希望杯第六届(1995年)初中二年级数学第一试试题
(2020年编辑)希望杯数学竞赛第一届至十历届四年级全部试题与答案打

教育精品资料目录1.第一届小学“希望杯”全国数学邀请赛(第1试) (2)2. 第一届小学“希望杯”全国数学邀请赛(第2试) (5)3. 第二届小学“希望杯”全国数学邀请赛(第1试) (7)4. 第二届小学“希望杯”全国数学邀请赛(第2试) (10)5. 第三届小学“希望杯”全国数学邀请赛(第1试) (13)6. 第三届小学“希望杯”全国数学邀请赛(第2试) (16)7. 第四届小学“希望杯”全国数学邀请赛(第1试) (18)8. 第四届小学“希望杯”全国数学邀请赛(第2试) (21)9. 第五届小学“希望杯”全国数学邀请赛(第1试) (23)10. 第五届小学“希望杯”全国数学邀请赛(第2试) (26)11. 第六届小学“希望杯”全国数学邀请赛(第1试) (28)12. 第六届小学“希望杯”全国数学邀请赛(第2试) (30)13. 第七届小学“希望杯”全国数学邀请赛(第1试) (32)14. 第七届小学“希望杯”全国数学邀请赛(第2试) (36)15. 第八届小学“希望杯”全国数学邀请赛(第1试) (39)16. 第八届小学“希望杯”全国数学邀请赛(第2试) (41)17. 第九届小学“希望杯”全国数学邀请赛(第1试) (44)18. 第九届小学“希望杯”全国数学邀请赛(第2试) (46)19. 第十届小学“希望杯”全国数学邀请赛(第1试) (48)20. 第十届小学“希望杯”全国数学邀请赛(第2试) (50)21.第一届---第八届“希望杯”全国数学邀请赛参考答案 (53)第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。
解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。
代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。
答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。
求△ABC的面积。
解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。
底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。
答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。
解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。
将所有项移到一边得:3x² - 12x + 11 = 0。
对方程进行因式分解得:(x - 1)(3x - 11) = 0。
由此可得x = 1 或 x = 11/3。
答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。
已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。
解:由题意可推出ABCD为平行四边形,而AE = CD。
根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。
答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。
解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。
第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2=.2.(5分)已知 a=0.5,b=,则a﹣b是的倍.3.(5分)若+++<,则自然数x的最小值为.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是时;分.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为.7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是.8.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是.(π=3)10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球个.12.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧分钟.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.2016年第十四届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题(每小题5分,共60分)1.(5分)计算:3×1.3+3÷2= 6 .【解答】解:3×1.3+3÷2=3.75×1.3+3×=0.375×13+3×=×13+3×=(13+3)×=16×=6故答案为:6.2.(5分)已知 a=0.5,b=,则a﹣b是的13 倍.【解答】解:(a﹣b)÷=(0.5﹣)÷=(﹣)÷=÷=13;故答案为:13.3.(5分)若+++<,则自然数x的最小值为 3 .【解答】解:+++<+++<<x>≈2.6因为x是自然数,所以x的最小值为3.答:自然数x的最小值为3.故答案为:3.4.(5分)定义:如果a:b=b:c,那么b称为a和c的比例中项;如1:2=2:4,则2是1和4的比例中项.已知 0.6是0.9和x的比例中项,是和y的比例中项,则x+y=0.48 .【解答】解:依据题意得:0.9:0.6=0.6:x0.9x=0.6×0.60.9x=0.36x=0.36÷0.9x=0.4;:=:yy=×y=÷y=0.08x+y=0.4+0.08=0.48.故答案为:0.48.5.(5分)A,B,C 三人单独完成一项工程所用的时间如图1所示,若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工作的时刻是9 时;57 分.【解答】解:由题意可知A的效率是,B的效率是,C的效率是,A工作27分钟,转换成小时单位是,A工作量是=,剩余工作总量为,三个人的效率和是,工作时间为:(小时),在8:27分再加上1.5小时是9:57分.故答案为:9:57.6.(5分)如图,A、B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转动,若指针指向A盘的数字是a,指针指向B盘的数字是b,则两位ab是质数的概率为35% .【解答】解:数字1开始的质数有11,13,17数字2开始的质数有23数字3开始的数字有31,37数字5开始的质数有53共计7个质数.组成两位数的情况有1开始的后面可以是1,2,3,5,7共5种.2,3,5开始的分别有5种.计算5+5+5+5=4×5=20种%=35%故答案为:35%7.(5分)在算式“×8=×5”中,不同的汉字代表不同的数字,则“”所代表的六位偶数是256410 .【解答】解:依题意可知:(+)×8=整理得:=×4992;7995与4992有公因数39,可以约分.×205=×128;此时205和128互质,说明是205的倍数,是128的倍数,根据题目要求本身要为偶数,且这六个数不可以重复.当为205的2倍时满足.故答案为:2564108.(5分)如图,在正方形ABCD中,点E在边AD上,点F在边DC上,AE =2ED,DF=3FC.则△BEF的面积与正方形ABCD的面积比值为.【解答】解:依题意可知:设正方形的边长为12.正方形的面积为12×12=144.阴影的面积为:S=144﹣(12×8+4×9+3×12)=60.△BEF的面积与正方形ABCD的面积比值为60:144化简为5:12.故答案为:.9.(5分)如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中的阴影部分面积是 4.5 .(π=3)【解答】解:见上图,根据分析可得,大等腰三角形面积为:2×(2×2)÷2=4,半圆面积为:3×(2÷2)2÷2=1.5,小等腰三角形面积为:2×(2÷2)÷2=1,弓形面积为:1.5﹣1=0.5,整体阴影面积为:4+0.5=4.5,答:图中的阴影部分面积是 4.5.故答案为:4.5.10.(5分)已知三个最简真分数的分母分别是 6,15 和 20,它们的乘积是,则在这三个最简真分数中,最大的数是.【解答】解:依题可知设这三个数分别为,因为,则abc=60.将60分解60=2×2×3×5,因为三个分数均为真分数,故c=3,a=5,b=4.所以最大是.综上所述最大分数是.故答案为:.11.(5分)将100个乒乓球放入从左到右排成一行的26个盒子中,如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15,那么最右边的盒子中有乒乓球 6 个.【解答】解:根据分析,26盒分成:26÷4=6(组)…2(个).∵任意相邻的 4 个盒子中乒乓球的个数和都是 15,所以处于位置1,5,9…25 的盒子里球的个数均为 4.最右边的盒子中有乒乓球:100﹣(15×6+4)=6(个).故答案是:612.(5分)两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与段蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧150 分钟.【解答】解:根据分析,21﹣16=5,15﹣11=4,则:两段蜡烛的比为21:16=(21×4):(16×4)=84:64;18分钟后:15:11=(15×5):(11×5)=75:55,长蜡烛燃烧了:84﹣75=9份,段蜡烛也燃烧了:64﹣55=9份,每份燃烧了:18÷9=2分钟,较长的蜡烛还能燃烧:75×2=150分钟.故答案是:150.二、解答题(每小题15分,共60分)每题都要写出推算过程.13.(15分)如图所示,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.【解答】解:(1)根据观察,图①中有12小正方体;图②有1+22个小正方体;图③有1+22+32个小正方体;图④有1+22+32+42个小正方体;图⑤有1+22+32+42+52个小正方体;图⑥有1+22+32+42+52+62=91个小正方体,故答案是:91.(2)堆积体的表面积包括:前后2面、左右2面和上下2面.图⑩中有12+22+32+42+52+62+72+82+92+102=385个小正方体,表面积为:2×(1+2+3+…+10)+2×(1+2+3+…+10)+2×10×10=420.故答案为:420.14.(15分)解方程:[x]×{x}+x=2{x}+9,其中[x]表示如x的整数部分,{x}表示x的小数部分.如[3.14]=3,{3.14}=0.14.(要求写出所有的解)【解答】解:根据分析,设x的整数部分为a,a≥1;x的小数部分为b,0≤b<1,依题意:ab+a+b=2b+9,整理得:(a﹣1)(b+1)=8,∵1≤b+1<2,∴4<a﹣1≤8,且a﹣1为整数.①当a﹣1=8,即a=9,b=0,x=9;②当a﹣1=7,a=8,b=,x=;③当a﹣1=6,即a=7,b=,x=;④当a﹣1=5,即a=6,b=,x=.综上,方程的解为:x=9;x=;x=;x=.故答案是:x=9;x=;x=;x=.15.(15分)阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的话:阿春:“大家取的糖果个数都不同”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下的糖果的”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【解答】解:(1)根据题意,阿春是第1个取糖果的,因为阿美取了剩下的全部糖果,所以阿美是最后1个取糖果的;因为阿天和阿丽不能在倒数第2的位置,否则跟最后1个的个数相同,所以阿真是倒数第2个取糖果的,所以阿真是第4个取糖果的.(2)若使这盒糖果最少,则倒数第1个人取1颗,则倒数第2个人取:1×(÷)=2(颗)1+2+(1+2)+(1+2+3)+4=3+3+6+4=16(颗)答:这盒糖果最少有16颗.16.(15分)甲、乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的 3 倍.甲乙在离山顶 150 米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【解答】解法一:在离山顶 150 米处相遇时,两人的路程差为200米,甲、乙的速度比为8:7,因此甲上山路程为×8=1600,这1600米中有50米是假设继续上山的结果,因此山底到山顶的路程=1600﹣50=1550米.解法二:设甲上山的速度是x,则下山的速度是3x.乙上山的速度是y,则下山的速度是3y,山顶到山底的距离为s.,由①得,由②得,∴,∴s=1550(米),综上所述答案为1550米.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/4/22 15:47:00;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
希望杯第4-8届六年级数学试题及答案(前3届无六年级)[1]
![希望杯第4-8届六年级数学试题及答案(前3届无六年级)[1]](https://img.taocdn.com/s3/m/5058a616650e52ea55189825.png)
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×()=________。
2.900000-9=________×99999。
3.=________。
4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。
5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。
6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A的小数点向右移动两位,得到数B。
那么B+A是B-A的________倍。
(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。
则三个面涂漆的小正方体有________块。
13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。
14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。
B的一个顶点在A的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。
希望杯竞赛数学试题详解(81-90题)

高中数学希望杯典型例题100道(81-90)题81 过正方体ABCD —A 1B 1C 1D 1的棱AB 、BC 的中点E 、F 作一个截面,使截面与底面ABCD 所成的角为450,则此截面的形状为 ( )A 、 三角形或五边形B 、三角形或六边形C 、六边形D 、三角形或四边形(第六届高一第二试第5题)解 显然,必有一个截面与棱BB 1相交,此截面是三角形.设过D 1的截面与底面所成的角为θ,易求得tan θ=tan ∠D 1GD=1322<,故θ<450,又设过A 1、C 1的截面与底面所成角为θ',则易求得tan θ'=tan ∠O 1GO=22>1,故45θ'>︒,于是另一截面应与A 1D 1、D 1C 1相交(不过其端点),形状为六边形,故选B.评析 解决此题的关键是要求具有较强的空间想象力,能够理解确定截面形状的下列方法:若截面与棱DD 1相交,则截面为五边形;若截面与棱A 1D 1、D 1C 1都相交(但不过其端点),则截面为六边形;若截面与棱A 1B 1、 B 1C 1都相交(但不过点B 1),则截面为四边形.原解答中说“为考察另一截面是否与DD 1相交,只需考虑过点D 1的截面与底面所成角θ的大小”,并在得到θ<450后,就说截面是六边形.这种理由并不充分.θ<450只能说明截面与DD 1不相交,但不能说明截面一定是六边形.事实上,当截面过A 1C 1时,截面与DD 1不相交,但截面却是四边形.拓展 根据上述解法及分析,并考虑到截面过点B 1时,截面与底面所成角为arctan 22,与截面过A 1C 1时截面与底面所成角相等,我们可得如下:结论 过正方体ABCD —A 1B 1C 1D 1的棱AB 、BC 的中点E 、F 作一个截面,使截面与底面ABCD 所成的角为θ(0<θ≤2π),则当0arctan3θ<≤时,截面的形状为三角形或五边形;当arctanarctan 3θ<<当arctan θ= 当arctan 22<θ≤2π时,截面的形状为四边形. 题82 正方体1111D C B A ABCD -中,E 为AB 的中点,F 为1CC 的中点,异面直线EF 与AB CDA 1B 1C 1D 1 O 1 OE FG1AC 所成角的余弦值是( ) A 、32 B 、322 C 、43 D 、63(第十五届高二第二试第9题)解法1 如图1,取AC 中点O ,连结OF ,则OF ∥1AC ,所以EFO ∠是EF 与1AC 所成的角,设正方体棱长为1,则21=OE ,4321412=+=OF ,23141412=++=EF,所以331cos 3EFO +-∠==,故选B. 解法 2 如图2,取正方体的面11A ABB 的中心G ,连结1GC AG 、.易证EG ∥1BB 且EG 21=1BB ,1FC ∥1BB 且1FC 21=1BB ,∴EG ∥1FC 且EG =1FC ,四边形F EGC 1为平行四边形,1GC ∥EF ,1AC G ∴∠就是EF 与1AC 所成的角.设正方体棱长为1,则易求得22=AG ,31=AC ,261=GC ,在G AC 1∆中,由余弦定理,得22211111cos 2AC GC AG AC G AC GC +-∠=⋅⋅2222⎛⎫+- ⎪==,故选B.解法3 如图3,建立空间直角坐标系.设正方体棱长为1,则⎪⎭⎫ ⎝⎛1,21,1E ,⎪⎭⎫ ⎝⎛21,1,0F ,()1,0,1A ,()0,1,01C ,所以ABCDA 1B 1C 1D 1O EF 图1ABCDA 1B 1C 1D 1GE F图2图311110,1,1,,11,,2222EF ⎛⎫⎛⎫⎛⎫=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()()()10,1,01,0,11,1,1AC =-=--,所以11111cos 3EF AC EF AC θ++⋅===⋅ ,故选B. 评析 运用几何法求异面直线所成的角,一般通过平移其中一条或两条,转化成相交直线所成的角,例如本题解法1将1AC 平移至OF ,解法2将EF 平移至1GC ,然后往往通过解三角形求此角(常常运用正弦定理、余弦定理、勾股定理及其逆定理).而用向量法求异面直线所成的角,只需利用公式ba ba b a ⋅⋅=,cos ,将几何问题转化成向量运算,一般比几何法简单.题83 多面体表面上三个或三个以上平面的公共点称为多面体的顶点,用一个平面截一个n 棱柱,()N n n ∈≥,3截去一个三棱锥,剩下的多面体顶点的数目是( )A 、12,12+-n nB 、22,12,2,12++-n n n nC 、22,12,12++-n n nD 、22,12++n n(第四届高一第二试第10题) 解法1 n 棱柱有n 2个顶点,被平面截去一个三棱锥后,可以分以下6种情形(图1~6)在图4,图6所示的情形,还剩n 2个顶点; 在图5的情形,还剩12-n 个顶点;图1 图2 图3 图4 图5 图6在图2,图3的情形,还剩12+n 个顶点; 在图1的情形,还剩下22+n 个顶点.故选B.解法2 如图1~6,令n =4,则四棱柱共有8个顶点,截去一个三棱锥后, 在图4,图6的情形,剩下8个顶点; 在图5的情形,剩下7个顶点;在图2,图3的情形,剩下9个顶点; 在图1的情形,剩下10个顶点.说明剩下的顶点数共有4种不同情形,对照选择支,可知选B.评析 解决此题的关键是搞清楚截去1个三棱锥的情形有几种,实际上是四类情形: 1、 截面不过任何顶点(如图1),此时顶点增加了2个; 2、 截面仅过1个顶点(如图2,3),此时顶点增加了1个; 3、 截面仅过2个顶点(如图4,6),此时顶点数不增不减; 4、 截面过3个顶点(如图5),此时顶点减少了1个.解法2根据这四类情形判断顶点数有4种,便选B ,更为简捷. 拓展 将此题引申,便有下面的问题:用一平面截一个n 棱柱()N n n ∈≥,4,截去一个三棱柱,剩下的多面体的顶点数是__________,面数是_____________.分析:依题意,截面只能与侧棱平行或过一条(或2条)侧棱,故共分三类情形: 1、 截面不过侧棱,此时,顶点增加了2个,面数增加了1个; 2、 截面过一条侧棱,此时,顶点数不变,面数不变;3、 截面过两条侧棱,此时,顶点减少了2个,面数减少了1个.由于已知n 棱柱的顶点数是n 2,面数是2+n ,故填22+n 或n 2或22-n ;3+n 或 2+n 或1+n .题84 在长方体1111D C B A ABCD --中,1,,()AB a BC b CC c a b c ===>>, 过1BD 的截面的面积为S ,求S 的最小值,并指出当S 取最小值时截面的位置(即指出截面与有关棱的交点的位置).(第五届高一第二试第22题)解 截面可能是矩形,可能是平行四边形.①截面111111,,D DBB A BCD D ABC 是矩形,它们的面积分别记为321,,S S S .则123S S S ===12,a b c S S >>== 12S S >,同理,23123,S S S S S >∴>>.1图1为求S 的最小值,不必考虑截面1111,A BCD D ABC .图1画出了截面11D DBB 的示意图. ②截面是平行四边形,有三种位置:S BRD Q BPD F BED 111;;(见图2、3、4),设它们的面积分别为654,,S S S .对于截面F BED 1,作1BD EH ⊥于H (如图5),则14BD EH S ⋅=,因为1BD 是定值,所以当EH 取最小值时,4S 有最小值4'S .当EH 是异面直线11,AA BD 的公垂线时,它有最小值.这个最小值是1A 到平面11D DBB 的距离,即是111Rt A B D ∆中斜边11D B 上的高22ba ab +.4S '∴=.同理,5S '=6S '=注意到2=>=22=>=45S S S''∴>>.再注意到63S S '=<=,可见6S '是S 的最小值,设截面S BRD 1的面积为6S '(见图6).1图6FA 1 图5D 1F ABC DA 1B 1C 1 图2E D 1Q AB C D A 1B 1C 1图3P C 1D 1SABC DA 1B 1图4R作11BC M B ⊥于11,C BB Rt M ∆中121BC BM BB ⋅=,可知222121cb c BC BB BM +==.在11D BC ∆所在的平面内(如图7),作MN ∥11D C ,设MN 交1BD 于N ,在B M N Rt ∆中,设α=∠MBN ,则22222222ta n cb ac cb ac b c BM MN +=+⋅+=⋅=α.在平面MN B 1内,作NR ∥M B 1,设NR 交11B A 于R ,则MN R B =1.这表明截面S BRD 1与棱11B A 的交点R 满足2221c b ac R B +=,于是点R 确定了.同理,点S 在DC 上,222c b ac DS +=,这样,截面S BRD 1完全确定.评析 破解此题需解决几个关键问题:一是截面的情形到底有几种?二是每一种情形的截面面积是多少?三是这些面积的大小关系如何确定?四是S 取最小值时截面的位置如何确定?截面情形可分为两大类(矩形与平行四边形),每一类又分3种情形,先在每类情形中分别比较3个面积的大小,再比较两类中最小面积的大小,降低了难度,减少了运算量.在两类情形中分别比较321,,S S S 及456,,S S S '''的大小时,变形技巧的运用起了关键作用.在计算4S '时两次运用转化思想:E BD 1∆的边1BD 上的高→点1A 到面D D BB 11的距离→ 点1A 到11D B 的距离.在比较3S 与6S '的大小时运用了放缩法.由于61S BD '==S 最小时,点R 到1BD 的距离应是22cb bc +,而在11B BC ∆中作11BC M B ⊥,则有221cb bc M B +=.因此作MN ∥11,C D MN 交1BD 于N ,作NR ∥NR M B ,1交11B A 于R ,则221cb bc M B RN +==.由于⊥M B 1面11D BC ,所以⊥RN 面111,BD RN D BC ⊥∴,故作出的R 就是S 最小时的R .此题综合运用了分类讨论思想,化归转换思想,变形技巧,放缩法等,需要有较强的分析问C 1MBCDA 1B 1图7RAND 1题与解决问题的能力才能作出正确的解答.题85 从凸四边形ABCD 的对角线交点O 作该四边形所在平面的垂线段SO ,使3SO =,若22,S AOD S BOC V a V b --==.当S ABCD V -最小时,ABCD 的形状是____.(第十四届高二培训题第67题)解 由已知,易得2AOD S a ∆=,2BOC S b ∆=.设AOB S x ∆=,COD S y ∆=(如图),则22S ABCD V a b x y -=+++.因为22A O D C O DA OB B OC S S a DO yx S OB S b∆∆∆∆====,所以22xy a b =.而2x y ab +≥=(设0,0a b >>),于是,222()a b x y a b +++≥+,当x y a b==时取等号,这时2AOD DOC S AO a aOC S y b∆∆===.同理,D O a O B b =,所以,AO OD OC OB =,即A O D OO C O B =,所以//AD BC .当x y ab ==时,2A O D DOC S AO a a OC S y b ∆∆===,2BOC DOC S BO b bOD S y a∆∆===. (1)当a b b a =,即22a b =,AOD COD S S ∆∆=时, AO BO OC OD =,所以//AB CD .此时,ABCD 的形状是平行四边形.(2)当a b b a ≠,即22a b ≠,AOD COD S S ∆∆≠时,AO BOOC OD≠,所以AB 与CD 不平行.此时,ABCD 是梯形,综上可知,当22a b =时,ABCD 是平行四边形,当22a b ≠时,ABCD 是梯形.评析 ABCD 的形状只能由已知条件推出,形状也无非是由边与角的关系决定,因此,充分利用已知条件,将其转化为四边形的边或角的关系是解题的关键.由于高为3,故V 最小时,底面ABCD 的面积最小,由于2a 与2b 为定值,故设AOB S x ∆=,COD S y ∆=,则x y +最小,为,此时,x y ab ==,这就为证得//AD BC 奠定了基础.此后便是判断AB 与CD 是否平行了,而这取决于2a 与2b 是否相等,故分类讨论,终得ABCD 为平行四边形或梯形.从另一角度看,ABCD 的形状无非是平行四边形,梯形,菱形,矩形,正方形等中的一种或几种,而每一种形状总有一组对边平行,故首先应想到证一组对边平行,也就是证对角线交点xBD 2bSAOy2a把两条对角线分成的4条线段对应成比例.题86 正三棱柱ABC —A 1B 1C 1底面的边长和高都是2cm ,过AB 作一个截面,截面与底面ABC 成600角,则截面的面积是 .(第六届高一第一试第30题)解法1 如图1,截面ABEF 是等腰梯形,D 、D 1分别为AB 、EF 的中点,则∠D 1DC 就是截面与底面ABC 所成二面角的平面角,所以∠D 1DC=600.易证面DC C 1 D 1⊥面ABC ,作D 1M ⊥DC 于M ,则D 1M ⊥面ABC ,D 1M=CC 1=2,D 1D= D 1Mcsc600=34,DM=D 1Mcot600=32,,11CDDMCD CD CM B A EF -==3223323=⋅-=EF ,∴S 截面=21()).2EF AB DD cm +==解法2 如图2,设截面与侧棱CC 1所在直线交于点D ,则)(3260cos 2cm S S ABC ABD ==∆∆,在Rt △CDM 中, ∠DMC=600,DC=3(),cot 60CMcm == 1321(),C D cm ∴=-=又91)31()()(2212====∆∆DC DC DM DR S S DAB DEF , ∴S △DEF =91S △DAB =932cm 2,故S 截面=S △DAB - S △DEF =-32 932=)(93162cm . 评析 此题源于课本上的一道习题:“正三棱柱底面的边长是4cm ,过BC 作一个平面与底面成300的二面角,交侧棱AA ’于D ,求AD 的长和截面△BCD 的面积”.两者的区别在于竞赛题中的截面与上底面相交,而课本习题中的截面与侧棱相交.稍不注意,就会将本赛题错解为ACB EF DMB 1A 1 C 1 图1 D 1 ACB EFDMB 1A 1C 1图2R20)cos60ABC S S cm ∆==截面.事实上,cos ∠CMC 1=1CM C M =2=12=>,∴∠CMC 1<600,因此截面为梯形,而不是三角形. 拓展 将课本习题与本赛题结合起来,并将其一般化,我们便得定理 若正三棱柱ABC —A 1B 1C 1的底面边长为a ,高为h ,过AB 作与三棱柱底面所成角为θ的截面,则截面的面积S=2sec (cos ).csc cot )(cos )3h h θθθθθ≥⎪-<⎩证明留给读者.运用该定理解本赛题:1cos cos602θ=︒=,22343a h a +=2173>,cos θ∴<S 截面=)(9316)60cot 232(60csc 231200cm =-⋅⋅. 题87 如图,正三棱柱ABC —A 1B 1C 1的所有棱长都相等,D 是AA 1的中点,则BC 1与CD 所成的角是 ,面BCD 与面CDB 1所成二面角等于 .(第十一届高二第一试第22题)解法1 如图1,由已知,易证DB 1在面BCC 1 B 1内的射影为B 1E ,因为正三棱柱的所有棱长都相等,所以B 1C ⊥BC 1,由三垂线定理得B C 1⊥DB 1,所以B C 1⊥面DCB 1,所以BC 1⊥CD ,故BC 1与CD 所成的角是900.过E 作EF ⊥DC 于F ,连结FB ,则BF 在面DCB 1内的射影为EF ,由三垂线定理得DC ⊥BF ,所以∠EFB 就是二面角B 1—DC —B 的平面角.设正三棱柱的各棱长为2,则BE=2,DB=DC=5,从而易求得△BCD 的BC 边上的高为2,由215BF=21×2×2, F图1AC BEDB 1A 1C 1 AC EDB 1A 1C 1得 BF=54,在Rt △BEF 中,410542sin ===∠BF BE EFB ,∴410arcsin=∠EFB 为所求. 解法2 取BC 的中点M ,以M 为原点,建立如图2空间直角坐标系.不妨设正三棱柱的各棱长为2,则B (0,1,0),C 1(0,-1,2),C (0,-1,0),D (3,0,1),所以1BC =(0,-2,2),CD =(3,1,1),所以1BC CD ⋅ =(0,-2,2)⋅(3,1,1)=0,所以1BC CD ⊥, 所以BC 1与CD 所成的角是900.过E 作EF ⊥DC 于F ,连结FB.设F (x, y, z ),因为E (0,0,1)所以EF=(x, y, z-1).由0EF CD ⋅= ,得3x+y+z-1=0①,因为BF =(x, y-1, z ),所以(,1,)BF CD x y z ⋅=-⋅10y z =+-+=,所以BF ⊥DC ,所以∠EFB 就是面BCD 与面CDB 1所成二面角的平面角.因为C(0,-1,0), D(3,0,1), F (x, y, z )三点共线,所以011)1(00033--=---=--z y x ,得到x=3z ②,y=z-1③,解①②③得到x=532,y=52,53=-z ,所以BF =(532,52,58-),EF =(532,53,53--),所以65BF EF ⋅= ,|BF |=554,|EF |=530,所以cos ∠EFB=||||EF BF EF BF ⋅⋅=46,所以∠EFB=arccos 46,即∠EFB=arcsin410. 评析 异面直线BC 1与CD 所成的角也可以通过补形、平移,转化成相交直线所成的角,再通过解三角形求得,但比较繁.解法1的关键是从已知图形中发现D 在面BCC 1 B 1上的射影为E ,从而DB 1在面BCC 1 B 1上的射影为B 1E,由B 1C ⊥BC 1及三垂线定理得B C 1⊥DB 1,进而B C 1⊥面DCB 1,所以BC 1⊥CD.求二面角的关键是作出二面角的平面角.当二面角的两个面内各一点的连线垂直于其中一个面时,由其任一点作二面角棱的垂线,再连结垂足与另一个面内的一点,图2C C 1根据三垂线定理或其逆定理,就得到二面角的平面角,这是作二面角的平面角的最常用方法之一.运用空间向量求异面直线所成的角通常是非常简单的,此题也一样.用空间向量求二面角就不是那么的简单了.这里,作EF ⊥DC 于F ,设F 的坐标后,得0EF CD ⋅=及D 、F 、C 三点共线,得关于F 坐标的方程组,解得F 坐标后由cos ∠EFB=||||EF BF EF BF ⋅⋅ ,求得∠EFB.这体现了用空间向量求二面角的基本过程,当然作EF ⊥DC 于F 后,如果0BF CD ⋅≠,即BF 与DC 不垂直,∠EFB 就不是此二面角的平面角,此时就应另行思考.题88 如图1,设111C B A ABC -是直三棱柱,AC AB =,090=∠BAC ,Q M ,分别是1CC ,BC 的中点.P 点在11B A 上且2:1:11=PB P A .如果AB AA =1,则AM 与PQ 所成的角等于 ( )A 、090 B 、31arccos C 、060 D 、030(第十三届高二第一试第5题)解法1 如图2,取AC 中点N,可知QN ∥BA ∥11A B ,从而N Q B A ,,,11共面,且PQ 在此平面内.111ABC A B C - 是直三棱柱,1BA A A ∴⊥,又090=∠BAC ,即AC BA ⊥,BA ∴⊥面11ACC A ,AM BA ⊥∴,AM QN ⊥.又11ACC A 是正方形,N M ,分别是1CC ,AC 的中点,AM N A ⊥∴1.AM ∴⊥平面QN B A 11.⊂PQ 平面QN B A 11,PQ AM ⊥∴.故选A.解法2 不妨设61===AA AC AB .则21=P A .如图3,在已知三棱柱下方补一个与其同样的三棱柱ABCA 1B 1C 1PM图1NA B C A 1B 1C 1PQ M图2A 1图3N ABCB 1C 1P QMA 2B 2C 2Q 2 N 2R 2R222C B A ABC -.取AC 的中点N ,连结QN ,在QN 上取一点R ,使21==PA QR ,则易证四边形PQR A 1为平行四边形.所以R A 1∥PQ .取22C B 、22C A 的中点22N Q 、,连结22N Q ,在22N Q 上取点2R ,使222Q R =,连结2AR ,则易证2AR ∥R A 1∥PQ ,所以2MAR ∠(或其补角)就是AM 与PQ 所成的角.连结2MR .易求得53=AM ,462=AR ,912=MR .因为22222AM AR MR +=,所以0290MAR ∠=.故选A.解法3 因为()()1111AM PQ AC CM PB B B BQ AC PB AC B B AC ⋅=+⋅++=⋅+⋅+⋅11111100cos 45022BQ CM PB CM B B CM BQ AC BC CC B B +⋅+⋅+⋅=++⋅⋅++⋅2011cos18000222AC AC +=⋅-=,所以AM PQ ⊥ ,即AM 与PQ 所成的角为090,故选A.解法4 以A 为坐标原点,以AB 所在直线为ox 轴,以AC 所在直线为oy 轴,以A A 1所在直线为oz 轴,建立空间直角坐标系.(如图4)设a AC AB AA ===1,则()0,0,0A ,⎪⎭⎫ ⎝⎛2,,0a a M ,⎪⎭⎫ ⎝⎛a a P ,0,3,⎪⎭⎫⎝⎛0,2,2a a Q .所以0,,2a A M a ⎛⎫= ⎪⎝⎭ ,,,62a a PQ a ⎛⎫=- ⎪⎝⎭, 因为0,,,,0262a a a AM PQ a a ⎛⎫⎛⎫⋅=⋅-= ⎪ ⎪⎝⎭⎝⎭,所以AM PQ ⊥ ,故AM 与PQ 所成的角等于090.选A.评析 异面直线所成的角通常是通过平移转化成相交直线所成的角以后再求.解法2就是按照这样的思路并运用“补形”的方法,将PQ 平移至2AR ,再通过解三角形求得2MAR ∠即为所求.解法1通过证明AM 与PQ 所在的一个平面垂直,由线面垂直的性质,得PQ AM ⊥,从图4而得AM 与PQ 所成的角为090.这是从哪里想到的呢?应当说这是由选择支中有090而引发的一种思考.解法3、4则是运用向量的方法.解法3并未建立坐标系,一般地,这仅适用于结果是两向量垂直的情形.解法4才是通法,且简单易行.拓展 受解法1、3的启发,可知在题设条件下,AM 与Q B 1、Q A 1等也都成090角.若R 是Q B 1的中点,则AM 与R A 1、PR 等也成090角;若T 是Q A 1的一个三等分点,则AM 与T B 1、PT 等仍成090角,等等.仿照证法1、3,很容易证明上述结论.题89 在三棱锥ABC S -中,SA ,SB ,SC 两两垂直,则BAC ∠ ( ) A 、一定是锐角 B 、一定不是锐角 C 、一定是钝角 D 、一定是直角(第八届高二培训题第3题)解法1 设a SA =,b SB =,c SC =,则=⋅-+=∠AC AB BC AC AB BAC 2cos 22222222222222)()()(c a b a c b c a b a +⋅++-+++ 0))((22222>++=c a b a a ,故)2,0(π∈∠BAC ,选A .解法2 不妨设=SA =SB SC ,则易证=AB =BC CA ,即ABC ∆是正三角形,故BAC ∠是锐角.这说明B 、C 、D 一定错了.故选A .评析 判断一个角是锐角、直角或钝角,通常由此角的某三角函数值的符号确定.由于),0(π∈∠BAC ,若0sin >∠BAC ,则仍不能确定BAC ∠是锐角、直角还是钝角,而当0cos >∠BAC 或者0tan >∠BAC 时就可断定BAC ∠是锐角,同样地,当0cos <∠BAC 或0tan <∠BAC 时,就可断定BAC ∠是钝角,当0cos =∠BAC 或BAC ∠tan 的值不存在时,就可断定BAC ∠是直角.解法1以此为依据解决了问题.解法2根据选择支的特点,采用特殊化思想,排除了B 、C 、D ,从而选A .显得特别简捷. 此题也可用反证法的思路解:设a SA =,b SB =,c SC =.若BAC ∠是直角,则222BC AC AB =+,即222222c b c a b a +=+++.得0=a ,这与0>a 矛盾,故排除D .若BAC ∠是钝角,则必定有AB BC >,且AC BC >,即2222b a c b +>+且2222c a c b +>+,亦即c a <且b a <,而题设并无a 、b 、c 的大小限制,故排除C ,令=SA =SB SC ,则易知ABC ∆是正三角形,故BAC ∠为锐角,又排除B .故选A .再换个角度思考:若C 对或D 对,则B 也对,故C 、D 都不对.又由直觉可知BAC ∠可以为锐角(比如当=SA =SB SC时)故B 又不对,从而选A .题90 图1是以4个腰长为1的等腰直角三角形为侧面的棱锥,其中的四个直角是,,,PBC APB APD ∠∠∠ PDC ∠,求棱锥的高.(第十届高一第二试第22题)解法1 如图2,连AC BD ,交于O ,连PO ,在A P B ∆和APD ∆中,由于90,A P B A P D ∠=∠=1,1,P A P D P B P A ====A P B ∆∴≌APD ∆,从而2==AD AB ,并且PAD PAB ∠=∠①.同理,由题设1,1====DP CD BP CB ,可得CD CB =,并且P C B P C D ∠=∠②.由①、②知A P C ,,都在BD 的中垂面上,∴作⊥PH 面ABCD,则H必在AC上.设z OH y BO x PO h PH ====,,,,则可得2221,x y PB +== 222222222222222222221,1,,2(),2().CO y CB AH PA PH h x z h AB BO OA y z AH CP PH CH h CO z +===-=-=+==+=++==+=++从中消去CO 与z ,可得22222211h x x h h x -=--=--+,由此消去x ,得01324=+-h h ,解之,得215-=h 为所求. 解法2 如图2,连BD AC ,交于O ,连PO ,由题设条件易知⊥AP 面⊥BD PBD ,面PAC ,所以CO PO PO AP =⊥,(POB Rt ∆≌COB Rt ∆).作AC PH ⊥于H ,则h PH =为棱锥的高,PCO APH POA ∠=∠=∠2.又cos sin APH PAH h∠=∠=,故212cos 1s in h A P H P C O -=∠-=∠,在APC ∆中,由正弦定理,得PAH PCPCO PA ∠=∠sin sin ,即01,22112=-+=-h h h h ,得215-=h (另一负值舍去)为所求.解法3 如图2,易证APC ∆≌CDA ∆(三边对应相等),⊥BD 面APC ,设所求的高为h ,由CDA P APC D V V --=,即h S DO S CDA APC ⋅=⋅∆∆3131,得h DO =,在A P ORt ∆中,21h AH -=,又OAPH ⊥,故AHOH h ⋅=2,得)(,12222AH OH OH OC PO hh OH +==-=,得2221hh OC -=,在COD Rt ∆中有,222DO OC CD +=,于是22211h h h +-=,即42310,h h -+=解得h =为所求.解法4 原题等价于命题:“已知ABCD 中,2,1==AD AB .沿对角线AC 折成直二面角D AC B --(图4),且1=BD ,求点B 到平面ACD 的距离”.在图4中,分别过D B ,作AC 的垂线DF BE ,,F E ,分别为垂足.设α=∠BAC ,则,sin α==DF BE αcos =AE ;又设β=∠DAC ,作B G A D ⊥于G ,连结EG ,则E G A D ⊥.所以c o s c o s c os A G A E A G BAD AB AB AEαβ∠==⋅=,得βαc o s c o s 45cos 0⋅=,于是αβcos 2cos =,故1cos cos AF AD βα==.由异面直线上两点距离公式得2222EF DF BE BD ++=,得22112sin (cos )cos ααα=+-ααα242s in1s i ns in2-+=,01sin 3sin 24=+-αα,得215s i n,215s i n -=⋅=∴-=ααAB BE 为所求. 评析 这是本届比赛的压轴题,看似简单,实际上并不容易.解决此题的关键是要发现四面体PACB 与PACD 关于平面PAC 对称,PAC ∆与DAC ∆全等,并充分利用对称与全等的性质,再借助其他定理,建立数学模型使问题得到解决.其中解法1引进了多个未知量铺路搭桥,并逐个消去得所求,这是一种常用的数学方法,用F A BCGDE图4起来自然流畅.把三棱锥不同的面当作底面,所得体积总相等,由此,可求点面距离(或棱锥的高).解法3以此轻松地解决了问题.这也是求点面距离或棱锥高的常用方法.受解法3的启示,解法4将问题转化为一个等价的较易解决的命题后再行处理,这也是化难为易的常用手段.此题还有多种解法,读者可自行研究,不再赘述.。
历届1-15希望杯数学竞赛初一整理

希望杯第一届(1990年)初中一年级第一试试题 (1)希望杯第一届(1990年)初中一年级第二试试题 (8)希望杯第二届(1991年)初中一年级第一试试题 (15)希望杯第二届(1991年)初中一年级第二试试题 (21)希望杯第三届(1992年)初中一年级第一试试题 (27)希望杯第三届(1992年)初中一年级第二试试题 (31)希望杯第四届(1993年)初中一年级第一试试题 (42)希望杯第四届(1993年)初中一年级第二试试题 (49)希望杯第五届(1994年)初中一年级第一试试题 (57)希望杯第五届(1994年)初中一年级第二试试题 (63)希望杯第六届(1995年)初中一年级第一试试题 (69)希望杯第六届(1995年)初中一年级第二试试题 (75)希望杯第七届(1996年)初中一年级第一试试题 (85)希望杯第七届(1996年)初中一年级第二试试题 (91)希望杯第八届(1997年)初中一年级第一试试题 (99)希望杯第八届(1997年)初中一年级第二试试题 (106)希望杯第九届(1998年)初中一年级第一试试题 (115)希望杯第九届(1998年)初中一年级第二试试题 (123)希望杯第十届(1999年)初中一年级第二试试题 (131)希望杯第十届(1999年)初中一年级第一试试题 (138)希望杯第十一届(2000年)初中一年级第一试试题 (142)希望杯第十一届(2000年)初中一年级第二试试题 (148)希望杯第十二届(2001年)初中一年级第一试试题 (151)希望杯第十二届(2001年)初中一年级第二试试题 (154)希望杯第十三届(2002年)初中一年级第一试试题 (158)希望杯第十三届(2001年)初中一年级第二试试题 (161)希望杯第十四届(2003年)初中一年级第一试试题 (166)希望杯第十四届(2003年)初中一年级第二试试题 (169)希望杯第十五届(2004年)初中一年级第一试试题 (173)希望杯第十五届(2004年)初中一年级第二试试题 (176)希望杯第一届(1990年)初中一年级第一试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x 2,2x 2,x 3都是单项式.两个单项式x 3,x 2之和为x 3+x 2是多项式,排除A .两个单项式x 2,2x 2之和为3x 2是单项式,排除B .两个多项式x 3+x 2与x 3-x 2之和为2x 3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a³(1-10%)=0.9a;第三天杯中水量为(0.9a)³(1+10%)=0.9³1.1³a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)³(19891990-19891989) =(19891990+19891989)³1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60³30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60³30%=(0.001x)³40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第二试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1²2²3²5 ∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a²0+bm-c²0²m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4²8)=480(公里),因此,乙车行驶的路程一共是2(60²8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第一试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)³12468; D.(-13579)÷124686.3.1416³7.5944+3.1416³(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( ) A.-1120; B.-413; C.-316; D.-617. 9.方程甲:34(x-4)=3x 与方程乙:x-4=4x 同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c 的大小关系是( ) A.111a b c >>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b.11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116.15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( )A.%2p q +;B.()%mp nq +;C.()%mp nq p q ++;D.()%mp nq m n++. 二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)³(-1)÷(-1)=______.2.计算:-32÷6³16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7³0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
2001“希望杯”数学邀请赛初二试题第一试
2001“希望杯”数学邀请赛初二试题第一试一、选择题.1.设x= 则x ,y 的大小关系是( ). (A)x >y (B)x=y (C)x <y (D)无法确定2.代数式的最小值是( ). (A)0 (C)1 (D)不存在的 3.设b≠c ,且满足 的值( ).(A)大于零 (B)等于零 (C)小于零 (D)的正负号不确定4.设 ,其中x 为任意实数,则y 的取值范围是( ).(A)一切实数 (B)一切正实数 (C)一切大于或等于5的实数 (D)一切大于或等于2的实数5.已知点D 在线段EF 上,下列四个等式:①DE =2DF ,②DE = EF ,③EF =2DF ,④DF = DE ,其中能表示:点D 是线段EF 的一个三等分点的表达式是( ). (A)①②③ (B)②③④ (C)①②④ (D)①③④6.已知△ABC 中,∠B =60,∠C >∠A , ,则△ABC 的形状是( ).(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)直角或钝角三角形 7.凸n 边形中有且仅有两个内角为钝角,则n 的最大值是( ). (A)4 (B)5 (C)6 (D)78.如图,ABCD 是边长为l 的正方形,EFGH 是内接于ABCD 的正方形,AE=a,AF=b ,若32=EFGH S ,则 等于( ).22)(A 32)(B 23)(C33)(D 9.某工厂生产的灯泡中有 是次品,实际检查时,只发现其中的54被剔除,另发现有201的正品也被误以为是次品而剔除,其余的灯泡全部上市出售,那么该工厂出售的灯泡中次品所占的百分率是( ).(A)4% (B)5% (C)6.25% (D)7.25%10.在正常情况下,一个司机每天驾车行驶t 小时,且平均速度为V 千米/小时,若他一天内多行驶l 小时,平均速度比平时快5千米/小时,则比平时多行驶70千米,若他一天内少行驶1小时,平均速度比平时慢5千米/小时,他将比平时少行驶( ). (A)60千米 (B)70千米 (C)75千米 (D)80千米,19992000,20002001-=-y 21++-+x x x 21)(+B cb ba c a cb b ---=-+-+则,)(2))(13(α5884234+-+-=x x x x y 3121+∠=∠22)()(A C 2)(B ∠||a b -51二、A 组填空题。
2023年第二十二届希望杯数学竞赛一试试题
第二十二届“希望杯”全国数学邀请赛初二 第一试2023年3月13日 上午8:30至10:00 得分一、选择题(每小题4分,共40分。
)以下每题的四个选项中,仅有一个是对的的,请将对的答案前的英文字母写在下面的表格内。
1、 将a 公斤含盐10﹪的盐水配制成含盐15﹪的盐水,需加盐x 公斤,则由此可列出方程( )(A )()()().0015100101-+=-x a a (B )().00150010•+=•x a a(C ).00150010•=+•a x a (D )()().0015100101-=-x a 2、一辆汽车从A 地匀速驶往B 地,假如汽车行驶的速度增长a ﹪,则所用的时间减少b ﹪,则a 、b 的关系是( ) (A )001100a a b +=(B )001100a b += (C )a a b +=1 (D )a a b +=100100 3、当1≥x 时,不等式211--≥-++x m x x 恒成立,那么实数m 的最大值是( ) (A )1. (B )2。
(C )3。
(D )4。
4、在平面直角坐标系中,横、纵坐标都是整数的点称为整点,已知k 为整数,若函数12-=x y 与k kx y +=的图象的交点是整点,则k 的值有( )个(A )2. (B )3。
(C )4。
(D )5。
5、(英语意译)已知整数x 满足不等式6122≤-≤x ,则x 的值是( ) (A )8. (B )5。
(C )2。
(D )0。
6、若三角形的三条边的长分别为a 、b 、c ,且.03222=-+-b c b c a b a 则这个三角形一定是( )(A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )等腰直角三角形7、如图1,点C 在线段BG 上,四边形ABCD 点E 和F ,假如AE=5,EF=3,则FG=( ) (A )316。
(B )38。
(C )4。
(D )5。
钟表上的追及问题
解:5*10*15*20*2=30000=>X=0此数能被99整除=>2+43+29+02+8Y+76+64是99的倍数=>Y=1钟表上的追及问题一个n(n ≥2)位正整数M 中的相邻的一个、两个、...(n-1)个数码组成的数叫的片段数(新课标提倡,数学走进生活,教科书中出现了与日常生活密切相关的钟表问题。
例如:在3点和4点之间的哪个时刻,钟表的时针与分针:(1)重合;(2)成平角;(3)成直角。
许多同学面对此题,束手无策,不知如何解决。
实际上,因为分针旋转的速度快,时针旋转的速度慢,而旋转的方向却是一致的。
因此上面这类问题也可看做追及问题。
通常有以下两种解法:一.格数法钟表面的外周长被分为60个“分格”,时针1小时走5个分格,所以时针一分钟转112分格,分针一分钟转1个分格。
因此可以利用时针与分针旋转的“分格”数来解决这个问题。
解析(1)设3点x 分时,时针与分针重合,则分针走x 个分格,时针走x12个分格。
因为在3点这一时刻,时针在分针前15分格处,所以当分针与时针在3点与4点之间重合时,分针比时针多走15个分格,于是得方程x x -=1215,解得x =16411。
所以3点16411分时,时针与分针重合。
(2)设3点x 分时,时针与分针成平角。
因为在3点这一时刻,时针在分针前15分格处,而在3点到4点之间,时针与分针成一平角时,分针在时针前30分格处,此时分针比时针多走了45分格,于是得方程x x -=1245,解得x =49111。
所以3点49111分时,时针与分针成平角。
(3)设3点x 分时,时针与分针成直角。
此时分针在时针前15分格处,所以在3点到4点之间,时针与分针成直角时,分针比时针多走了30分格,于是得方程x x -=1230,解得x =32811。
所以3点32811分时,时针与分针成直角。
二.度数法对钟表而言,时针12小时旋转一圈,分针1小时旋转一圈,转过的角度都是360°,所以时针1分钟转过的角度是0.5°,分针1分钟转过的角度是6°。
历届希望杯试题
第四届小学“希望杯”全国数学邀请赛六年级第1试以下每题5分,共120分。
1.2006×2008×()=________。
2.900000-9=________×99999。
3.=________。
4.如果a=,b=,c=,那么a,b,c中最大的是________,最小的是________。
5.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。
6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A的小数点向右移动两位,得到数B。
那么B+A是B-A的________倍。
(结果写成分数形式)10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l的小正方体。
则三个面涂漆的小正方体有________块。
13.如图,∠AOB的顶点0在直线l上,已知图中所有小于平角的角之和是400度,则∠AOB=________度。
14.如图,桌面上有A、B、C三个正方形,边长分别为6,8,10。
B的一个顶点在A 的中心处,C的一个顶点在B的中心处,这三个正方形最多能盖住的面积是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六届(1995年)初中二年级第一试试题一、选择题:1.下列五个数:3.1416,1,ππ,3.14,1π-,其中是有理数的有[ ]A.0个B.1个C.2个D.3个2.-18的平方的立方根是[ ]A.4;B.18; C.-14; D.14.3.适合不等式2x-1>-3x+14≥4x-21的x的值的范围是 [ ] A.x>3. B.x≤5. C.3<x≤5 D.3≤x<54.已知a是非零实数,则2323a a aa a a++的值是[ ]A.3或 1 B.3或1. C.3或1 D.3或 15.若a,b,c为三角形的三条边长,则(a+b+c)+│a-b-c│-│b-c-a│+│c-b-a│=[ ] A.2(a-b-c) B.2(b-a-c). C.2(c-a-b) D.2(a+b-c)6.如图19,已知△ABC中,∠B的平分线与∠C的外角平分线相交于D,∠D=40°,则∠A= [ ] A.50°B.60°. C.70°D.80°7.已知实数a、b满足条件a2+b2+a2b2=4ab-1,则[ ]A.11ab=⎧⎨=⎩; B.11ab=⎧⎨=⎩或11ab=-⎧⎨=-⎩; C.11ab=-⎧⎨=⎩或11ab=⎧⎨=-⎩; D.11ab=⎧⎨=-⎩.8.某项工程,甲单独做需a天,在甲做了c天(c<a=后,剩下工作由乙单独完成还需b 天,若开始就由甲、乙两人共同合做,则完成任务需[ ]天A.ca b+; B.aba b c+-; C.2a b c+-; D.bca b c++.9.如图20,在△ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB·PC的值为[ ]A.m2. B.m2+1. C.2m2. D.(m+1)2.10.如图21,△ABC的面积为18cm2,点D、E、F分别位于AB、BC、CA上.且AD=4cm,DB=5cm.如果△ABE的面积和四边形DBEF的面积相等,则△ABE的面积是[ ]A.8cm2. B.9cm2. C.10cm2. D.12cm2二、A组填空题:1.化简:366250.25169-•=_________.2计算:2211100.0010.01101001000⎛⎫⎛⎫++-+- ⎪ ⎪⎝⎭⎝⎭=__________. 3.化简1+x+x(1+x)+x(1+x)2+…+x(1+x)1995,得到_____.4.若n 满足(n-1994)2+(1995-n)2=1,则(1995-n)·(n-1994)_____. 5.如图22,已知△ABC 中,∠ACB >90°,∠B=25°,CD ⊥BC 于点C , BD=2AC ,点E 在BC 的延长线上,则∠ACE 的大小是______. 6.在一个凸n 边形(n >3)的n 个外角中,其中最多有_____个钝角.7.如图23,沿AE 折叠长方形ABCD ,使D 点落在BC 边的点F 处,若AB=12cm ,BC=13cm ,则FC 的长度是______.8.已知a ,b ,c ,d 是四个不相等的正数,其中a 最大,d 最小,且满足条件a cb d=,则a+d 与b+c 的大小关系为_____________. 9.若方程2x b x aa b--=-有唯一解,则a 与b 应满足的条件是____________. 10.有5根木条,其中2根完全相同,长8cm ,另外三根分别长4cm ,10cm ,12cm ,用其中三根组成一个三角形,则选择的办法有______种. 三、B 组填空题1. 一个自然数n 减去59之后是一个完全平方数,加上30之后仍 是一个完全平方数,则n=_____. 2.已知x 是实数,并且x 3+2x 2+2x+1=0,则x1994+x1997+x2000的值是_____.3.如图24,△ABC 中,∠C=90°,DE 是AB 的中垂线,AB=2AC , 且BC=18cm ,则BE 的长度是_____.4.如图25,△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB 交BC 于D , DE ⊥AB 于E ,且AB=10cm ,则△DEB 的周长是_____. 5.已知x=2-5,那么x 4-8x 3+16x 2-x+1的值是_______.6.化简:422364211211(1)(1)a a a a a a a a a ---⎛⎫-÷ ⎪-+---++⎝⎭=___________. 7.已知:143221x y y x x ==+-+,则233(y-x)的值是_______.8.已知a ,b ,c ,d 是四个两两不等的正整数,它们的乘积abcd=1995,则a+b+c+d 的最大值是_____.9.如图26,ABCD 中,AE ⊥BC ,AF ⊥DC ,AB ∶AD=2∶3,∠BAD=2∠ABC ,则FC ∶FD=_____. 10.如图27,两圆半径均为1,且图中两块阴影部分的面积相等,那OC 1的长度是_____.答案·提示一、选择题提示:∴3<x≤5,选(C).4.当时a>0,│a│=a,∴原式=1+1+1=3;当a<0时,│a│=-a,原式=-1+1-1=-1,故选(A).5.a,b,c为三角形的三条边长,满足条件a+b>c,b+c>a,c+a>b∴原式=-(a+b+c)+(b+c-a)+(b-a-c)+(a+b-c)=2(b-c-a),选(B).6.∠A=∠ACE-∠ABC=2∠DCE-2∠DBC=2∠D=80°,故选(D).9.作AD⊥BC交BC于D,设PD=x,则BP=BD-x,PC=CD+x,BD=CD∴BP·PC=(BD-x)(BD+x)=BD2x2而PA2=AD2+x2∴PA2+PB·PC=BD2-x2+AD2+x2=BD2+AD2=AB2=m2.故选(A).10.如图28,连接DE,DC.∵S DBEF=S△ABE即S△ABE=10cm2,故选(C).二、A组填空题提示:2.原式=(10+0.01+0.001)2-(0.01+0.001-10)2=[10+(0.01+0.001)]2-[10-(0.01+0.001)]2=4×(0.01+0.001)×10=0.443.原式=(1+x)+x(1+x)+x(1+x)2+…+x(1+x)1995=(1+x)(1+x)+x(1+x)2+…+x(1+x)1995=(1+x)2(1+x)+x(1+x)3+…+x(1+x)1995=…=(1+x)19964.由条件(n-1994)2+(1995-n)2=1又[(1995-n)+(n-1994)]2=1,即(1995-n)2+2(1995-n)(n-1994)+(n-1994)2=1∴2(1995-n)(n-1994)=0,则(1995-n)(n-1994)=05.如图29,取BD的中点G,连接CG,∠A=∠CGA=2∠B=50°∴∠ACE=∠A+∠B=75°6.凸n边形的n个外角的和是360°,所以最多只能有3个钝角.7.沿AE折叠后,有△ADE≌△AFE,AF=AD=13cm,在Rt△ABF中,AF=13,AB=12,∴BF=5cm ∴FC=BC BF=8cm.d-b-dk=(b-d)(k-1)∵b>d,k>1,∴a+b>b+cbx-b2=2ab-ax+a2,整理后,得(b+a)x=a2+2ab+b2因方程有唯一解,故a+b≠010.选择方法有(8,8,4),(8,8,10),(8,8,12),(4,8,10),(4,10,12),(8,10,12)共6种.三、B组填空题提示:②①得 b2a2=89 即(b+a)(b a)=89∴n=442+59=19952.由x3+2x2+2x+1=0得(x+1)(x2+x+1)=0(-1)1994+(-1)1997+(-1)2000=1-1+1=13.如图30,连接AE,∴△BED≌△AED≌AEC,∠B=30°4.在△ACD和△AED中,∠CAD=∠EAD,AD=AD∴△ACD≌△AED,AC=AE,CD=DE∴BD+DE+EB=BD+DC+EB=BC+EB=AC+EB=AE+EB=AB=10cm.8.abcd=1995=3·5·7·19=1·3·5·(7·19)令a=1,b=3,c=5,d=133∴a+b+c+d=142为最大.9.在平行四边形ABCD中,∠BAD=2∠ABC∴∠BAD=120°,∠ABC=60°,又AE⊥BD,AF⊥CD,∴∠BAE=30°,∠DAF=30°∴FC∶FD=1∶3又两阴影部分面积相等,。