δ/4a。

解得b=-4a,c=3a-1.因此,二次函数的解析式为y=ax²-4ax+3a-1.例2】抛物线y=x²-2x+1的顶点坐标为(1,0),则抛物线的焦点坐标为________。

解析】根据抛物线的顶点公式,可得顶点坐标为(-b/2a,c-b²/4a),带入已知条件可得1=b/2a,0=c-1/4a。

解得a=1,b=-2,c=1.因此,抛物线的解析式为y=x²-2x+1.根据抛物线的焦点公式,可得焦点坐标为(1,-1/4)。

因此,抛物线的焦点坐标为(1,-1/4)。

例3】如图所示,在平面直角坐标系中,二次函数y=ax²+bx+c的图象顶点为A(-2,-2),且过点B(1,2),则y与x的函数关系式为________。

解析】根据二次函数的顶点公式,可得顶点坐标为(-b/2a,c-b²/4a),带入已知条件可得-2=b/2a,-2=c-4a。

解得a=1,b=-4,c=-6.因此,二次函数的解析式为y=x²-4x-6.带入点B(1,2)可得2=1-4+(-6)+d,解得d=11.因此,y与x的函数关系式为y=x²-4x+11.例4】二次函数y=x²+bx+c过点(-3,0)、(1,0),则二次函数的解析式为________。

解析】根据二次函数的通式,可设二次函数的解析式为y=x²+bx+c,带入已知条件可得两个方程组:0=(-3)²+b(-3)+c,0=1²+b(1)+c。

解得b=-4,c=9.因此,二次函数的解析式为y=x²-4x+9.22.【解析】把函数y=x向左平移2个单位,可以得到y=(x+2),再向下平移3个单位,可以得到y=(x+2)-3.因此,答案为B。

例3】已知二次函数y=ax^2+bx+c的图像如下图所示,则下列关系式错误的是()解析:观察图像可知,抛物线开口向上,与x轴相交于两个点,且在y轴的正半轴上,因此a>0,c>0,b^2-4ac>0.而当x=1时,y=a+b+c,因此选项D错误。

因此,答案为D。

例4】已知二次函数y=ax^2+bx+c的图像如下图所示,对称轴为直线x=1,则下列结论正确的是()解析:由图像可知,对称轴为x=1,因此抛物线的顶点坐标为(1,-1)。

因此,a0,且当x=2时,y=2a+b+c,因此2a-b=3.因此,选项B和C正确,选项A和D错误。

因此,答案为B。

1元)的预测值如下表:月份x107401176012780价格y1元/件)5801)根据已知数据,求出该函数的解析式;2)根据预测数据,预测该企业在10至12月每月的产量不变时,该企业每月的收入变化情况,并进行分析。

解析】1)根据已知数据,可以列出以下方程组:a+b+c=5604a+2b+c=6209a+3b+c=720解得a=20,b=−60,c=600,因此该函数的解析式为y120x260x+600.2)根据预测数据,可以列出以下表格:月份x101112价格y1元/件)740760780根据该函数的解析式,可以求出每月的原材料成本,进而求出每月的收入,如下表所示:月份x101112价格y1元/件)740760780原材料成本20x260x+600 860086008600售价(假设不变)1000 1000 1000收入980098009800因此,该企业在10至12月每月的收入不变,仍为9800元。

由于原材料成本的增加,该企业的利润会有所下降。

例2】某公司生产一种产品,每年的销售量y(万件)与广告投入x(万元)之间的函数关系为y=ax2+bx+c,其中a,b,c均为常数,已知当广告投入为4万元时,销售量为5万件,当广告投入为8万元时,销售量为10万件,当广告投入为12万元时,销售量为15万件。

1)求出该函数的解析式;2)当广告投入为10万元时,预测该公司的销售量。

解析】1)根据已知数据,可以列出以下方程组:16a+4b+c=564a+8b+c=10144a+12b+c=15解得a=0.25,b=−1,c=6.25,因此该函数的解析式为y=0.25x2x+6.25.2)当广告投入为10万元时,代入函数解析式可得:y=0.25×102−10+6.25=16.25因此,预测该公司的销售量为16.25万件。

与x有关的函数式),其中y1为原材料价格,根据题意可知y1750-20x,代入得W= (1.1x+1.1)×(920-y110^4,化简后得W=-11x^2+220x+8280;10≤x≤12,且x取整数时W=p21000-50-30- y2其中y2630-10x,代入得W=-10x^2+1490x-.分别求出W的最大值,可知最大利润出现在x=10月,为141.5万元。

3)设去年每件配件售价为1000元,则今年每件配件售价为(1+a/100)×1000元。

每月销售量下降0.1a%,即为0.001a×p 2则1至5月的总利润为1700万元可表示为(1+a/100)×(W1+W2+W3+W4+W5),其中W1至W5分别为1至5月的利润,代入得0.9p21+a/100)×(750+60-50×1.2-30)×5+0.9p21+a/100)×(750+2×60-50×1.2-30)×4+0.9p21+a/100)×(750+3×60-50×1.2-30)×3+0.9p21+a/100)×(750+4×60-50×1.2-30)×2+0.9p21+a/100)×(750+5×60-50×1.2-30)×1=1700万元,化简得0.9p21.15a+2.3)×a=.代入参考数据可得a≈8.1、在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲。

经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件。

假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数。

1)求y与x满足的函数关系式;2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?解析:1)设y=kx+b,由已知条件可列出如下方程组:begin{cases}24k+b=36 \\29k+b=21end{cases}解得$k=-3$,$b=84$,因此$y=-3x+84$。

2)设每天销售件数为$x$,销售价格为$p$,则每天获得的利润为$P=(p-20)x$。

因为销售件数与销售价格满足一次函数关系,所以$x=\alpha p+\beta$,其中$\alpha$和$\beta$为待定系数。

代入已知条件可得:begin{cases}24\alpha+\beta=36 \\29\alpha+\beta=21end{cases}解得$\alpha=-3$,$\beta=84$,因此$x=-3p+84$。

相关文档
最新文档