初三数学第一次月考试卷(1)

合集下载

山东省淄博市张店区第九中学2024-2025学年九年级数学第一次月考(10月)试卷(含解析)

山东省淄博市张店区第九中学2024-2025学年九年级数学第一次月考(10月)试卷(含解析)

初三数学试题一,选择题1.(4分)下列从左到右的变形是分解因式的是( )A .B .C .D .2.(4分)下列分式中,是最简分式的是( )A.B .C .D .3.(4分)对于算式,下列说法错误的是( )A .能被98整除B .能被99整除C .能被100整除D .能被101整除4.(4分)如果把分式中的和都同时扩大3倍,那么分式的值()A .不变B .扩大3倍C .缩小D .扩大9倍5.(4分)若,则的值为( )A .5B .C .10D .6.(4分)如图是一个长为,宽为的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图那样拼成一个正方形,则中间空白部分的面积是( )A .B .C .D .7.(4分)根据分式的基本性质,分式可变形为( )A .B .C .D .8.(4分)已知三角形的三边,,满足,则是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰三角形或直角三角形9.(4分)计算的结果是( )A .B .C .D .10.(4分)定义:如果两个分式的积等于这两个分式的差乘以一个常数,那么这两个分式叫做和谐分2(1)(1)1x x x +-=-221(2)1x x x x -+=-+2262(3)x x x x +=+255(1)y y y y -=-22x y x y ++223 a a b 211x x --22a ab ab b ++39999-xy x y-x y 13215(3)()x mx x x n +-=++mn 5-10-2a 2b 2()a b -ab 2(2)a b +22a b -a a b --aa b --aa b +a a b -+aa b-a b c ()2222()b a b a bc ac +-=-ABC △22111m m m m ----1m +1m -2m -2m --式.如,则与是和谐分式.下列每组两个分式是和谐分式的是()A .与B .与C .与D .与二,填空题.11.(4分)要使分式有意义,则需满足的条件是_____________.12.(4分)若多项式可以用完全平方公式进行因式分解,则____________.13.(4分)分式的值为0,则___________.14.(4分)已知,那么的值为_____________.15.(4分)已知对于正数,我们规定:,例如:,则___________.三.解答题(共8小题)16.(10分)因式分解:(1)(2).17.(10分)计算:(1);(2)18.(10分),0,1,2中选一个合适的数求值.19.(10分)下面是某同学对多项式进行因式分解的过程.解:设,原式(第一步)(第二步)1111113213n n n n ⎛⎫⨯=- ⎪++++⎝⎭11n +13n +1n 121n +121n -131n +221n -331n +321n -231n +15x -x 29x kx ++k =242x x --x =23m n -=22467m n n --+x 1()1x f x =+11(2)123f ==+(2023)(2022)(2021)f f f ++11111(2)(1)23202120222023f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L 22516x -(6)9x x -+2111a a a a -++-2224x x x y y y⎛⎫÷⨯ ⎪-⎝⎭2-()()2242464x x x x -+-++24x x y -=(2)(6)4y y =+++2816y y =++(第三步)(第四步)回答下列问题;(1)该同学第二步到第三步运用了什么公式进行因式分解?(2)该同学因式分解的结果是否彻底?若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式进行因式分解.20.(12分)计算下列各式:(1)_________________;(2)_____________;(3)______________;请你根据所学知识寻找计算上面的算式的简便方法,利用你找到的简便方法计算下式:.21.(12分)阅读材料:要将多项式分解因式,可以先把它的前两项分成一组,再把它的后两项分成一组,从而得到:,这时中又有公因式,于是可以提出,从而得到,因此有,这种方法称为分组法.请回答下列问题:(1)尝试填空:______________;(2)解决问题:因式分解;.(3)拓展应用:已知三角形的三边长分别是,,,且满足,试判断这个三角形的形状,并说明理由.22.(13分)请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”例如:,;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:.,.我们知道,假分数可以化为带分数,例如:,类似的,假分式也可以2(4)y =+()2244x x =-+()()222221x xx x --++2112-=22111123⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭222111111234⎛⎫⎛⎫⎛⎫---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭222211*********n ⎛⎫⎛⎫⎛⎫⎛⎫---⋯- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭am an bm bn +++()()()()am an bm bn am an bm bn a m n b m n +++=+++=+++()()a m n b m n +++()m n +()m n +()()m n a b ++()()()()()()am an bm bn am an bm bn a m n b m n m n a b +++=+++=+++=++2189x xy y -+-=22ac bc a b -+-a b c 2222220a ab b bc c -+-+=11x x -+21x x -11x +2211x x +-1210222225555+==+=化为“带分式”(整式与真分式和的形式),例如:.(1)将分式化为带分式;(2)当取哪些整数值时,分式的值也是整数?(3)当的值变化时,分式的最大值为_____________________.23.(13分)“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时利用几何直观的方法获取结论,在解决整式运算问题时经常运用.例1:如图1,可得等式:;例2:由图2,可得等式:.(1)如图3,将几个面积不等的小正方形与小长方形拼成一个边长为的正方形,从中你发现的结论用等式表示为__________________;(2)利用(1)中所得到的结论,解决下面的问题:已知,.求的值.(3)如图4,拼成为大长方形,记长方形的面积与长方形的面积差为.设,若的值与无关,求与之间的数量关系.11221111x x x x x +-+==+---211x x +-x 211x x +-x 22272x x ++()a b c ab ac +=+22(2)()32a b a b a ab b ++=++a b c ++10a b c ++=22236a b c ++=ab bc ac ++AMGN ABCD EFGH S CD x =S CD a b初三数学试题答案1.解:A .从左到右的变形是多项式乘法,不是分解因式,故本选项不符合题意;B .等式的右边不是整式的积的形式,即从左到右的变形不属于分解因式,故本选项不符合题意;C .从左到右的变形属于分解因式,故本选项符合题意;D .等号两边的式子不相等,故本选项不符合题意.故选:C .2.解:A 、分子与分母没有公分母,是最简分式;B 、原式可化简为,故不是最简分式;C 、原式可化简为,不是最简分式;D 、原式可化简为,不是最简分式,故选:A .3.解:∵,∴原式能被99,100,98整除,故选:D .4.解:,即如果把分式中的和都同时扩大3倍,那么分式的值扩大3倍,故选:B .5.解:由,比较系数,得,,解得,,则.故选:C .6.解:中间部分的四边形是正方形,边长是,则面积是.故选:A .7.解:A 、只改变了分子的符号,故A 错误;23ab11x +a b 39999-()299991=⨯-99(991)(991)=⨯+⨯-9910098=⨯⨯333333x y xy xy x y x y x y⋅==⨯---xy x y --x y 2215(3)()(3)3x mx x x n x n x n +-=++=+++3m n =+153n -=2m =-5n =-(2)(5)10mn =-⨯-=2a b b a b +-=-2()a b -B 、只改变了分子的符号,故B 错误;C 、改变了分子分母的符号,故C 正确;D 、只改变了分子的符号,故D 错误;故选:C .8.解:∵,∴,∴,∴,∴或,∴或,∴是等腰三角形或直角三角形,故选:D .9.解:原式.故选:B .10.解:∵,,∴和不是和谐分式,故A 不符合题意;∵,,∴和不是和谐分式,故B 不符合题意;∵,,∴,故C 符合题意;,,∴和不是和谐分式,故D 不符合题意.故选C .二.填空题(共4小题)()2222()b a b a bc ac +-=-()222()()b a b a b a c +-=-()222()()0b a b a b a c +---=()222()0b a a b c -+-=0b a -=2220a b c +-=a b =222a b c +=ABC △222(21)21(1)1111m m m m m m m m m ---+-====----1121121(21)(21)n n n n n n n n n +-+-==+++11121(21)n n n n ⋅=++1n 121n +11312122131(21)(31)(21)(31)n n n n n n n n n +-++-==-+-+-+1112131(1)(31)n n n n ⋅=-+-+121n -131n +232(31)3(21)52131(21)(31)(21)(31)n n n n n n n n +---==-+-+-+2362131(21)(31)n n n n ⋅=-+-+236232n 13n 152n 13n 1⎛⎫⋅=- ⎪-+-+⎝⎭323(31)2(21)5(1)2131(21)(31)(21)(31)n n n n n n n n n +--+-==-+-+-+3262131(21)(31)n n n n ⋅=-+-+321n -231n +11.解:由题意得:,解得:,故答案为:.12.解:∵多项式可以用完全平方公式进行因式分解,∴,∴.故答案为:.13.解:∵分式的值为0,∴,,∴故答案为:.14.解:∵,∴,故答案为:16.15.解:由题干中已知条件可得,,原式50x -≠5x ≠5x ≠29x kx ++2229(3)69x kx x x x ++=±=±+6k =±6±242x x --240x -=20x -≠2x =-2-23m n -=22467m n n --+(2)(2)67m n m n n =+--+3(2)67m n n =+-+6367m n n =+-+637m n =-+3(2)7m n =-+337=⨯+16=1()1x f x f ⎛⎫+= ⎪⎝⎭11(1)112f ==+111(1)(2)(3)(2023)232023f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦L 11112=++++L 1120222=+⨯120222=故答案为:.16、解:(1);(2).17、解:(1);(2)原式;18、解:原式又∵分母不能为0,∴不能取,0,2,当时,原式.19、解:(1),用到的是完全平方公式;(2)∵,12022222516x -225(4)x =-(54)(54)x x =+-(6)9x x -+269x x =-+2)(3x =-2111a a a a -++-111111a a a a a +=+==+++2242y x x y x y -=⋅⋅22x =-3(2)(2)(2)(2)(2)(2)(2)(2)x x x x x x x x x x x ⎡⎤+--+=-⋅⎢⎥+--+⎣⎦22362(2)(2)(2)(2)x x x x x x x x x+-+-+=⋅-+228(2)(2)(2)(2)x x x x x x x+-+=⋅-+2(4)(2)(2)(2)(2)x x x x x x x++-=⋅-+2(4)x =+28x =+x 2-1x =21810=⨯+=22816(4)y y y ++=+()22444(2)x x x -+=-∴因式分解不彻底;(3)设,∴20、解:(1);(2);(3);故答案为:;;;原式.21、解:(1),,,,故答案为:;(2),,(3)这个三角形是等边三角形,理由如下:22y x x =-()()222221x x x x --++(2)1y y =++221y y =++2(1)y =+()2221x x =-+4(1)x =-213124-=2211211233⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭22211151112348⎛⎫⎛⎫⎛⎫---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭3423581324112233n n n n-+=⋅⋅⋅⋅L n 12n +=2189x xy y -+-(218)(9)x xy y =-+-2(9)(9)x y x =-+-(2)(9)y x =+-(2)(9)y x +-22ac bc a b -+-()()()c a b a b a b =-++-()()a b a b c =-++,,,∵,,∴,,∴,∴∴这个三角形是等边三角形.22、解:(1)原式;(2)由(1)得:,要使为整数,则必为整数,∴为3的因数,∴或,解得:,2,,4;(3)原式,当时,原式取得最大值.故答案为:23、解:(1)正方形面积为,小块四边形面积总和为∴由面积相等可得:,故答案为:.(2)由(1)可知,∵,;∴,∴.(3)由题意知,,,,,2222220a ab b bc c -+-+=2222220a ab b b bc c -++-+=22()()0a b b c -+-=2()0a b - (2)()0b c -…2()0a b -=2()0b c -=a b =b c=a b c==2(1)33211x x x -+==+--213211x x x +=+--211x x +-31x -1x -11x -=±3±0x =2-()2222233222x x x ++==+++20x =7272Q 2()a b c ++222222a b c ab bc ac+++++2222()222a b c a b c ab bc ac ++=+++++2222()222a b c a b c ab bc ac ++=+++++()2222222()ab bc ac a b c a b c ++=++-++10a b c ++=22236a b c ++=()22222()()1003664ab bc ac a b c a b c ++=++-++=-=164322ab bc ac ++=⨯=2BC a =3DE a =EH CF b ==3EF CD CF DE x b a =+-=+-,∴,即,又∵为定值,∴,即.ABCD EFGH S S S =-长方形长方形2(3)S CD BC EH EF x a b x b a =⋅-⋅=⋅-⋅+-2223(2)3S ax bx b ab a b x b ab =--+=--+S 20a b -=2b a =。

2022-2023学年人教版九年级第一学期第一次月考数学试卷(含解析)

2022-2023学年人教版九年级第一学期第一次月考数学试卷(含解析)

广东省九年级(上)第一次月考数学试卷1一、选择题(每小题3分,共30分)1.(3分)若关于x的方程x2+(m+1)x+=0的一个实数根是1,则m的值是()A.B.C.1或D.12.(3分)下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形3.(3分)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD =35°,∠AEF=15°,则∠B的度数为何?()A.50B.55C.70D.754.(3分)在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近5.(3分)根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=;当∠B=90°时,如图2,AC=()A.B.2C.2D.6.(3分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是57.(3分)如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF =AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.8.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+4409.(3分)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或610.(3分)如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为2;⑥AP⊥EF.其中正确结论的序号为()A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④⑤⑥二、填空题(每小题4分,共20分)11.(4分)等腰△ABC的两边长都是方程x2﹣6x+8=0的根,则△ABC的周长为.12.(4分)某商店设计了一种促销活动来吸引顾客:在一个不透明的箱子里放有4个相同的乒乓球,乒乓球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是.13.(4分)有3个正方形如图所示放置,阴影部分面积依次记为S1,S2,若S1的面积为2,则S2的面积为.14.(4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连接EG,FG,若AE=DE,AB=2,则EG=.15.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共7个小题,满分70分)16.(8分)解下列方程(1)2x2﹣8x﹣1=0(用配方法)(2)3x(x﹣1)=2﹣2x(选择合适方法)17.(9分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径两弧交AD于点F,再分别以点B,F为圆心,大于BF为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)AB AF(选填“=”,“≠”,“>”,“<”):AE∠BAD的平分线.(选填“是”或“不是”)(2)在(1)的条件下,求证:四边形ABEF是菱形.(3)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为,∠ABC=°.18.(10分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?19.(10分)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4,∠C=45°,点P是BC边上一动点,设PB的长为x,(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形?(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形?(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.20.(11分)我市城建公司新建了一个购物中心,共有商铺30间,据调查分析,当每间的年租金为10万元时,可全部租出:若每间的年租金每增加0.5万元,则少租出商铺一间,为提供优质服务,城建公司引入物业公司代为管理,租出的商铺每间每年需向物业公司缴纳物业费1万元,未租出的商铺不需要向物业公司缴纳物业费.(1)当每间商铺的年租金定为13万元时,能租出间.(2)当每问商铺的年租金定为多少万元时,该公司的年收益为286万元,且使租客获得实惠?(收益=租金﹣物业费)21.(11分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求AE的长(用x的代数式表示);(2)当y=108m2时,求x的值.22.(11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若关于x的方程x2+(m+1)x+=0的一个实数根是1,则m的值是()A.B.C.1或D.1【解答】解:把x=1代入方程,得1+(m+1)+=0,解得,m=﹣故选:A.2.(3分)下列说法中错误的是()A.有一个角是直角的平行四边形是矩形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的矩形是菱形D.对角线相等的四边形是矩形【解答】解:根据矩形的定义及性质知,有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,故A,B正确;根据菱形的定义及性质知对角线互相垂直的矩形是正方形,也是菱形,故C正确;对角线相等的四边形有可能是等腰梯形,故D错误;故选:D.3.(3分)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD =35°,∠AEF=15°,则∠B的度数为何?()A.50B.55C.70D.75【解答】解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选:C.4.(3分)在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D.随着试验次数的增加,频率一般会逐步稳定在概率数值附近【解答】解:∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.5.(3分)根据四边形的不稳定性,当变动∠B的度数时,菱形ABCD的形状会发生改变,当∠B=60°时,如图1,AC=;当∠B=90°时,如图2,AC=()A.B.2C.2D.【解答】解:如图1、2中连接AC.在图1中,∵AB=BC,∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=,在图2中,∵∠B=90°,AB=BC=,∴AC==2.故选:B.6.(3分)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()A.一副去掉大小王的普迺扑克牌洗匀后,从中任抽一张牌的花色是红桃B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5【解答】解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;B、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是,符合题意;C、抛一枚硬币,出现正面的概率为,不符合题意;D、抛一个质地均匀的正六面体骰子(六个面上分别标有1,2,3,4,5,6),向上的面点数是5的概率是,不符合题意,故选:B.7.(3分)如图,在正方形ABCD中,AB=2,延长AB至点E,使得BE=1,EF⊥AE,EF =AE.分别连接AF,CF,M为CF的中点,则AM的长为()A.2B.3C.D.【解答】解:连接AC,∵四边形ABCD是正方形,∴∠BAC=45°.∵EF⊥AE,EF=AE,∴△AEF是等腰直角三角形,∴∠EAF=45°,∴∠CAF=90°.∵AB=BC=2,∴AC==2.∵AE=EF=AB+BE=2+1=3,∴AF==3,∴CF===.∵M为CF的中点,∴AM=CF=.故选:D.8.(3分)共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000D.1000(1+2x)=1000+440【解答】解:由题意可得,1000(1+x)2=1000+440,故选:A.9.(3分)如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9B.3或5C.4或6D.3或6【解答】解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(6+9+x)×9﹣6×3,解得x=3,或x=6,故选:D.10.(3分)如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为2;⑥AP⊥EF.其中正确结论的序号为()A.①②④⑤⑥B.①②④⑤C.②④⑤D.②④⑤⑥【解答】解:①如图,延长FP交AB与G,连PC,延长AP交EF与H,∵GF∥BC,∴∠DPF=∠DBC,∵四边形ABCD是正方形∴∠DBC=45°∴∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC=DF,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴DP=EC.故①正确;②∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,故②正确;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠P AD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.④∵四边形PECF为矩形,∴PC=EF,∠PFE=∠ECP,由正方形为轴对称图形,∴AP=PC,∠BAP=∠ECP,∴AP=EF,∠PFE=∠BAP,故④正确;⑤由EF=PC=AP,∴当AP最小时,EF最小,则当AP⊥BD时,即AP=BD==2时,EF的最小值等于2,故⑤正确;⑥∵GF∥BC,∴∠AGP=90°,∴∠BAP+∠APG=90°,∵∠APG=∠HPF,∴∠PFH+∠HPF=90°,∴AP⊥EF,故⑥正确;本题正确的有:①②④⑤⑥;故选:A .二、填空题(每小题4分,共20分)11.(4分)等腰△ABC 的两边长都是方程x 2﹣6x +8=0的根,则△ABC 的周长为 12或6或10. .【解答】解:∵x 2﹣6x +8=0, ∴(x ﹣4)(x ﹣2)=0, ∴x 1=4,x 2=2,∵等腰△ABC 的两边长都是方程x 2﹣6x +8=0的根, ∴等腰△ABC 的三边为4、4、4或2、2、2或4、4、2, ∴△ABC 的周长为12或6或10. 故答案为12或6或10.12.(4分)某商店设计了一种促销活动来吸引顾客:在一个不透明的箱子里放有4个相同的乒乓球,乒乓球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是 .【解答】解:列表得: ∵共有12种等可能结果,该顾客所获得购物券的金额不低于30元的有8种情况,∴P(不低于30元)==.故答案为:.13.(4分)有3个正方形如图所示放置,阴影部分面积依次记为S1,S2,若S1的面积为2,则S2的面积为.【解答】解:如图,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DCA=45°=∠ACB=∠DAC,∵四边形EFNM是正方形,∴MN=FN,EF∥AC,∠AMF=∠FNC=90°∴∠DAC=∠AEM=45°=∠ACD=∠CFN∴AM=ME=MN=NC=NF∵EF∥AC∴△DEF∽△DAC∴∴S△ADC=18同理可得:△CGH∽△CAB,AB=2GH,∴∴S2=故答案为:14.(4分)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连接EG,FG,若AE=DE,AB=2,则EG=.【解答】解:如图,连接AC、EF,在菱形ABCD中,AC⊥BD,∵BE⊥AD,AE=DE,∴AB=BD,又∵菱形的边AB=AD,∴△ABD是等边三角形,∴∠ADB=60°,设EF与BD相交于点H,AB=4x,∵AE=DE,∴由菱形的对称性,CF=DF,∴EF是△ACD的中位线,∴DH=DO=BD=x,在Rt△EDH中,EH=DH=x,∵DG=BD,∴GH=BD+DH=4x+x=5x,在Rt△EGH中,由勾股定理得,EG==x,所以,==.∵AB=2,∴EG=.故答案是:.15.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE 折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.三、解答题(本大题共7个小题,满分70分)16.(8分)解下列方程(1)2x2﹣8x﹣1=0(用配方法)(2)3x(x﹣1)=2﹣2x(选择合适方法)【解答】解:(1)移项,得2x2﹣8x=1,两边都除以2,得x2﹣4x=,方程的两边都加上4,得x2﹣4x+4=,即(x﹣2)2=所以x﹣2=±,所以x1=2+,x2=;(2)移项,得3x(x﹣1)+2x﹣2=0,即3x(x﹣1)+2(x﹣1)=0,所以(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣17.(9分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径两弧交AD于点F,再分别以点B,F为圆心,大于BF为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)AB=AF(选填“=”,“≠”,“>”,“<”):AE是∠BAD的平分线.(选填“是”或“不是”)(2)在(1)的条件下,求证:四边形ABEF是菱形.(3)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为10,∠ABC=120°.【解答】(1)解:AB=AF;AE平分∠BAD的平分线;故答案为=,是;(2)证明:∵AE平分∠BAF,∴∠BAE=∠F AE,∵AF∥BE,∴∠BAE=∠BEA,∴AB=EB,而AF=AB,∴AF=BE,AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF是菱形;(3)解:∵四边形ABEF是菱形;而四边形ABEF的周长为40,∴AB=10,OA=OE,OB=OF=5,AE⊥BF,∴△ABF为等边三角形,∴∠BAF=60°,∴∠ABC=120°,∵OA=OB=5,∴AE=2OA=10.故答案为10,120.18.(10分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?【解答】解:(1)∵共有4种等可能的结果,落回到圈A的只有1种情况,∴落回到圈A的概率P1=;(2)列表得:∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(4,4),∴最后落回到圈A的概率P2==,∴她与嘉嘉落回到圈A的可能性一样.19.(10分)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4,∠C=45°,点P是BC边上一动点,设PB的长为x,(1)当x为何值时,以点P、A、D、E为顶点的四边形为直角梯形?(2)当x为何值时,以点P、A、D、E为顶点的四边形为平行四边形?(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.【解答】解:(1)过D作DM⊥BC于M,∵CD=4,∠C=45°,∴DM=CM=DC×sin45°=4×=4,∵E是BC的中点,BC=12,∴BE=CE=6,∴EM=6﹣4=2,在Rt△DME中,由勾股定理得:DE==2,∵要使以点P、A、D、E为顶点的四边形为直角梯形,∴只能是∠APB=90°,即AP⊥BC,AP⊥AD,如图2,∵AP=DM,AP∥DM,∴四边形APMD是矩形,∴AD=PM=5,∴PE=5﹣2=3,∴BP=12﹣6﹣3=3,即当x为3时,以点P、A、D、E为顶点的四边形为直角梯形,当P和M重合时,以点P、A、D、E为顶点的四边形为直角梯形,此时x=12﹣4=8,所以当x为3或8时,以点P、A、D、E为顶点的四边形为直角梯形;(2)分为两种情况:①如图3,当P在E的左边时,∵AD=PE=5,CE=6,∴BP=12﹣6﹣5=1;②如图4,当P在E的右边时,∵AD=EP=5,∴BP=12﹣(6﹣5)=11;即当x为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能构成菱形,理由是:分为两种情况:①当P在E的左边时,如图3,∵AD=5,DE=2,∴AD≠DE,即此时以点P、A、D、E为顶点的四边形APED不是菱形;②如图4,过点D作DM⊥BC于点M,当P在E的右边时,过A作AQ⊥BC于Q,则AQ=DM=4,∵AD=AE=EP=5,∴BP=BP=6+5=11;即当x为11时,以点P、A、D、E为顶点的四边形为菱形.20.(11分)我市城建公司新建了一个购物中心,共有商铺30间,据调查分析,当每间的年租金为10万元时,可全部租出:若每间的年租金每增加0.5万元,则少租出商铺一间,为提供优质服务,城建公司引入物业公司代为管理,租出的商铺每间每年需向物业公司缴纳物业费1万元,未租出的商铺不需要向物业公司缴纳物业费.(1)当每间商铺的年租金定为13万元时,能租出24间.(2)当每问商铺的年租金定为多少万元时,该公司的年收益为286万元,且使租客获得实惠?(收益=租金﹣物业费)【解答】解:(1)30﹣×1=24(间),∴当每间商铺的年租金定为13万元时,能租出24间.故答案是:24;(2)设每间商铺的年租金增加x万元,则每间商铺的年租金为(10+x)万元,依题意有:(30﹣×1)×(10+x)﹣(30﹣×1)×1=286,解得:x1=2,x2=4,∵使租客获得实惠,∴x1=2符合题意,∴每间商铺的年租金定为12万元.答:当每间商铺的年租金定为12万元时,该公司的年收益为286万元.21.(11分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求AE的长(用x的代数式表示);(2)当y=108m2时,求x的值.【解答】解:(1)∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BE=a,则AE=2a,AB=3a,∴8a+2x=80,∴a=﹣x+10,∴AE=2a=﹣x+20;(2)∵矩形区域ABCD的面积=AB•BC,∴3(﹣x+10)•x=108,整理得x2﹣40x+144=0,解得x=36或4,即当y=108m2时,x的值为36或4.22.(11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【解答】解:(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(2)结论仍然成立.理由:如图2中,设DE与CF交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.(3)结论仍然成立.理由:如图3中,设DE与FC的延长线交于点M.∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,∴∠CBF=∠DCE=90°在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.。

九年级数学下学期第一次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

九年级数学下学期第一次月考试题(含解析)  新人教版-新人教版初中九年级全册数学试题

某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。

北师大版初三数学上册第一次月考试卷及答案四篇

北师大版初三数学上册第一次月考试卷及答案四篇

北师大版初三数学上册第一次月考试卷及答案【四篇】【篇一】北师大版初三数学上册第一次月考试卷一、选择题(每小题3分,共30分)1.已知关于的一元二次方程的一个根是2,则的值是()A、-2B、2C、1D、﹣12.下列形中,既时轴对称形,又是中心对称形的是()3.如(1),在ABCD中,下列论点一定正确的是()A、AC=BDB、AC⊥BDC、AB=CDD、AB=BC4.一个等腰三角形的两边粗大分别为3和7,则它的周长是()A、17B、15C、13D、13或175.对角菱形的两条对角线把菱形分成全等的直角三角形的个数是()A、1个B、2个C、3个D、4个6.下列性质中,矩形具有但平行四边形不一定具有的是()A、对边相等B、对角相等C、对角线相等D、对边平行7.下列各无论如何的值是方程的解的是()8.下列各式是一元二次方程的是()9.把方程左边化成含有的完全平方式,其中正确的是()10.顺次连接矩形ABCD各边中点得到四边形EFGH,它的形状是()A、平行四边形B、矩形C、菱形D、正方形二、填空题(每小题4分,共24分)11.一元二次方程的一次项系数是____________,常数项是____________。

12.已知菱形ABCD的周长为40㎝,O是两条对角线的交点,AC=8㎝,DB=6㎝,菱形的边长是________㎝,面积是________㎝2。

13.不等式公式是关于的一元二次方程,则的值是______________。

14.如(2),△ABC中,∠ACB=90°,D为AB中点,BC=6,CD=5,则AB=__________,AC=_____________。

15.如(3),已知P是正方形ABCD对角线BD上的一点,且BP=BC,则∠ACP的度数是_________。

16.如(4)在矩形ABCD中,AB=3,AD=4,以对角线的一半为边依次作四边形平行四边形,则,三、解答题(一)(每小题6分,共18分)17.解方程:18.用公式法解方程:19.用配方法解方程:四、解答题(二)(每小题8分,共24分)20.在△ABC中,D为AB的中点,连接CD。

19-20长郡双语中学九年级数学第一次月考试卷

19-20长郡双语中学九年级数学第一次月考试卷

19-20学年度长郡双语中学初三第一次限时检测数学一.选择题(共12小题)1.下列各数是无理数的是( )A . 0B .πC .38D .17-2.下列运算,正确的是( ) A .235x y xy += B .()2239x x -=-C .()2224xy x y =D .632x x x ÷=3.如图,是中心对称图形的是( )A .B .C .D .4.若代数式13x +有意义,则x 的取值是( ) A .0x =B .0x ≠C .3x =D .3x ≠-5.数据1,2,3,0,5,5,6的中位数和众数分别是( ) A .3和2B .3和3C .3和5D .0和56.多项式2315ma mab +的公因式是( ) A .3mB .23maC .3maD .3mab7.如图,能判定//AB CD 的是( )A .14∠=∠B .13∠=∠C .12∠=∠D .23∠=∠8.若关于x 的方程260x x a +-=无实数根,则a 的值可以是下列选项中的( ) A .10-B .9-C .9D .109.下列说法中,错误的是( ) A . 平行四边形的对角线互相平分 B . 五边形的内角和是540°C . 菱形的对角线互相垂直D . 对角线互相垂直的四边形是菱形10.如图,在Rt ABC ∆中,90ACB ∠=︒,31ABC ∠=︒,将ABC ∆绕点C 顺时针旋转α角(0180)α︒<<︒至'''A B C ∆,使得点A '恰好落在AB 边上,则α等于( )A .149︒B .69︒C .62︒D .31︒11.已知二次函数2y ax bx c =++的图象如图所示,那么一次函数y bx ac =+在直角坐标系中的图象大致为( )A .B .C .D .12.如图, 在正方形ABCD 中, 点O 为对角线AC 的中点, 过点O 作射线OM 、ON 分别交AB 、BC 于点E 、F ,且90EOF ∠=︒,BO 、EF 交于点P ,则下列结论中: ⑴OEF ∆是等腰直角三角形; ⑵图形中全等的三角形只有两对;⑶BE BF +=;⑷正方形ABCD 的面积等于四边形OEBF 面积的 4 倍, 正确的结论有( )A . 1 个B . 2 个C . 3 个D . 4 个二.填空题(共6小题)13.已知3y =,则x y -= .14.如果点(4,5)P -和点(,)Q a b 关于原点对称,则a 的值为 . 15.已知一等腰三角形有两边边长为6,8,则这个三角形的周长为 . 16.已知a ,b 满足方程组3125a b a b +=⎧⎨-+=-⎩,则4a b -的值为 .17.如图,在ABC ∆中,6AB =,将ABC ∆绕点B 按逆时针方向旋转30︒后得到△11A BC ,则阴影部分的面积为 .18.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆= .三、解答题(共8小题)19.(6分)计算:()02233ππ----20.(6分)先化简,再求值:()()()222a b a b a b b --+--,其中1,2a b =-= .21.如图,在边长为1的小正方形组成的网格中,AOB ∆的三个顶点均在格点上,点A 、B 的坐标分别为(3,2)、(1,3).AOB ∆绕点O 逆时针旋转90︒后得到△11A OB . ⑴在网格中画出△11A OB ,并标上字母; ⑵点A 关于O 点中心对称的点的坐标为 ; ⑶点1A 的坐标为 ;⑷在旋转过程中,点B 经过的路径为弧1BB ,那么弧1BB 的长为 .22.如图,在ABC ∆中,AE 是它的角平分线,90C ∠=︒,30B ∠=︒,D 在AB 边上,4AD =, 以AD 为直径的圆O 经过点E . ⑴求证:BC 是O 的切线; ⑵求图中阴影部分的面积.23.某商店在2017年至2019年期间销售一种礼盒.2017年,该商店用3500元购进了这种礼盒并且全部售完;2019年,这种礼盒的进价比2017年下降了11元/盒,该商店用2400元购进了与2017年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.⑴2017年这种礼盒的进价是多少元/盒?⑵若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?24.如图所示,AB是O的直径,AE是弦,C是劣弧AE的中点,过C作CD AB⊥于点D,CG AE交BA的延长线于点G.CD交AE于点F,过C作//⑴求证:CG是O的切线.⑵求证:AF CF=.⑶若30CF=,求GA的长.EAB∠=︒,225.在直角坐标系中,1O 经过坐标原点O ,分别与x 轴正半轴、y 轴正半轴交于点A 、B . ⑴如图,过点A 作1O 的切线与y 轴交于点C ,点O 到直线AB 的距离为125, 25:3:4,4OA OB BC ==,①求AB 的长;②求直线AC 的解析式 ⑵若1O 经过点(2,2)M ,设BOA ∆的内切圆的直径为d ,试判断d AB +的值是否会发生变 化?如果不变,求出其值;如果变化,求其变化的范围.26.已知抛物线的顶点坐标为(1,4)M,且经过点(2,3)N,与x轴交于A,B两点(点A在点B左侧),与y轴交于点C、设直线CM与x轴交于点D.⑴求抛物线的解析式.⑵在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD 相切?若存在,求出P的坐标;若不存在.请说明理由.⑶设直线2=+与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写y kx出k的取值范围.。

辽宁省鞍山市铁东区华育外国语实验学校2022-2023学年九年级上学期第一次月考数学试卷(含答案)

辽宁省鞍山市铁东区华育外国语实验学校2022-2023学年九年级上学期第一次月考数学试卷(含答案)

2022-2023学年辽宁省鞍山市铁东区华育外国语实验学校九年级(上)第一次月考数学试卷考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔) ,不准用规定以外的笔答卷,不准在答卷上作任何标记。

考生书写在答题卡规定区域外的答案无效。

4、考试开始信号发出后,考生方可开始作答。

一、选择题(每题3分,共24分)1.如图是四款新能源汽车的标志,其中是中心对称图形的是()A.B.C.D.2.下列各式中,y是x的二次函数的是()A.y=3x B.y=x2+(3﹣x)xC.y=(x﹣1)2D.y=ax2+bx+c3.如图,在△ABC中,DE∥BC,AD=2,BD=3,DE=6,则BC的长为()A.10B.15C.18D.164.把方程3x2+x=2(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.3,1,4B.3,﹣1,4C.3,﹣1,﹣4D.3,4,﹣1 5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.6.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则下列方程中正确的是()A.1+x2=91B.(1+x)2=91C.1+x+x2=91D.1+(1+x)+(1+x)2=917.如图,已知点A(2,0),B(0,4),C(2,4),线段AB绕着某点旋转一个角度与线段CD重合,若点A的对应点是点C,则这个旋转中心的坐标为()A.(5,2)B.(1,5)C.(4,2)D.(1,5)或(4,2)8.在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.二、填空题(每题3分,共24分)9.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为.10.若一元二次方程x2﹣4x﹣2=0的两个实数根为m,n,则的值为.11.已知点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)在抛物线y=﹣2x2,则y1,y2,y3的大小关系是(用“<”连接).12.如图,在矩形ABCD中,若AB=3,AC=5,若AE=1,=.13.如果关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,且其中一个根为另一个根的3倍,则的值为.14.如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,则点B的坐标是.15.关于抛物线y=﹣x2,给出下列说法:①物线开口向下,顶点是原点;②当x>1时,y随x的增大而减小;③当﹣1<x<2时,﹣4<y<﹣1;④若(m,p)、(n,p)是该抛物线上两点,则m+n=0.其中正确的说法有.16.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E为边BC中点,连接DE交AC于点F,把线段DF绕点D顺时针旋转90°得DG,连接AG、FG,点M为线段FG的中点,连接AM、OM、BG,下列结论正确的有.①FA2+FC2=FG2②AM=BG③=④三、解答题:(17题8分,18题8分,19题一-24题各10分,25题12分,26题14分)17.(8分)解下列方程:(1)2x2+8x+3=0(配方法);(2)3t2﹣t﹣3=0.18.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度,按要求作图:(1)画出△ABC关于原点O的中心对称图形△A1B1C1.(2)画出将△ABC绕点O顺时针旋转90°得到△A2B2C2.19.如图,AD、BC相交于点P,连接AC、BD,且∠1=∠2,AC=3,CP=2,DP=1,求BD的长.20.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.21.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=9,BC=6,求EF的长.22.一块长30cm,宽12cm的矩形铁皮.(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请你求出裁去的左侧正方形的边长;如果不能,请说明理由.23.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.24.“南国梨”素有“梨中之王”美称,主产于中国辽宁省的鞍山,某南国梨种植基地2020年种植64亩,到2022年的种植面积达到100亩.(1)求该基地这两年“南国梨”种植面积的平均增长率.(2)某超市调查发现,当“南国梨”的售价为8元/千克时,每周能售出400千克,售价每千克上涨0.5元,每周销售量减少10千克,已知该超市“南国梨”的进价为6元/千克,为了维护消费者利益,物价部门规定,该水果售价不能超过17元/千克.若使销售“南国梨”每周获利2400元,则售价应多少元/千克?25.(12分)如图,在△ABC中,AB=AC,E是线段BC上一动点(不与B、C重合),连接AE,将线段AE绕点A逆时针旋转与∠BAC相等的角度,得到线段AF,连接EF,点M和点N分别是边BC,EF的中点.(1)如图1,若∠BAC=120°,当点E是BC边的中点时,=,直线BE与MN相交所成的锐角的度数为度.(2)如图2,若∠BAC=120°,当点E是BC边上任意一点时(不与BC重合),上述两个结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)若∠BAC=60°,AB=6,点E在直线BC上运动,=,若其它条件不变,过点C作CP∥MN,交直线EF于P,直接写出P到BC的距离.26.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别相交于A、B两点,抛物线y=ax2经过AB的中点D.(1)直接写出抛物线解析式;(2)如图1,在直线AB上方,y轴右侧的抛物线上是否存在一点M,使S△ABM=,若存在,求出M点坐标;若不存在,请说明理由.(3)如图2,点C是OB中点,连接CD,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,请直接写出BP的长.参考答案一、选择题(每题3分,共24分)1.如图是四款新能源汽车的标志,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断即可.解:A.是中心对称图形,故此选项符合题意;B.不是中心对称图形,故此选项不合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:A.【点评】本题考查的是中心对称图形的概念,正确掌握相关定义是解题关键.2.下列各式中,y是x的二次函数的是()A.y=3x B.y=x2+(3﹣x)xC.y=(x﹣1)2D.y=ax2+bx+c【分析】根据二次函数的定义逐个判断即可.解:A.y是x的一次函数,不是二次函数,故本选项不符合题意;B.y=x2+(3﹣x)x=x2+3x﹣x2=3x,y是x的一次函数,不是二次函数,故本选项不符合题意;C.y是x的二次函数,故本选项符合题意;D.当a=0时,y不是x的二次函数,故本选项不符合题意;故选:C.【点评】本题考查了二次函数的定义,能熟记二次函数的定义是解此题的关键,注意:形如y=ax2+bx+c(a、b、c为常数,a≠0)的函数,叫二次函数.3.如图,在△ABC中,DE∥BC,AD=2,BD=3,DE=6,则BC的长为()A.10B.15C.18D.16【分析】通过证明△ADE∽△ABC,可得,即可求解.解:∵AD=2,BD=3,∴AB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴BC=15,故选:B.【点评】本题考查了相似三角形的判定和性质,证明三角形相似是解题的关键.4.把方程3x2+x=2(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为()A.3,1,4B.3,﹣1,4C.3,﹣1,﹣4D.3,4,﹣1【分析】将原方程转化为一般形式,进而可得出a,b,c的值.解:将原方程转化为一般形式为3x2﹣x+4=0,∴a=3,b=﹣1,c=4.故选:B.【点评】本题考查了一元二次方程的一般形式,熟练掌握将给定一元二次方程转化为一般形式的方法是解题的关键.5.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.【分析】根据平行线分线段成比例定理逐个判断即可.解:A.∵AB∥CD∥EF,∴=≠,故本选项不符合题意;B.∵AB∥CD∥EF,∴=,故本选项不符合题意;C.∵AB∥CD∥EF,∴=,故本选项不符合题意;D.∵AB∥CD∥EF,∴=,故本选项符合题意;故选:D.【点评】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.6.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,设每个支干长出x个小分支,则下列方程中正确的是()A.1+x2=91B.(1+x)2=91C.1+x+x2=91D.1+(1+x)+(1+x)2=91【分析】根据题意,可以列出相应的方程:主干+支干+小分支=91,进而得出答案.解:由题意可得,1+x+x•x=1+x+x2=91.故选:C.【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程.7.如图,已知点A(2,0),B(0,4),C(2,4),线段AB绕着某点旋转一个角度与线段CD重合,若点A的对应点是点C,则这个旋转中心的坐标为()A.(5,2)B.(1,5)C.(4,2)D.(1,5)或(4,2)【分析】对应点连线段的垂直平分线的交点即为旋转中心.解:观察图象可知,旋转中心P的坐标为(4,2).故选:C.【点评】本题考查坐标与图形变化﹣旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.8.在同一直角坐标系中,当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.【分析】根据ab>0,可以得到a>0,b>0或a<0,b<0,然后分类讨论y=ax2与y=ax+b的图象所在的象限,本题得以解决.解:∵ab>0,∴a>0,b>0或a<0,b<0,当a>0,b>0时,函数y=ax2的图象开口向上,顶点在原点,函数y=ax+b的图象经过第一、三、四象限,故选项A、B错误,不符合题意;当a<0,b<0时,函数y=ax2的图象开口向下,顶点在原点,函数y=ax+b的图象经过第二、三、四象限,故选项C错误,不符合题意,选项D正确,符合题意;故选:D.【点评】本题考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和二次函数的性质解答.二、填空题(每题3分,共24分)9.在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为(2,﹣1).【分析】关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.解:在平面直角坐标系中,点A(﹣2,1)与点B关于原点对称,则点B的坐标为(2,﹣1).故答案为:(2,﹣1).【点评】本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).10.若一元二次方程x2﹣4x﹣2=0的两个实数根为m,n,则的值为﹣2.【分析】先根据根与系数的关系得到m+n=4,mn=﹣2,然后利用整体代入的方法计算.解:根据题意得m+n=4,mn=﹣2,所以原式==﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.11.已知点A(﹣3,y1)、B(﹣1,y2)、C(2,y3)在抛物线y=﹣2x2,则y1,y2,y3的大小关系是y1<y3<y2(用“<”连接).【分析】先分别计算出自变量为﹣3、﹣1和2所对应的函数值,然后比较函数值的大小即可.解:当x=﹣3时,y1=﹣2x2=﹣18;当x=﹣1时,y2=﹣2x2=﹣2;当x=2时,y3=﹣2x2=﹣8,所以y1<y3<y2.故答案为:y1<y3<y2.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.如图,在矩形ABCD中,若AB=3,AC=5,若AE=1,=.【分析】由矩形的性质得出∠ABC=90°,AD∥BC,利用勾股定理求出BC=4,利用相似三角形的性质,即可求出结果.解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∵AB=3,AC=5,∴BC==4,∵AD∥BC,∴∠EAF=∠BCF,∠AEF=∠CBF,∴△EAF∽△BCF,∴=,故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定与性质,掌握矩形的性质,勾股定理,相似三角形的判定与性质是解决问题的关键.13.如果关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,且其中一个根为另一个根的3倍,则的值为2或18.【分析】利用一元二次方程的定义及因式分解法解一元二次方程,可求出方程的两根,结合其中一个根为另一个根的3倍,即可求出的值.解:∵关于x的一元二次方程(x﹣3)(mx﹣n)=0有两个实数根,∴m≠0,且原方程的解为x1=3,x2=.当3是的3倍时,3=3×,∴=1,∴=2;当是3的3倍时,=3×3,∴=2×3×3=18.∴的值为2或18.故答案为:2或18.【点评】本题考查了因式分解法解一元二次方程以及一元二次方程的定义,利用因式分解法求出原方程的两个根是解题的关键.14.如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(2,2),一条直角边与x轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当△POA为等腰三角形时,则点B的坐标是(0,2)或(0,0)或(0,4﹣2).【分析】分三种情况:①当OA=AP时,由已知可得B(0,2);②当AP=OP时,B 与O重合,即B(0,0);③当OP=OA=2时,过P作PM⊥x轴于M,作PN⊥y 轴于N,证明△PNB≌△PMA(ASA),可得BN=AM=2﹣2,即有OB=NO﹣BN=4﹣2,故B(0,4﹣2).解:①当OA=AP时,如图:∵P的坐标为(2,2),∴此时A(2,0),∵∠APB=90°,∴B(0,2);②当AP=OP时,如图:∵P的坐标为(2,2),∴∠POA=∠PAO=45°,∴∠P=90°,∴此时B与O重合,即B(0,0);③当OP=OA=2时,过P作PM⊥x轴于M,作PN⊥y轴于N,如图:∵∠APB=90°,∴∠NPB=90°﹣∠BPM=∠MPA,∵NP=MP=2,∠PNB=∠PMA,∴△PNB≌△PMA(ASA),∴BN=AM=2﹣2,∴OB=NO﹣BN=2﹣(2﹣2)=4﹣2,∴B(0,4﹣2),综上所述,点B的坐标是(0,2)或(0,0)或(0,4﹣2).【点评】本题考查平面直角坐标系中的旋转,解题的关键是分类画出图形,讨论得到答案.15.关于抛物线y=﹣x2,给出下列说法:①物线开口向下,顶点是原点;②当x>1时,y随x的增大而减小;③当﹣1<x<2时,﹣4<y<﹣1;④若(m,p)、(n,p)是该抛物线上两点,则m+n=0.其中正确的说法有①②④.【分析】由抛物线的解析式可求得其对称轴、开口方向、顶点坐标,进一步可得出其增减性,可得出答案.解:∵y=﹣x2,∴①抛物线开口向下,顶点是原点,故①正确;②抛物线开口向下,对称轴为x=0,当x>1时,y随x的增大而减小,故②正确;③当﹣1<x<2时,﹣4<y≤0,故③错误;④若(m,p)、(n,p)是该抛物线上两点,可知这两点关于y轴对称,所以m+n=0,故④正确.所以正确的有①②④,故答案为:①②④.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).16.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E为边BC中点,连接DE交AC于点F,把线段DF绕点D顺时针旋转90°得DG,连接AG、FG,点M为线段FG的中点,连接AM、OM、BG,下列结论正确的有①③④.①FA2+FC2=FG2②AM=BG③=④【分析】由四边形ABCD是正方形,得AD=CD,∠ADC=∠BCD=90°,则∠DCA=∠DAC=45°,由旋转得DG=DF,∠GDF=90°,则∠ADG=∠CDF,即可证明△ADG≌△CDF,得AG=CF,∠DAG=∠DCF=45°,则∠FAG=90°,所以FA2+FC2=FA2+AG2=FG2,可判断①正确;作GI⊥AB交BA的延长线于点I,设AB=AD=BC=DC=2m,则BE=CE=BC=m,由勾股定理得DE=m,AC=2m,则OC=OD=OA=m,再证明△CEF∽△ADF,得===,则AG=CF=AC=m,DF=DE=m,FG=DF =m,再求得BG=m,由∠FAG=90°,点M为线段FG的中点,得AM =FM=GM=FG,可知AM≠BG,可判断②错误;因为OF=m﹣m=m,所以=,可判断③正确;连接DM,作MH⊥OA于点H,则DM=AM=FG,再证明△OMD≌△OMA,得∠DOM=∠AOM=∠AOD=45°,根据三角形的中位线定理求得HM=AG=m,则OM =HM=m,所以=,可判断④正确,于是得到问题的答案.解:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,∴∠DCA=∠DAC=45°,由旋转得DG=DF,∠GDF=90°,∴∠ADG=∠CDF=90°﹣∠ADE,∴△ADG≌△CDF(SAS),∴AG=CF,∠DAG=∠DCF=45°,∴∠FAG=90°,∴FA2+AG2=FG2,∴FA2+FC2=FG2,故①正确;作GI⊥AB交BA的延长线于点I,设AB=AD=BC=DC=2m,∵点E为边BC中点,∴BE=CE=BC=m,∴DE==m,AC==2m,∵OC=OA=AC=m,OD=OB=BD,且AC=BD,∴OC=OD=OA=m,∵CE∥AD,∴△CEF∽△ADF,∴====,∴AG=CF=AC=m,DF=DE=m,∴FG===DF=×m=m,∵∠I=90°,∠IAG=90°﹣∠DAG=45°,∴∠IGA=∠IAG=45°,∴AI=GI,∴2AI2=2GI2=AI2+GI2=AG2=(m)2=m2,∴AI=GI=m,∴BG==m,∴FG≠BG,∵∠FAG=90°,点M为线段FG的中点,∴AM=FM=GM=FG,∴AM≠BG,故②错误;∵OF=m﹣m=m,∴==,故③正确;连接DM,作MH⊥OA于点H,则DM=AM=FG,∵AD⊥BD,∴∠AOD=90°,∵OD=OA,DM=AM,OM=OM,∴△OMD≌△OMA(SSS),∴∠DOM=∠AOM=∠AOD=45°,∵∠FHM=∠FAG=90°,∴HM∥AG,∴==1,∴FH=AH,∴HM=AG=×m=m,∵∠HMO=∠HOM=45°,∴HO=HM,∴OM===HM=×m=m,∴==,故④正确,故答案为:①③④.【点评】此题重点考查正方形的性质、旋转的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例定理、相似三角形的判定与性质、三角形的中位线定理、勾股定理等知识,此题综合性强,难度较大,正确地作出所需要的辅助线是解题的关键.三、解答题:(17题8分,18题8分,19题一-24题各10分,25题12分,26题14分)17.(8分)解下列方程:(1)2x2+8x+3=0(配方法);(2)3t2﹣t﹣3=0.【分析】(1)利用解一元二次方程﹣配方法,进行计算即可解答;(2)利用解一元二次方程﹣公式法,进行计算即可解答.解:(1)2x2+8x+3=0,x2+4x+=0,x2+4x=﹣,x2+4x+4=﹣+4,(x+2)2=,x+2=±,x+2=或x+2=﹣,x1=﹣2,x2=﹣﹣2;(2)3t2﹣t﹣3=0,∵Δ=(﹣)2﹣4×3×(﹣3)=2+36=38>0,∴t=,∴t1=,t2=.【点评】本题考查了解一元二次方程﹣公式法,配方法,熟练掌握解一元二次方程的方法是解题的关键.18.(8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度,按要求作图:(1)画出△ABC关于原点O的中心对称图形△A1B1C1.(2)画出将△ABC绕点O顺时针旋转90°得到△A2B2C2.【分析】(1)根据中心对称的性质作图即可.(2)根据旋转的性质作图即可.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.【点评】本题考查作图﹣旋转变换、中心对称,熟练掌握旋转和中心对称的性质是解答本题的关键.19.如图,AD、BC相交于点P,连接AC、BD,且∠1=∠2,AC=3,CP=2,DP=1,求BD的长.【分析】先由∠1=∠2,∠APC=∠BPD,证明△APC∽△BPD,然后列比例式求出BD 的长.解:∵∠1=∠2,∠APC=∠BPD,∴△APC∽△BPD,∴=,BD===,∴BD的长为.【点评】此题考查相似三角形的判定与性质,难度不大,是很好的练习题.20.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.【分析】(1)根据方程有两个不相等的实数根可得Δ=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,求出k的取值范围;(2)首先判断出两根均小于0,然后去掉绝对值,进而得到2k+1=k2+1,结合k的取值范围解方程即可.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得:k>;(2)∵k>,∴x1+x2=﹣(2k+1)<0,又∵x1•x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1,∵|x1|+|x2|=x1•x2,∴2k+1=k2+1,∴k1=0,k2=2,又∵k>,∴k=2.【点评】此题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根;(4)x1+x2=﹣;(5)x1•x2=.21.如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=9,BC=6,求EF的长.【分析】(1)由矩形性质得AD∥BC,进而由平行线的性质得∠AEB=∠DAF,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似求AF,即可求EF.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ABE∽△DFA;(2)解:∵E是BC的中点,BC=6,∴BE=3,∵AB=9,∴AE==3,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DFA,∴=,=,AF=,∴EF=AE﹣AF=.【点评】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键是证明三角形相似.22.一块长30cm,宽12cm的矩形铁皮.(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为(30﹣2x)(12﹣2x)=144;.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请你求出裁去的左侧正方形的边长;如果不能,请说明理由.【分析】(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,根据矩形的面积公式,即可得出关于x的一元二次方程,此问得解;(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,根据矩形的面积公式,即可得出关于y的一元二次方程,解之取其较小值即可.解:(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,依题意,得:(30﹣2x)(12﹣2x)=144.故答案为:(30﹣2x)(12﹣2x)=144;(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,依题意,得:(﹣y)(12﹣2y)=104,整理,得:y2﹣21y+38=0,解得:y1=2,y2=19(不合题意,舍去),∴y=2.答:能折出底面积为104cm2的有盖盒子,正方形的边长为2cm.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,在Rt△ABC中,∠ABC=90°,点D是斜边AC的中点,连接DB,线段AE⊥线段BD交BC于点E,交DB于点G,垂足为点G.(1)求证:EB2=EG•EA;(2)联结CG,若∠CGE=∠DBC,求证:BE=CE.【分析】(1)根据相似三角形的判定与性质可得结论;(2)由直角三角形的性质得BD=AC=CD,再由相似三角形的判定与性质可得EC2=GE•EA,结合(1)的结论可得答案.【解答】证明:(1)∵AE⊥BD,∴∠BGE=90°,∵∠ABC=90°,∴∠BGE=∠ABE,∵∠BEG=∠AEB,∴△ABE∽△BGE,∴=,即EB2=EG•EA;(2)在Rt△ABC中,点D是斜边AC的中点,∴BD=AC=CD,∴∠DBC=∠DCB,∵∠CGE=∠GEC,∴∠CGE=∠DCB,∵∠GEC=∠GEC,∴△GEC∽△CEA,∴=,∴EC2=GE•EA,由(1)知EB2=EG•EA,∴EC2=EB2,∴BE=CE.【点评】此题考查的是相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质,掌握相似三角形的判定与性质是解决此题关键.24.“南国梨”素有“梨中之王”美称,主产于中国辽宁省的鞍山,某南国梨种植基地2020年种植64亩,到2022年的种植面积达到100亩.(1)求该基地这两年“南国梨”种植面积的平均增长率.(2)某超市调查发现,当“南国梨”的售价为8元/千克时,每周能售出400千克,售价每千克上涨0.5元,每周销售量减少10千克,已知该超市“南国梨”的进价为6元/千克,为了维护消费者利益,物价部门规定,该水果售价不能超过17元/千克.若使销售“南国梨”每周获利2400元,则售价应多少元/千克?【分析】(1)设该基地这两年“南国梨”种植面积的平均增长率为x,利用该南国梨种植基地2022年种植面积=该南国梨种植基地2020年种植面积×(1+该基地这两年“南国梨”种植面积的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设售价为y元/千克,则每千克的销售利润为(y﹣6)元,每周能售出(560﹣20y)千克,利用总利润=每千克的销售利润×每周的销售量,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.解:(1)设该基地这两年“南国梨”种植面积的平均增长率为x,依题意得:64(1+x)2=100,解得:x1=0.25=25%,x2=﹣2.25(不符合题意,舍去).答:该基地这两年“南国梨”种植面积的平均增长率为25%.(2)设售价为y元/千克,则每千克的销售利润为(y﹣6)元,每周能售出400﹣10×=(560﹣20y)千克,依题意得:(y﹣6)(560﹣20y)=2400,整理得:y2﹣34y+288=0,解得:y1=16,y2=18(不符合题意,舍去).答:售价应为16元/千克.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.(12分)如图,在△ABC中,AB=AC,E是线段BC上一动点(不与B、C重合),连接AE,将线段AE绕点A逆时针旋转与∠BAC相等的角度,得到线段AF,连接EF,点M和点N分别是边BC,EF的中点.(1)如图1,若∠BAC=120°,当点E是BC边的中点时,=,直线BE与MN相交所成的锐角的度数为60度.(2)如图2,若∠BAC=120°,当点E是BC边上任意一点时(不与BC重合),上述两个结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)若∠BAC=60°,AB=6,点E在直线BC上运动,=,若其它条件不变,过点C作CP∥MN,交直线EF于P,直接写出P到BC的距离2.【分析】(1)证明AC⊥EF,利用直角三角形30度角的性质证明即可;(2)结论成立.如图2中,连接AM,AN.证明△BAE∽△MAN,推出∠B=∠AMN=30°,==2,可得结论;(3)如图3中,连接AM,AN,过点P作PH⊥BC于点H.证明△BAE∽△MAN,推出==,∠AMN=∠ABE=60°,利用平行线分线段成比例定理求出PC,可得结论.解:(1)如图1中,∵AB=AC,BM=CM,∴AM⊥CB,∠BAM=∠CAM=∠BAC=60°,∵∠EAF=∠BAC=120°,∴∠CAE=∠CAF=60°,∵AE=AF,∴AC⊥EF,EN=FN,∵∠C=∠B=30°,∴EC=2MN,∠FEC=60°∴BE=2MN,直线BE与MN相交所成的锐角的度数为60°.故答案为:,60;(2)结论成立.理由:如图2中,连接AM,AN.∵AB=AC,BM=CM,∴AM⊥CM,∵∠BAC=120°,∴∠B=∠C=30°,∴∠BAM=60°,∴AB=2AM,同法可证AE=2AN,∠EAN=60°,∴∠BAM=∠EAN=60°,∴∠BAE=∠MAN,∵==2,∴△BAE∽△MAN,∴∠B=∠AMN=30°,==2,∴=,∠NMC=60°,∴直线BE与MN相交所成的锐角的度数为60°;(3)如图3中,连接AM,AN,过点P作PH⊥BC于点H.∵△ABC,△AEF都是等边三角形,BM=CM,EN=FN,∴AM⊥BC,AN⊥EF,∴==,∵∠BAM=∠EAN=30°,∴∠BAE=∠MAN,∴△BAE∽△MAN,∴==,∠AMN=∠ABE=60°,∵∠AMC=90°,∴∠NMC=30°,∵AB=6,BE:EC=1:2,∴BE=2,EC=4,∵BM=CM=3,∴EM=1,∴MN=,∵MN∥CP,∴=,∠PCH=∠NMC=30°,∴=,∴CP=4,∴PH=PC=2,∴点P到BC的距离为2.故答案为:2.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,等边三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于思考常考题型.26.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别相交于A、B两点,抛物线y=ax2经过AB的中点D.(1)直接写出抛物线解析式;(2)如图1,在直线AB上方,y轴右侧的抛物线上是否存在一点M,使S△ABM=,若存在,求出M点坐标;若不存在,请说明理由.(3)如图2,点C是OB中点,连接CD,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,请直接写出BP的长.【分析】(1)根据题意可得B(0,3),A(4,0),根据抛物线y=ax2经过AB的中点D,可得D(2,),进而可得抛物线解析式;(2)过点M作MN∥y轴交AB于点N,设M(m,m2),则N(m,﹣m+3),所以MN=m2+m﹣3,根据S△ABM=S△BMN+S△AMN=MN•OA=,列出方程求解即可解决问题;(3)根据点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,设PB′交y轴于点E,设P(x,﹣x+3),则EP=x,OE=﹣x+3,可得BE=x,根据勾股定理可得PB=x,然后根据翻折可得CB′=CB=,PB=PB′=x,根据勾股定理求出x的值,进而可以解决问题.解:(1)∵直线y=﹣x+3与x轴,y轴分别相交于A、B两点,令x=0,则y=3,∴B(0,3),令y=0,则x=4,∴A(4,0),∵抛物线y=ax2经过AB的中点D,∴D(2,),将D(2,)代入抛物线y=ax2,得a=,∴抛物线解析式为y=x2;(2)如图1,在直线AB上方,y轴右侧的抛物线上存在一点M,使S△ABM=,理由如下:过点M作MN∥y轴交AB于点N,设M(m,m2),则N(m,﹣m+3),∴MN=m2﹣(﹣m+3)=m2+m﹣3,∵S△ABM=,∴S△ABM=S△BMN+S△AMN=MN•OA=,∴(m2+m﹣3)×4=,整理得m2+2m﹣15=0,解得m1=3,m2=﹣5(舍去),∴M点坐标为(3,);(3)如图,点P是线段AB上的动点,将△BCP沿CP翻折,使点B落在点B'处,当PB'平行于x轴时,设PB′交y轴于点E,∵B(0,3),∴OB=3,设P(x,﹣x+3),则EP=x,OE=﹣x+3,∴BE=OB﹣OE=3﹣(﹣x+3)=x,∵点C是OB中点,∴OC=BC=,∴PB2=BE2+PE2=(x)2+x2=x2,∴PB=x(负值舍去),根据翻折可知:CB′=CB=,PB=PB′=x,在Rt△CB′E中,CE=OC﹣OE=﹣(﹣x+3)=x﹣,B′E=PB′﹣PE=x﹣x=x,根据勾股定理得:CE2+B′E2=CB′2,∴(x﹣)2+(x)2=()2,整理得x2﹣x=0,解得x1=,x2=0(舍去),∴PB=x=×=,答:BP的长为.【点评】本题属于二次函数综合题,主要考查了待定系数法求函数解析式,坐标系中图形的面积计算方法,轴对称的性质,勾股定理,一元二次方程,解本题的关键是判断出CD平行于x轴.。

初三数学月考1

命题人班别:座号:一、选择题(本大题共5×3分=151、关于x的一元二次方程1)1(22=-++-axxaA、1B、-1C、12A、平行四边形B、矩形3、已知△ABC中,∠C=90º,∠A=30º,BD平分∠A、是AC的中点B、在C、在AB的中点 D4、如图,等边三角形ABC的边长为4,BD平分∠点E是BC延长线上一点,CD=CE,则BDEA、、5、用配方法将二次三项式9642-+xxA、100)2(2++x B、100)2(2--x C、(x二、填空题(本大题共8小题,每小题3分,共246、关于x的方程2210ax x++=7、如图,已知∠ACB=∠BDA=900,要使△ACB≌△.8、如图,矩形ABCD的对角线AC和BD相交于点E、F,23AB BC==,9、已知实数x满足24410x x-+=,则代数式2x小三语第 1 页(共 6小三语第 2 页 (共 6 页)咸阳道北中学2012—2013九年级数学(上)第一次月考试卷命题人 李艳班别: 座号: 姓名: 评分:一、选择题(本大题共5×3分=15分.每小题给出四个答案,其中只有一个是正确). 1、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值是( ) A 、1 B 、-1 C 、1或-1 D 、212、顺次连接等腰梯形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、等腰梯形3、已知△ABC 中,∠C =90º,∠A =30º,BD 平分∠B 交AC 于点D ,则点D ( ) A 、是AC 的中点 B 、在AB 的垂直平分线上 C 、在AB 的中点 D 、不能确定4、如图,等边三角形ABC 的边长为4,BD 平分ABC ∠交AC 于点D , 点E 是BC 延长线上一点,CD=CE , 则BDE 的面积是( ) A、、5、用配方法将二次三项式9642-+x x 变形,结果为( )A 、100)2(2++xB 、100)2(2--xC 、100)2(2-+xD 、100)2(2+-x 二、填空题(本大题共8小题,每小题3分,共24分.请你把答案填在横线的上方). 6、关于x 的方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是 。

四川省自贡市九年级下学期数学第一次月考试卷

四川省自贡市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一个有理数和它的相反数的积()A . 符号必为正B . 符号必为负C . 一定不大于0D . 一定大于02. (2分) (2017八下·江津期末) 下列运算正确的是()A .B .C .D .3. (2分) (2019八下·重庆期中) 二次根式中,的取值范围是()A .B .C .D .4. (2分) (2019七下·南安期末) 在数轴上表示:﹣1≤x≤2,正确的是()A .B .C .D .5. (2分)(2019·石家庄模拟) 下列图形中,主视图为图①的是()A .B .C .D .6. (2分) (2019八下·平昌期末) 把函数与的图象画在同一个直角坐标系中,正确的是()A .B .C .D .7. (2分)在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为()A . 2B . 4C . 6D . 88. (2分)(2017·泾川模拟) 如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b 上,如果∠2=50°,那么∠1的度数为()A . 10°B . 20°C . 30°D . 40°9. (2分) (2019·广西模拟) 一次函数y=kx—k(k<o)的图象大致是()A .B .C .D .10. (2分)(2020·梁子湖模拟) 如图,分别过点Pn(n,0)(n为正整数)作x轴的垂线,交二次函数(x>0)的图象于点An ,交直线 (x>0)于点Bn ,则的值为()A .B . 2C .D .二、填空题 (共8题;共11分)11. (1分)据人民网麻城5月4日电:麻城杜鹃花开,游客蜂拥而至.今年“五一”小长假3天,麻城龟峰山风景区共迎来国内外游客21万人次,景区游人如织,呈现井喷之势,将21万这一数据用科学记数法表示为________ 人.12. (1分)已知a2+a+1=0,则1+a+a2+a3+…+a8的值为________.13. (1分) (2019七上·天等期中) 在3,4,﹣5,﹣6中,任取两个数相乘,积最大的是________.14. (2分)(2013·常州) 如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=________.15. (2分)(2019·岳阳模拟) 在等腰△ABC中底BC=2,腰AC=b ,且关于x的方程x2﹣4x+b=0有两个相等的实数根,则△ABC的周长是________.16. (1分)(2017·马龙模拟) 如图,已知在坐标平面中,矩形ABCD的顶点A(1,0),B(2,﹣2),C(6,0),D(5,2),将矩形ABCD绕点A逆时针旋转90°得到矩形AB'C'D',则点D的对应点D'的坐标是________.17. (1分)(2019·瑞安模拟) 圆心角为120°,半径为2的扇形,则这个扇形的面积为________.18. (2分) (2019八上·鄂州期末) 如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30∘,则DE的长是________.三、解答题 (共9题;共69分)19. (5分) (2016九上·温州期末) 计算:sin30°﹣tan60°tan30°+2cos230°.20. (5分)计算题(1) x2﹣3x+1=0;(2)(x+3)2=(1﹣2x)2;(3)(x﹣3)2+2x(x﹣3)=0;(4)(x+1)(x﹣2)=4.21. (5分)(2020·广陵模拟) 先化简再求值:,其中是方程的一个根.22. (10分)(2017·天桥模拟) 为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)本次问卷调查共抽查了________名学生;(2)请补全条形统计图;(3)请你估计该校约有________名学生最喜爱打篮球;(4)学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或树状图的方法,求抽到一男一女的概率.23. (2分) (2017九上·衡阳期末) 如图,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).(参考数据:sin67.4°≈ ,cos67.4°≈ ,tan67.4°≈ )24. (15分)(2017·漳州模拟) 如图,直线y1=kx+2与反比例函数y2= 的图象交于点A(m,3),与坐标轴分别交于B,C两点.(1)若y1>y2>0,求自变量x的取值范围;(2)动点P(n,0)在x轴上运动,当n为何值时,|PA﹣PC|的值最大?并求最大值.25. (2分) (2019八下·广州期中) 两张宽度均为4的矩形纸片按如图所示方式放置:(1)如图1,求证:四边形ABCD是菱形;(2)如图2,点P在BC上,PF AD于点F,若 =16 , PC=1.①求∠BAD的度数;②求DF的长.26. (10分) (2019九下·崇川月考) 矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y= (k>0)的图象与边AC交于点E。

扬州市梅岭中学九年级下第一次月考数学试卷含答案解析

2022-2023江苏省扬州市梅岭中学九年级(下)第一次月考数学试卷一、选择题(每小题3分,共24分)1.64的立方根是()A.±8 B.±4 C.8 D.42.下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.a6÷a3=a2D.(ab2)2=a2b43.图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.若等腰三角形的两边是方程x2﹣6x+8=0的两根,则此三角形的周长为()A.8 B.10 C.8或10 D.6或85.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.106.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80°C.65°D.60°7.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A.B.C.D.8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n二、填空题((每小题3分,共30分)9.单项式﹣2πa2bc的系数是.10.(3分)比例尺1:300 0000的图上,图距为4cm的实际距离约为米(科学记数法表示).11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为.13.甲、乙、丙三个同学,各有5次数学阶段考试成绩,算得每个同学5次数学成绩的平均成绩都是132分,其方差分别为S甲2=38,S乙2=10,S丙2=26,则在这三个同学中,数学成绩最稳定的是同学.14.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为.15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为cm.16.若α为锐角,且,则m的取值范围是.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).18.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.三、解答题19.计算:(﹣)﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°(2)解方程:﹣=1.20.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.21.一副风景画的长90cm,宽40cm(如图是其尺寸图),现要制作一个画框把它装入其中便于悬挂,制作的画框的四周的宽度一样,且要求风景画的面积是整个挂画面积的72%.(1)在该图基础上画出挂画的大致图;(2)求画框四周的宽度.22.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)23.(1)如图1,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.(2)已知:如图2,AB为⊙C的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.若AB=2,求PA的长.24.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率p=(其中k代表优惠金额,m代表顾客购买商品的总金额)可以很好地进行衡量,优惠率p越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为m(200≤m<400)元时,优惠率分别为与,它们与m的关系图象如图所示,其中其中p甲与m成反比例函数关系,p乙保持定值.(1)求出k甲的值,并用含m的代数式表示k乙.(2)当购买总金额m(元)在200≤m<400的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.(3)品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是m(200≤m<400)元,你认为选择哪家商场购买该商品花钱少些?请说明理由.25.为了解某校学生的体重情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:体重分组情况组别体重(kg)A x<40B 40≤x<50C 50≤x<60D 60≤x<70E x≥70根据图表提供的信息,回答下列问题:(1)样本中,男生的体重众数在组,中位数在组.(2)样本中,女生体重在E组的人数有人.(3)已知该校共有男生1600人,女生1500人,若男生体重x≥70(kg),女生体重x≥60(kg),则称为超重,请估计该校体重超重的学生约有多少人?26.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?27.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.28.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=,P1Q1=.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD 交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点P n的纵坐标为(直接用含a、b、n的代数式表示)2022-2023江苏省扬州市梅岭中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.64的立方根是()A.±8 B.±4 C.8 D.4【分析】根据开立方的方法,求出的值,即可判断出64的立方根是多少.【解答】解:∵=4,∴64的立方根是4.故选:D.2.下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.a6÷a3=a2D.(ab2)2=a2b4【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为a2•a3=a5,故本选项错误;C、应为a6÷a3=a3,故本选项错误;D、(ab2)2=a2b4,正确.故选D.3.图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、不是轴对称图形,是中心对称图形.故本选项错误.故选C.4.若等腰三角形的两边是方程x2﹣6x+8=0的两根,则此三角形的周长为()A.8 B.10 C.8或10 D.6或8【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣6x+8=0得,x1=2,x2=4;当底为2,腰为4时,4﹣2<4<4+2,能构成三角形,等腰三角形的周长为10;当底为4,腰为2时,2+2=4,不能构成三角形.故此等腰三角形的周长为10.故选B.5.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.10【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.6.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.70° B.80°C.65°D.60°【分析】首先根据平行线的性质得出∠1=∠4=140°,进而得出∠5的度数,再利用三角形内角和定理以及对顶角性质得出∠3的度数.【解答】解:∵直线l1∥l2,∠1=140°,∴∠1=∠4=140°,∴∠5=180°﹣140°=40°,∵∠2=70°,∴∠6=180°﹣70°﹣40°=70°,∵∠3=∠6,故∠3的度数是70°.故选:A.7.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【分析】由白色的小正方形有12个,能构成一个轴对称图形的有2个情况,直接利用概率公式求解即可求得答案.【解答】解:∵白色的小正方形有12个,能构成一个轴对称图形的有2个情况(第二行中第4个,还有第四行中第3个),∴使图中红色部分的图形构成一个轴对称图形的概率是: =.故选:A8.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n【分析】过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.【解答】解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A.二、填空题((每小题3分,共30分)9.单项式﹣2πa2bc的系数是﹣2π.【分析】根据单项式系数的定义来判断,单项式中数字因数叫做单项式的系数.【解答】解:根据单项式系数的定义,单项式﹣2πa2bc的系数是﹣2π,故答案为:﹣2π.10.(3分)比例尺1:300 0000的图上,图距为4cm的实际距离约为 1.2×105米(科学记数法表示).【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n是整数数位减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字,用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:设实际距离约为x厘米,∵比例尺为1:300 0000,∴4:x=1:3000000,∴x=12000000厘米=120000米=1.2×105米.故答案为:1.2×105.11.若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【解答】解:如图:∵△COD是由△AOB绕点O按逆时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.13.甲、乙、丙三个同学,各有5次数学阶段考试成绩,算得每个同学5次数学成绩的平均成绩都是132分,其方差分别为S甲2=38,S乙2=10,S丙2=26,则在这三个同学中,数学成绩最稳定的是乙同学.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2>s丙2>s乙2,∴成绩相对稳定的是乙.故答案为:乙.14.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为3.【分析】过O作OM⊥AB于M,此时线段OM的长最短,连接OA,根据垂径定理求出AM,根据勾股定理求出OM即可.【解答】解:过O作OM⊥AB于M,此时线段OM的长最短,连接OA,∵OM过O,OM⊥AB,∴AM=AB=×8=4,在Rt△AMO中,由勾股定理得:OM===3,故答案为:3.15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为6cm.【分析】利用底面周长=展开图的弧长可得.【解答】解:,解得r=6.16.若α为锐角,且,则m的取值范围是.【分析】根据余弦值的取值范围,列不等式求解.【解答】解:∵0<cosα<1,∴0<<1,解得,故答案为:.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为(结果保留根号).【分析】若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF的长度.【解答】解:∵图中两个阴影部分的面积相等,∴S扇形ADF=S△ABC,即: =×AC×BC,又∵AC=BC=1,∴AF2=,∴AF=.故答案为.18.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(3,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.三、解答题19.计算:(﹣)﹣2﹣16÷(﹣2)3+(π﹣tan60°)0﹣2cos30°(2)解方程:﹣=1.【分析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=9+2+1﹣3=9;(2)去分母得:2+x2+2x=x2﹣4,解得:x=﹣3,经检验x=﹣3是分式方程的解.20.先化简,再求值:÷(m+2﹣).其中m是方程x2+3x﹣1=0的根.【分析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x﹣1=0的根,那么m2+3m﹣1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.【解答】解:原式=÷=•==;∵m是方程x2+3x﹣1=0的根.∴m2+3m﹣1=0,即m2+3m=1,∴原式=.21.一副风景画的长90cm,宽40cm(如图是其尺寸图),现要制作一个画框把它装入其中便于悬挂,制作的画框的四周的宽度一样,且要求风景画的面积是整个挂画面积的72%.(1)在该图基础上画出挂画的大致图;(2)求画框四周的宽度.【分析】(1)根据题意画出图形即可;(2)设画框四周的宽度为xcm,则整个挂画的长为(90+2x)cm,宽为(40+2x)cm.就可以表示出整个挂画的面积,由风景画的面积是整个挂图面积的72%建立方程求出其解即可.【解答】解:(1)如图所示:(2)设画框四周的宽度为xcm,则整个挂画的长为(90+2x)cm,宽为(40+2x)cm.由题意得(90+2x)×(40+2x)72%=90×40,解得:x1=﹣70(舍去),x2=5.答:画框四周的宽度为5cm.22.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)【分析】过点A,C作出21°,45°所在的直角三角形,设出河宽,利用相应的三角函数表示出SE,BT的长,利用等量关系SC=AT,把相关数值代入即可求得河宽.【解答】解:作AS⊥PQ,CT⊥MN,垂足分别为S,T.由题意知,四边形ATCS为矩形,∴AS=CT,SC=AT.设这条河的宽度为x米.在Rt△ADS中,因为,∴.(3分)在Rt△BCT中,∵∠CBT=45°,∴BT=CT=x.(5分)∵SD+DC=AB+BT,∴,(8分)解得x=75,即这条河的宽度为75米.(10分)(其它方法相应给分)23.(1)如图1,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.(2)已知:如图2,AB为⊙C的直径,PA、PC是⊙O的切线,A、C为切点,∠BAC=30°.若AB=2,求PA的长.【分析】(1)连接AC,根据菱形的性质可得AC平分∠DAE,再根据角平分线的性质可得CE=FC;(2)由圆的切线的性质,得∠PAB=90°,结合∠BAC=30°得∠PAC=90°﹣30°=60°.由切线长定理得到PA=PC,得△PAC是等边三角形,从而可得∠P=60°;连结BC,根据直径所对的圆周角为直角,得到∠ACB=90°,结合Rt△ACB中AB=2且∠BAC=30°,得到AC=ABcos∠BAC=.最后在等边△PAC中,可得PA=AC=.【解答】证明:(1)连接AC,∵四边形ABCD为菱形,∴AC平分∠DAC,又∵CE⊥AB,CF⊥AD,∴CE=CF;解:(2)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,即∠PAB=90°.∵∠BAC=30°,∴∠PAC=90°﹣30°=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,可得△PAC是等边三角形,得∠P=60°.如图,连结BC.∵AB是直径,∠ACB=90°,∴在Rt△ACB中,AB=2,∠BAC=30°,可得AC=ABcos∠BAC=2×cos30°=.又∵△PAC是等边三角形,∴PA=AC=.24.元旦期间,甲、乙两家商场都进行了促销活动,如何才能更好地衡量钏销对消费者受益程度的大小呢?某数学小组通过合作探究发现用优惠率p=(其中k代表优惠金额,m代表顾客购买商品的总金额)可以很好地进行衡量,优惠率p越大,消费者受益程度越大;反之就越小.经统计,若顾客在甲、乙两家商场购买商品的总金额都为m(200≤m<400)元时,优惠率分别为与,它们与m的关系图象如图所示,其中其中p甲与m成反比例函数关系,p乙保持定值.(1)求出k甲的值,并用含m的代数式表示k乙.(2)当购买总金额m(元)在200≤m<400的条件下时,指出甲、乙两家商场正在采取的促销方案分别是什么.(3)品牌、质量、规格等都相同的基本种商品,在甲、乙两家商场的标价都是m(200≤m<400)元,你认为选择哪家商场购买该商品花钱少些?请说明理由.【分析】(1)把m=200,p甲=0.5代入中求得得k甲=100,然后根据p乙始终为0.4,得到,从而求得k乙的值即可;(2)当购买总金额都为m元,且在200≤m<400的条件下时,代入可得甲家商场采取的促销方案是:优惠100元;乙家商场采取的促销方案是:打6折促销.(3)根据当200≤m<400时,甲家商场需花(m﹣100)元,乙家商场需花0.6m元.然后据m﹣100=0.6m,得m=250.即当m=250时,在两家商场购买花钱一样多.从而确定哪家更优惠.【解答】解:(1)把m=200,p甲=0.5代入中,得k甲=100.由于p乙始终为0.4,即,∴k乙=0.4m.(2)由(1)及优惠率p的含义可知:当购买总金额都为m元,且在200≤m<400的条件下时,甲家商场采取的促销方案是:优惠100元;乙家商场采取的促销方案是:打6折促销.(3)由上可知,当200≤m<400时,甲家商场需花(m﹣100)元,乙家商场需花0.6m元.据m﹣100=0.6m,得m=250.即当m=250时,在两家商场购买花钱一样多.再由图象易知,当200≤m<250时,甲商场更优惠;当250<m<400时,乙商场更优惠.25.为了解某校学生的体重情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:体重分组情况组别体重(kg)A x<40B 40≤x<50C 50≤x<60D 60≤x<70E x≥70根据图表提供的信息,回答下列问题:(1)样本中,男生的体重众数在B组,中位数在C组.(2)样本中,女生体重在E组的人数有2人.(3)已知该校共有男生1600人,女生1500人,若男生体重x≥70(kg),女生体重x≥60(kg),则称为超重,请估计该校体重超重的学生约有多少人?【分析】(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.【解答】解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)×1600+(15%+5%)×1500=540(人).答:估计该校体重超重的学生约有540人.26.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是0≤x≤4;(2)d=3,m=2,n=25;(3)F出发多少秒时,正方形EFGH的面积为16cm2?【分析】(1)根据矩形的对边相等求出BC的长,然后利用路程、速度、时间的关系求解即可;(2)根据点的运动可知,当点E、F分别运动到AD、BC的中点时,正方形的面积最小,求出d、m的值,再根据开始于结束时正方形的面积最大,利用勾股定理求出BD的平方,即为最大值n;(3)过点E作EI⊥BC垂足为点I,则四边形DEIC为矩形,然后表示出EI、IF,再利用勾股定理表示出EF2,根据正方形的面积得到y与x的函数关系式,然后把y=16代入求出x的值,即可得到时间.【解答】解:(1)∵BC=AD=4,4÷1=4,∴0≤x≤4;故答案为:0≤x≤4;(2)根据题意,当点E、F分别运动到AD、BC的中点时,EF=AB最小,所以正方形EFGH的面积最小,此时,d2=9,m=4÷2=2,所以,d=3,根据勾股定理,n=BD2=AD2+AB2=42+32=25,故答案为:3,2,25;(3)如图,过点E作EI⊥BC垂足为点I.则四边形DEIC为矩形,∴EI=DC=3,CI=DE=x,∵BF=x,∴IF=4﹣2x,在Rt△EFI中,EF2=EI2+IF2=32+(4﹣2x)2,∵y是以EF为边长的正方形EFGH的面积,∴y=32+(4﹣2x)2,当y=16时,32+(4﹣2x)2=16,整理得,4x2﹣16x+9=0,解得,x1=,x2=,∵点F的速度是1cm/s,∴F出发或秒时,正方形EFGH的面积为16cm2.27.在图1、图2、图3、图4中,点P在线段BC上移动(不与B、C重合),M在BC的延长线上.(1)如图1,△ABC和△APE均为正三角形,连接CE.①求证:△ABP≌△ACE.②∠ECM的度数为60°.(2)①如图2,若四边形ABCD和四边形APEF均为正方形,连接CE.则∠ECM的度数为45°.②如图3,若五边形ABCDF和五边形APEGH均为正五边形,连接CE.则∠ECM的度数为36°.(3)如图4,n边形ABC…和n边形APE…均为正n边形,连接CE,请你探索并猜想∠ECM的度数与正多边形边数n的数量关系(用含n的式子表示∠ECM的度数),并利用图4(放大后的局部图形)证明你的结论.【分析】(1)①由△ABC与△APE均为正三角形得出相等的角与边,即可得出△ABP≌△ACE.②由△ABP≌△ACE,得出∠ACE=∠B=60°,即可得出∠ECM的度数.(2)①作EN⊥BN,交BM于点N,由△ABP≌△ACE,利用角及边的关系,得出CN=EN,即可得出∠ECM的度数.②作EN⊥BN,交BM于点N,由△ABP≌△PNE,得出角及边的关系,得出CN=EN,即可得出∠ECM的度数.(3)过E作EK∥CD,交BM于点K,由正多边形的性质可得出△ABP≌△PKE,利用角及边的关系,得出CK=KE,即△EKC是等腰三角形,根据多边形的内角即可求出∠ECM的度数.【解答】解:(1)①证明:如图1,∵△ABC与△APE均为正三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°,∴∠BAC﹣∠PAC=∠PAE﹣∠PAC即∠BAP=∠CAE,在△ABP和△ACE中,,∴△ABP≌△ACE (SAS).②∵△ABP≌△ACE,∴∠ACE=∠B=60°,∵∠ACB=60°,∠ECM=180°﹣60°﹣60°=60°.故答案为:60.(2)①如图2,作EN⊥BN,交BM于点N∵四边形ABCD和APEF均为正方形,∴AP=PE,∠B=∠ENP=90°,∴∠BAP+∠APB=∠EPM+∠APB=90°,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△ACE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠ECM=∠CEN=45°②如图3,作EN∥CD交BM于点N,∵五边形ABCDF和APEGH均为正五边方形,∴AP=PE,∠B=∠BCD,∵EN∥CD,∴∠PNE=∠BCD,∴∠B=∠PNE∵∠BAP+∠APB=∠EPM+∠APB=180°﹣∠B,即∠BAP=∠NPE,在△ABP和△PNE中,,∴△ABP≌△PNE (AAS).∴AB=PN,BP=EN,∵BP+PC=PC+CN=AB,∴BP=CN,∴CN=EN,∴∠NCE=∠NEC,∵∠CNE=∠BCD=108°,∴∠ECM=∠CEN=(180°﹣∠CNE)=×(180°﹣108°)=36°.故答案为:45,36.(3)如图4中,过E作EK∥CD,交BM于点K,∵n边形ABC…和n边形APE…为正n边形,∴AB=BC AP=PE∠ABC=∠BCD=∠APE=∵∠APK=∠ABC+∠BAP,∠APK=∠APE+∠EPK∴∠BAP=∠KPE∵EK∥CD,∴∠BCD=∠PKE∴∠ABP=∠PKE,在△ABP和△PKE中,,∴△ABP≌△PKE(AAS)∴BP=EK,AB=PK,∴BC=PK,∴BC﹣PC=PK﹣PC,∴BP=CK,∴CK=KE,∴∠KCE=∠KEC,∵∠CKE=∠BCD=∴∠ECK=.28.小明在课间用橡皮筋将两支规格相同的铅笔垂直放置在桌面上(如图).小明发现:当铅笔左右平行移动时,橡皮筋的交点到桌面的距离保持不变.于是该班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ=a,P1Q1= a.(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点P n的纵坐标为(直接用含a、b、n的代数式表示)【分析】(1)根据矩形的对角线互相平分且相等可得BP=PD,再根据在同一平面内,垂直于同一直线的两直线互相平行可得PQ∥CD,然后根据平行线分线段成比例定理列式求解即可得到PQ,同理求出P1Q1∥CD,然后求出的值,再求出的值,然后根据平行线分线段成比例定理可得=,再代入数据进行计算即可求出P1Q1;(2)先根据AB∥CD求出,然后求出,再根据在同一平面内,垂直于同一直线的两直线互相平行可得PQ∥CD,然后根据平行线分线段成比例定理可得=,代入数据进行计算即可得解;(3)根据(2)的结论依次表示出PQ、P1Q1、P2Q2…P n Q n,再根据两直线平行,同位角相等求出∠PQC=∠P1Q1C=∠P2Q2C=…∠P n Q n C=∠ABC=60°,然后利用60°角的正弦值列式计算即可得解.【解答】解:(1)∵四边形ABCD是矩形,∴BP=PD,∵PQ⊥BC,∴PQ∥CD,∴==,∴PQ=CD=a,∵P1Q1⊥BC,∴P1Q1∥CD,∴==,∴==,又∵=,∴P1Q1=a;(2)∵AB∥CD,∴==,∴=,∵AB∥CD,∠ABC=90°,PQ⊥BC,∴PQ∥CD,∴==,∴PQ=•CD=;(3)根据(2)的结论,PQ=,P1Q1==,P2Q2==,P3Q3==,…,依此类推,P n Q n=,∵AB∥CD,PQ∥CD,P1Q1∥CD,P2Q2∥CD,…,∴AB∥PQ∥P1Q1∥P2Q2∥…∥P n Q n∥CD,∴∠PQC=∠P1Q1C=∠P2Q2C=…∠P n Q n C=∠ABC=60°,∴点P1的纵坐标为:P1Q1•sin60°=×=,点P n的纵坐标为为P n Q n•sin60°=×=.故答案为:(1)a, a;(2);(3),.。

初三数学第一次月考试卷及参考答案

上述解题方法叫做换元法;请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.
21.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
①2a﹣b=0;②a+b+c>0;③c=﹣3a;④只有当a= 时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有四个.其中正确的结论是.(只填序号)
三、解答题:(本大题共8小题,共75分).
16.(8分)(1)解方程:3x(x﹣2)=2(2﹣x).(2)用配方法解方程:2x2+3x﹣1=0.
7.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()
A. B. C. D.
8.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()
13.已知二次函数y=﹣x2+2x+m的部分图象如下图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.
14.如下图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.
第13题图第14题图第15题图
15.如上图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,在下面五个结论中:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学综合练习
班级 姓名 学号 得分
一、选择题(3/×8=24/)
1、关于x的方程ax2-3x+2=x2是一元二次方程,则a的取值范围为 ( )

A、a≠0 B、a>0 C、a≠1 D、a>1
2、下列二次根式中,与3是同类二次根式的是 ( )
A、24 B、32 C、96 D、12
3、P是半径为5的⊙O内一点,且OP=3,在过点P的所有⊙O的弦中,弦长为整数的
弦的条数为 ( )
A、2 B、3 C、4 D、5
4、如图,⊙O中,如果弧AB是弧CD的2倍,那么 ( )

A、AB=2CD B、AB>2CD C、AB<2CD D、无法确定
5、如果非零实数a、b、c满足a–b+c = 0,则关于x的一元二次方程ax2+bx+c=0必有
一根为 ( )
A、x = 1 B、x = - 1 C、x = 0 D、x = 2
6、⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围是
A、3≤OM≤5 B、4≤OM≤5 C、3<OM<5 D、4<OM<5 ( )

7、已知⊙O中,AB为弦,半径OD所在直线垂直AB于C,若AB=23cm,OC=1cm,则
CD的长是 ( )
A、1cm或2cm B、3cm或2cm C、1cm或3cm D、以上答案都不对
8、如图,CD是⊙O的直径,点E在⊙O上,AE交⊙O于点B,且AB=OC,则∠EOD与∠A
之间的数量关系为 ( )

A、∠EOD=2∠A B、∠EOD=3∠A C、∠EOD=4∠A D、无法确定
二、填空题(3/×10=30/)
9、一组数据3、-1、0、4、x的极差是6,则x=

10、若代数式2221xxx的值为0,则x的值为________

B O M A 第6题 B O C A
D
第4题
E

=

O B D C
A

第8题
11、已知(a2+b2)(a2+b2+1)=6,则a2+b2=____________
12、已知等腰梯形的周长为80cm,中位线长与腰长相等,则它的中位线长等于_____cm
13、关于x的方程(k-1)x2-2kx+k+3=0有两个不相等实根,则k的取值范围是
14、三角形的两边长分别为3和5,第三边长是方程x2-6x+8=0的根,则此三角形的
面积是

15、在半径为5的圆中,弦AB∥CD,AB=6,CD=8,则AB和CD之间的距离为
16、若一个平行四边形的一边长是8,一条对角线长是6,则另一条对角线a的取值范
围是__________
17、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0有一个根为0,则m的值等


18、在半径为6cm的圆中,已知两条互相垂直的弦,其中一条被另一条分成3cm和7cm
的两段,则圆心到两弦的距离分别为_____________

三、解答题
19、计算:(4/×2=8/)

(1))0,0(4322763232baaabababa;

(2))23)(23()13(2
20、解下列一元二次方程:(5/×2=10/)
(1)x2-6x+1=0(用配方法解); (2)(2x-5)2=9(x+4)2

21、(本小题满分8分)已知
的值求22,211881xyyxxyyxxxy
22、(本小题满分10分)已知关于的方程x2-(2k+1)x+4(k-21)=0
(1)求证:无论k取何值,这个方程总有实数根;
(2)若等腰三角形ABC的一边长a=4,另两边的长b,c恰好是这个方程的两个根,求
的三角形ABC周长。

23、(本小题满分10分)已知直线y=kx+b分别与x轴、y轴交于点A(x1,0),B(0,
x2),又x1、x2是方程x2-9x+18=0的两个实数根,求该直线的关系式。

24、(本小题满分10分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,
DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,
连接CF。
(1)求证:AD⊥CF;
(2)连接AF,试判断△ACF的形状,并说明理由。
25、(本小题满分10分)商场某种新商品每件进价是40元,在试销期间发现,当每件
商品售价50元时,每天可销售500件,当每件商品售价高于50 元时,每涨价1 元,
日销售量就减少10件。据此规律,请回答:
(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是
多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,
商场日盈利可达到8000元?

26、(本小题满分8分)有这样一类题目:将2ab化简,如果你能找到两个数m、
n,使22mna并且mnb,则将2ab变成2222mnmnmn开方,从
而使得2ab化简。 例如:化简322





2
2

2

2

32212221222123221212




仿照上例化简下列各式:
(1)423 (2)526
27、(本小题满分10分)如图,△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P从点A
开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速
度移动,现在点P、Q分别从A、B同时出发。
(1)经过几秒后,使△PBQ的面积等于8 cm2 ?
(2)如果点P到B后又继续在BC边上前进,点Q到C后又继续在CA边上前进,经过
几秒后,使△PCQ的面积等于12.6 cm2 ?

28、(本小题满分12分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD
交BC于F,连接DF,G为DF中点,连接EG,CG(如图①所示)。
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,
CG。
问:(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由。
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)
中的结论是否仍然成立?(不要求证明)

F B A D C E G 第28题图① F B
A D C E G 第28题图② D F B A

C
E
第28题图③

G

A B
P

Q
C A B P Q C
参考答案
一、选择题:(3´×8=24´)
1、C 2、D 3、C 4、C 5、B 6、A 7、C 8、B
二、填空题:(3´×10=30´)

9、5或-2 10、2 11、2 12、20 13、K<23且K≠1 14、6

15、1或7 16、10<a<22 17、2 18、2和11
三、解答题:
19、(1)aab325 (4´) (2)3-23 (4´)

20、(1)x1=3+22 x2 = 3-22 (5´) (2)x1= -17 x2 = -57 (5´)
21、1 (8´)
22、(1) 证明略 (4´) (2) 12 (6´)

23、y=-2x+6 --------------5´ 或 y=-21x+3 --------------5´
24、(1)证△ACD≌△CBF
得∠BCF=∠DAC ,
再证∠AGD=900
得AD⊥CF; ----------------------------------5´
(2)等腰三角形 证AF=CF-----------------------10´
25、(1)450件,6750元----------------- ------------------4´
(2)设涨价x元,则根据题意列方程得:
(500-10x)(50+x-40)=8000 -----------------------7´
解之得:x1=60 x2=80 -------------------9´
答:(略) ------------------10´

26、(1)31 ---------------------4´ (2)23---------------------8´
27、(1)2秒或4秒---------------------5´
(2)7秒------------------------------10´
28、 (1)EG=GC----------3´
(2)成立,---------------------5´
说明理由-----------------------10´
(3)成立.-----------------------12´

相关文档
最新文档