青州2018届高三数学9月月考试题 理

合集下载

山东省青岛市胶州市第三中学2018-2019学年高三数学理月考试卷含解析

山东省青岛市胶州市第三中学2018-2019学年高三数学理月考试卷含解析

山东省青岛市胶州市第三中学2018-2019学年高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数是上的偶函数,若对于,都有,且当时,,则的值为()A.1 B.2 C.-2 D.-1参考答案:A由已知是偶函数且是周期为2的周期函数,则,,所以,故选择A。

2. 已知集合,,则()A. B. C. D.参考答案:D略3. 若函数f(x)=(k-1)a x-a-x(a>0,且a≠1)在R上既是奇函数,又是减函数,则g(x)=log a(x+k)的图象是( )A B CD参考答案:A4. 已知函数是R上的增函数,则的取值范围是()(A)≤<0 (B)≤≤ (C)≤ (D)<0参考答案:B略5. 若,,,则,,大小关系是()A. B. C. D.参考答案:A6. 如图是一几何体的三视图,则该几何体的表面积是A. B.C. D.参考答案:A7. 若,,,则下列结论正确的是()A. B. C.D.参考答案:D略8. 下列命题说法正确的是(A)使得(B)使得(C)使得(D)使得参考答案:D9. 设第一象限内的点()满足若目标函数的最大值是4,则的最小值为(A)3 (B)4 (C)8 (D)9参考答案:10. 设函数f(x)=,g(x)=ax2+bx(a,b∈R,a≠0)若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()B解:当a<0时,作出两个函数的图象,如图,因为函数f(x)=是奇函数,所以A与A′关于原点对称,显然x2>﹣x1>0,即x1+x2>0,﹣y1>y2,即y1+y2<0故选B.11. 已知向量满足,且,则与的夹角为.参考答案:12. 已知(a>0) ,则 .参考答案:【标准答案】3【试题解析】【高考考点】指数与对数的运算【易错提醒】【备考提示】加强计算能力的训练,训练准确性和速度13. 已知函数,函数,其中,若函数恰有4个零点,则实数的取值范围是.参考答案:14. △ABC中,tan A是以-4为第三项,-1为第七项的等差数列的公差,tan B是以为第三项,4为第六项的等比数列的公比,则该三角形的形状是___________.参考答案:锐角三角形【分析】根据等差数列,等比数列公式,分别计算,,再计算,最后判断三角形形状.【详解】是以-4为第三项,-1为第七项的等差数列的公差是以为第三项,4为第六项的等比数列的公比均为锐角故答案为:锐角三角形【点睛】本题考查了等差数列,等比数列公式,三角函数和差公式,综合性强,意在考查学生的综合应用能力.15. 将四个人(含甲、乙)分成两组,则甲、乙为同一组的概率为.参考答案:【考点】古典概型及其概率计算公式.【分析】4人分成两组,通过讨论每2人一组以及一组一人,一组3人的情况即可求出结论.【解答】解:4人分成两组,若一组2人,则有=3种分法,若一组一人,一组3人,则有=4种分法,∴甲、乙分别同一组的概率为+=.故答案为:.【点评】平均分组问题是概率中最困难的问题,解题时往往会忽略有些情况是相同的,本题是一道中档题.16. 在同一直角坐标系中,函数的图象和直线y=的交点的个数是.参考答案:2【考点】H2:正弦函数的图象.【分析】令y=sin(x+)=,求出在x∈[0,2π)内的x值即可.【解答】解:令y=sin(x+)=,解得x+=+2kπ,或x+=+2kπ,k∈Z;即x=﹣+2kπ,或x=+2kπ,k∈Z;∴同一直角坐标系中,函数y的图象和直线y=在x∈[0,2π)内的交点为(,)和(,),共2个.故答案为:2.【点评】本题考查了正弦函数的图象与性质的应用问题,是基础题.17. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何的体积为_______________。

宁夏石嘴山市2018届高三数学9月月考试题 理

宁夏石嘴山市2018届高三数学9月月考试题 理

宁夏石嘴山市2018届高三数学9月月考试题 理8.已知点A (—1,1),B (1,2),C(—2,—1),D (3,4),则向量方向上的投影为( ).A.B. C.- D 。

-9.已知函数f (x)=x 3+2bx 2+cx +1有两个极值点x 1、x 2,且x 1∈[-2,-1],x 2∈[1,2],则f(-1)的取值范围是( )A .[-32,3] B .[错误!,6] C .[3,12] D .[-错误!,12]10.已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2。

若直线y =x +a 与函数y =f (x )的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是(D ) A .0 B .0或-错误! C .-错误!或-错误! D .0或-错误!11.已知函数f (x )=错误!,则y =f (x )的图象大致为( )12。

设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( )A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞二、填空题(本大题共4小题,每小题5分,共20分.)第Ⅱ卷 非选择题每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分13.已知向量=(m ,n ﹣1),=(1,1),且⊥,则mn 的最大值为14.函数f (x )=3x -x 3在区间(a 2-12,a )上有最小值,则实数a 的取值范围是____ 15若a =log 43,则2a+2-a =_______。

16.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=AB ,BE=BC.若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为 。

青阳县高中2018-2019学年高三下学期第三次月考试卷数学

青阳县高中2018-2019学年高三下学期第三次月考试卷数学

青阳县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C.﹣D.2. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条3. sin (﹣510°)=( ) A.B.C.﹣ D.﹣4. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 5. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A .2B.C.D .4A .甲B .乙C .丙D .丁7. 为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位8.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪N B .M ∩N C .∁I M ∪∁I ND .∁I M ∩∁I N9. 不等式的解集是( )A .{x|≤x ≤2}B .{x|≤x <2}C .{x|x >2或x ≤}D .{x|x ≥} 10.全称命题:∀x ∈R ,x 2>0的否定是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤011.下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =12.已知两点M (1,),N (﹣4,﹣),给出下列曲线方程: ①4x+2y ﹣1=0;②x 2+y 2=3;③+y 2=1;④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) A .①③ B .②④ C .①②③ D .②③④二、填空题13.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.14在这段时间内,该车每100千米平均耗油量为 升.15.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.16()23k x =-+有两个不等实根,则的取值范围是 .17.已知平面上两点M (﹣5,0)和N (5,0),若直线上存在点P 使|PM|﹣|PN|=6,则称该直线为“单曲型直线”,下列直线中:①y=x+1 ②y=2 ③y=x ④y=2x+1是“单曲型直线”的是 .18.曲线y=x+e x 在点A (0,1)处的切线方程是 .三、解答题19.如图,在四棱锥P ﹣ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,(Ⅰ)求证:平面PED ⊥平面PAC ;(Ⅱ)若直线PE 与平面PAC 所成的角的正弦值为,求二面角A ﹣PC ﹣D 的平面角的余弦值.20.(本小题满分16分)在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)21.已知抛物线C :x 2=2y 的焦点为F .(Ⅰ)设抛物线上任一点P (m ,n ).求证:以P 为切点与抛物线相切的方程是mx=y+n ;(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明.22.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.23.在极坐标系中,圆C 的极坐标方程为:ρ2=4ρ(cos θ+sin θ)﹣6.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系. (Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点P (x ,y )是圆C 上动点,试求x+y 的最大值,并求出此时点P 的直角坐标.24.已知不等式ax 2﹣3x+6>4的解集为{x|x <1或x >b},(1)求a ,b ; (2)解不等式ax 2﹣(ac+b )x+bc <0.25.(本小题满分12分)已知点M 为圆22:4C x y +=上一个动点,点D 是M 在x 轴上的投影,P 为线段MD 上一点,且与点Q 关于原点O 对称,满足QP OM OD =+. (1)求动点P 的轨迹E 的方程;(2)过点P 作E 的切线l 与圆相交于,A B 两点,当QAB ∆的面积最大时,求直线l 的方程.26.已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.青阳县高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:由A ,B 是以O 为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB 为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B .【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.2. 【答案】C 【解析】解:假设存在过点P (﹣2,2)的直线l ,使它与两坐标轴围成的三角形的面积为8,设直线l 的方程为:,则.即2a ﹣2b=ab直线l 与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l 的方程为:,即x ﹣y+4=0, 即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.3. 【答案】C【解析】解:sin (﹣510°)=sin (﹣150°)=﹣sin150°=﹣sin30°=﹣, 故选:C .4. 【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5AB ∴=,故选D.5. 【答案】 C【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e=,e2=时取等号.即取得最大值且为.1故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.6.【答案】C【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大,甲、乙、丙、丁四人的射击环数的方差中丙最小,∴丙的射击水平最高且成绩最稳定,∴从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙.故选:C.【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.7.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.8.【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},∴M∪N={1,2,3,6,7,8},M∩N={3};∁I M∪∁I N={1,2,4,5,6,7,8};∁I M∩∁I N={2,7,8},故选:D.9.【答案】B【解析】解:不等式,移项得:,即≤0,可化为:或解得:≤x<2,则原不等式的解集为:≤x<2故选B.【点评】此题考查了其他不等式的解法,考查了转化及分类讨论的数学思想,是高考中常考的题型.学生进行不等式变形,在不等式两边同时除以﹣1时,注意不等号方向要改变.10.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.11.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。

宁夏石嘴山市第三中学2018届高三9月月考数学(理)试题含答案

宁夏石嘴山市第三中学2018届高三9月月考数学(理)试题含答案

8.已知点A(—1,1),B(1,2),C(-2,—1),D(3,4),则向量AB⃗⃗⃗⃗⃗⃗ 在CD⃗⃗⃗⃗⃗⃗ 方向上的投影为()。

A。

3√22B。

3√152C.-3√22D。

—3√1529.已知函数f (x )=x 3+2bx 2+cx +1有两个极值点x 1、x 2,且x 1∈[-2,-1],x 2∈[1,2],则f(-1)的取值范围是( )A .[-错误!,3]B .[错误!,6]C .[3,12]D .[-错误!,12]10.已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (x ).当0≤x ≤1时,f (x )=x 2。

若直线y =x +a 与函数y =f (x )的图像在[0,2]内恰有两个不同的公共点,则实数a 的值是(D)A .0B .0或-错误!C .-错误!或-错误!D .0或-错误!11.已知函数f (x )=错误!,则y =f (x )的图象大致为( )12.设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( )A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞二、填空题(本大题共4小题,每小题5分,共20分.)第Ⅱ卷 非选择题每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分13.已知向量=(m ,n ﹣1),=(1,1),且⊥,则mn 的最大值为 14.函数f (x )=3x -x 3在区间(a 2-12,a )上有最小值,则实数a 的取值范围是____ 15若a =log 43,则2a +2-a =_______.16.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=12AB ,BE=23BC 。

青州市二中2018-2019学年高三上学期11月月考数学试卷含答案

青州市二中2018-2019学年高三上学期11月月考数学试卷含答案

青州市二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.已知F1、F2是椭圆的两个焦点,满足=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1)B.(0,] C.(0,)D.[,1)2.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11? B.12? C.13? D.14?3.三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是()A.[﹣6,2] B.[﹣6,0)∪(0,2] C.[﹣2,0)∪(0,6] D.(0,2]4.定义运算,例如.若已知,则=()A.B.C.D.5.一个多面体的直观图和三视图如图所示,点M是边AB上的动点,记四面体FMCE-的体积为1V,多面体BCEADF-的体积为2V,则=21VV()1111]A.41B.31C.21D.不是定值,随点M的变化而变化班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________6. 三个数60.5,0.56,log 0.56的大小顺序为( ) A .log 0.56<0.56<60.5 B .log 0.56<60.5<0.56 C .0.56<60.5<log 0.56 D .0.56<log 0.56<60.57. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞ 8. 函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4) 9. 若复数z=2﹣i ( i为虚数单位),则=( ) A .4+2i B .20+10i C .4﹣2i D.10.经过两点,的直线的倾斜角为( )A .120°B .150°C .60°D .30°11.若复数a 2﹣1+(a ﹣1)i (i 为虚数单位)是纯虚数,则实数a=( ) A .±1B .﹣1C .0D .112.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()A .4B .5C .32D .33二、填空题13.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .14.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

2018届山东省潍坊市青州市高三第三次高考模拟考试数学(文)试题(解析版)

2018届山东省潍坊市青州市高三第三次高考模拟考试数学(文)试题(解析版)

2018届山东省潍坊市青州市高三第三次高考模拟考试数学(文)试题(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,若全集,则()A. B. C. D.【答案】A【解析】分析:利用一元二次不等式的解法化简集合,然后利用补集的定义求解即可.详解:因为集合,集合,所以,故选A.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且不属于集合的元素的集合.2. 总体由编号为的个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始从左到右依次选取两个数字,则选出的第个个体的编号为()附:第行至第列的随机数表:A. B. C. D.【答案】C【解析】分析:从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,列举出选出来的个个体的编号,即可得结果.详解:从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,列举出选出来编号在的前个个体的编号为,所以选出来的第个个体的编号为,故选C.点睛:本题考查选随机数表的应用,是基础题,解题时要认真审题,注意随机数表示法的合理运用. 3. 设是虚数单位,若复数是纯虚数,则( )A.B. C.D.【答案】D 【解析】解:,由纯虚数的定义可得: .本题选择D 选项.4. 已知等差数列的前项和为,若则( )A. B. C. D.【答案】D【解析】分析:由,可得,则化简,即可得结果.详解:因为,所以可得,所以,故选D. 点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.5. 如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为,则输出的( )A. B. C. D.【答案】D【解析】分析:模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.详解:由程序框图可知:输入,第一次循环,;第二次循环,;第三次循环,;,退出循环输出,输出因此输出的为,故选D.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6. 如图,在正方体中,分别是的中点,则下列说法错误的是()A. B. 平面 C. D. 平面【答案】C【解析】分析:先利用三角形中位线定理证明,因为,平面,可得正确从而可得结果.详解:如图:连接,由三角形中位线定理可得与不可能平行,错误;因为在平面内,由线面平行的判定定理可得,平面,正确;平面与垂直,正确;因为平面,所以,平面,正确,故选C.点睛:本题主要通过对多个命题真假的判断,主要综合考查正方体中的线面平行于线面垂直关系,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.7. 函数在区间上的图象大致为()A. B.C. D.【答案】B【解析】分析:用排除法,当时,函数的零点为,可排除选项;当时,,可排除选项,从而可得结果.详解:当时,由,可得函数的零点为,可排除选项;当时,,对应点在轴下方,可排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8. 某旅行社租用两种型号的客车安排名客人旅行,两种车辆的载客量分别为人和人,租金分别为元/辆和元/辆,旅行社要求租车总数不超过辆,且型车不多于型车辆,则租金最少为()A. 元B. 元C. 元D. 元【答案】C【解析】设租A型车x辆,B型车y辆时租金为z元则z=1600x+2400yx、y满足画出可行域观察可知,直线过点A(5,12)时纵截距最小,∴z min=5×1 600+2 400×12=36800,故租金最少为36800元.选C.视频9. 点是双曲线右支上一点,分别为左、右焦点,的内切圆与轴相切于点,若点为线段中点,则双曲线的离心率为()A. B. C. D.【答案】B【解析】分析:设切点分别为,并设,根据双曲线的定义可得,再根据点为线段中点,可得,即可得到从而可得结果.详解:的内切圆与轴相切于点,设切点分别为,并设,根据双曲线的定义,,解得,点为线段中点,,,,故选B.点睛:本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.10. 已知函数的图象过点,区间上为单调函数,且的图象向左平移个单位后与原来的图象重合,则()A. B. C. D.【答案】A【解析】分析:由函数的图象过点,可得,可求得的值,由的图象向左平移个单位后与原来的图象重合,可得结合区间上为单调函数可得的值,从而可得结果.详解:由函数的图象过点,,解得,又,,又的图象向左平移个单位之后为,由两函数图象完全重合知,又,,所以,,故选A.点睛:本题考查了三角函数的图象与性质以及利用函数性质求解析式,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.11. 已知函数与的图象上存在关于轴对称的点,则实数的取值范围是()A. B. C. D.【答案】A【解析】分析:函数与的图象上存在关于轴对称的点,等价于存在,使,即在上有解,从而化为函数上有零点,进而可得结果.详解:若函数与图象上存在关于轴对称的点,则等价为,在时,方程有解,即在上有解,令,则在其定义域上是增函数,且时,,若时,时,,故在上有解,当时,则在上有解可化为,即,故,综上所述,,故选A.点睛:转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题中,函数与的图象上存在关于轴对称的点,转化为存在,使是解题的关键.12. 已知数列,定义数列为数列的“倍差数列”,若的“倍差数列”的通项公式为,且,若函数的前项和为,则()A. B. C. D.【答案】B【解析】分析:由可得,从而得数列表示首项为,公差的等差数列,求得,再根据错位相减法即可得结果.详解:根据题意得,,数列表示首项为,公差的等差数列,,,,,,,故选B.点睛:本题主要考查等差数列的通项、等比数列求和公式以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.以及错位相减法求数列的前项和,属于中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解, 在写出“”与“” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,其中,且,则向量的夹角为__________.【答案】【解析】分析:由,且,可得,即,从而可求出向量与的夹角.详解:,且,,即,解得,向量与的夹角是,故答案为.点睛:本题主要考查向量的夹角及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...14. 已知曲线在处的切线方程为,则实数__________.【答案】【解析】分析:求得函数的导数,可得切线的斜率,由切线方程为可得关于的方程,解方程可得的值.详解:因为,所以,可得曲线在处切线斜率为,由曲线方程,可得,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.15. 下列命题中,正确的命题序号是__________.(请填上所有正确的序号)①已知,两直线,则“”是“”的充分条件;②“”的否定是“”;③“”是“”的必要条件;④已知,则“”的充要条件是“”【答案】①③④【解析】分析:对于①,利用直线平行的性质判断即可;对于②,利用全称命题的否定判断即可;对于③,正弦函数的性质判断即可;对于④,利用不等式的性质判断即可.详解:对于①,时,把代入直线方程,得,故正确;对于②,命题“”的否定是“”,故错误;对于③,“”不能得到“”,“”,一定有“”,故正确;对于④,已知,则“”“”反之也成立,故正确,故答案为①③④.点睛:本题主要考查直线平行的性质、全称命题的否定以及充要条件的判断,属于难题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.16. 已知三角形所在平面与矩形所在平面互相垂直,若点都在同一球面上,则此球的表面积等于__________.【答案】【解析】分析:根据三角形所在平面与矩形所在平面互相垂直,可得外接球球心就是三角形的外接圆圆心,球半径等于圆半径,利用正弦定理求出半径,由球表面积公式可得结果.详解:由,由余弦定理可得,在矩形中,设对角线交于,设三角形的外心为,连接,则因为三角形所在平面与矩形所在平面互相垂直,则平面,所以,由于点都在同一球面上,,由正弦定理可得,则此球的表面积为,故答案为.点睛:本题主要考查线面垂直的性质、正弦定理与余弦定理的应用,外接球表面积的求法,属于难题.求外接球面积的关键是求出半径,对特殊的三棱锥可转化为求长方体的外接球的半径,本题根据矩形的性质以及面面垂直的性质将球心转化为三角形外接圆圆心,利用正余弦定理求出半径进行解答.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角的对边分别为,已知(1)求;(2)若,边上的中线,求的面积.【答案】(1)2;(2)4或12【解析】分析:(1)由,利用诱导公式以及两角和的余弦公式可得,进而,由此能求出;(2)求出,由余弦定理求出,从而利用三角形面积公式可求出的面积.详解:(1)由已知得所以因为在中,,所以则(2)由(1)得,,在中,,代入条件得,解得或当时,;当时,.点睛:本题主要考查三角函数的恒等变换以及余弦定理解三角形,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18. 在如图所示的多面体中,平面,平面,且. (1)请在线段上找到点的位置,使得恰有直线平面,并证明;(2)在(1)的条件下,求多面体的体积.【答案】(1)见解析;(2)【解析】分析:(1)由均垂直于底面,可以断定两线段平行,且,取的中点,可得四边形是平行四边形,∴,易证明平面,∴平面;(2)由,即可的结果.详解:(1)为线段的中点.证明如下:由已知平面,平面∴,设是线段的中点,连接,则,且∵,且∴四边形是平行四边形,∴∵,,,∴平面∴平面(2)∵∴多面体的体积为点睛:证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19. 近年来,随着我国汽车消费水平的提高,二手车行业得到迅猛发展,某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.(1)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中);①根据回归方程类型及表中数据,建立关于的回归方程;②该汽车交易市场对使用年以内(含年)的二手车收取成交价格的佣金,对使用时间年以上(不含年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为②参考数据:【答案】(1)0.40;(2)①,②0.29【解析】分析:(1)由频率分布直方图得,二手车使用时间在的频率为,在的频率为,由互斥事件的概率公式可得结果;(2)①由得,即关于的线性回归方程为求得,利用样本中心点的性质求得,所以关于的线性回归方程为,即关于的回归方程为;②根据①中的回归方程和图1,对成交的二手车可预测各使用时间段上的频率,从而可得该汽车交易市场对于成交的每辆车可获得的平均佣金.详解:(1)由频率分布直方图得,该汽车交易市场 2017 年成交的二手车使用时间在的频率为,在的频率为所以(2)①由得,即关于的线性回归方程为因为所以关于的线性回归方程为,即关于的回归方程为②根据①中的回归方程和图 1,对成交的二手车可预测:使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;使用时间在的平均成交价格为,对应的频率为;所以该汽车交易市场对于成交的每辆车可获得的平均佣金为:万元点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 已知是直线上的动点,点的坐标是,过的直线与垂直,并且与线段的垂直平分线相交于点 .(1)求点的轨迹的方程;(2)设曲线上的动点关于轴的对称点为,点的坐标为,直线与曲线的另一个交点为(与不重合),是否存在一个定点,使得三点共线?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1);(2)存在定点,使得三点共线【解析】试题分析:(Ⅰ)由题意可知:,即曲线为抛物线,焦点坐标为,点的轨迹的方程;(Ⅱ)设,则,直线的方程,代入抛物线方程,求得的坐标,的方程为,则令,则,直线与轴交于定点,即可求得存在一个定点,使得三点共线.试题解析:(Ⅰ)依题意,,即曲线为抛物线,其焦点为,准线方程为:,所以曲线的方程为.(Ⅱ)设,则,直线的斜率为,直线的方程为.由方程组得.设,则,,,所以,又,所以的方程为.令,得.即直线与轴交于定点.因此存在定点,使得,,三点共线.21. 已知,函数(是自然对数的底数)(1)求函数的单调区间;(2)若函数在区间内无零点,求的最大值.【答案】(1)见解析;(2)【解析】分析:(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)求出函数求其导函数,可知当时函数在区间上单调递减,可得,函数在区间上无零点;当时,分和分类讨论,即可筛选出函数在区间内无零点的的范围.详解:(1)∵∴当时,在上恒成立,增区间为,无减区间;当时,令得的增区间为,减区间为.(2)函数,∴①当时,在上恒成立,函数在区间上单调递减,则,∴时,函数在区间上无零点;②当时,令得,令,得,令,得,因此,函数的单调递增区间是,单调递减区间是.(i)当,即时,函数的单调递减区间是,∴要使函数在区间内无零点,则,得;(ii)当,即时,函数的单调递减区间是,单调递增区间是,∴设∴∴在上单调递减,∴,而当时,,∴函数在区间内有零点,不合题意.综上,要使函数在区间内无零点,则的最大值为点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22. 在平面直角坐标系中,曲线的参数方程为(为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点(1)求曲线的普通方程和的直角坐标方程;(2)若点在曲线上,求的值.【答案】(1),;(2)【解析】试题分析:(1)利用消去参数,可求得的方程为,对,依题意设方程为,的直角坐标为,代入求得,故圆的方程为:;(2)曲线的方程为,将代入可求得,进一步代入.试题解析:(1)将及时对应的参数,, 代入得,所以的方程为,设圆的半径,则圆的方程为(或),将点代入得:圆的方程为:( 或).(2)设曲线的方程为,将代入得,,所以.考点:极坐标与参数方程.23. 已知函数.(1)求的解集;(2)设函数,若对成立,求实数的取值范围【答案】(1)或;(2)【解析】分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)即的图象恒在,图象的上方,作出函数图像,根据直线恒过定点,结合函数图象即可的结果.详解:(1)∴,即∴①或②或③解不等式①:;②:无解;③:,所以的解集为或(2)即的图象恒在,图象的上方,可以作出的图象,而,图象为恒过定点,且斜率变化的一条直线,作出函数,图象如图,其中,可求:∴,由图可知,要使得的图象恒在图象的上方,实数的取值范围为.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

福建省永安市第三中学2018届高三数学9月月考试题理20180921015


请考生在 22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.
-7-
永安三中 2019 届高三第一次月考数学(理)试题 参考答案 1-5 BDACC 6-10 BAACA 11-12 DC
5、 【答案】C
1 1 1 1 【解析】 log 3 2 , ln 2 ,5 2 。 因为 5 2 log 2 3 log 2 e 0 , 所 log 2 3 log 2 e 5
1 3 , 2 16
10.已知函数 f(x)是定义在 R 上的偶函数,且 f(2)=﹣1,对任意 x∈R, 有 f(x)=﹣f(2﹣x)成立,则 f(2020)=( )
-1-
A.1
B.﹣1
C.0
D.2
11. 下列有关命题的说法正确的是( ) A.命题“若 xy=0,则 x=0”的否命题为:“若 xy=0,则 x≠0” B.命题“若 cosx=cosy,则 x=y”的逆否命题为真命题 C.命题“∃x∈R,使得 2x2-1<0”的否定是:“∀x∈R,2x2-1<0” D.“若 x+y=0,则 x,y 互为相反数”的逆命题为真命题 12.已知函数 f x ln e e
0.050 3.841 0.025 5.024 0.010 6.635 0.005 7.879
P( K 2 k )
0.100 2.706
k
21.(本小题满分 12 分) 已知函数 f ( x) 定义域为[-1,1], 若对于任意的 x, y [ 1,1] , 都有 f ( x y ) f ( x) f ( y ) , 且 x 0 时,有 f ( x) 0 . (Ⅰ)证明函数 f ( x) 是奇函数; (Ⅱ)讨论函数 f ( x) 在区间[-1,1]上的单调性;

2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)

2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。

兰州2018届高三9月月考数学(理)试题 含答案

甘肃省兰州一中2018届高三第一次月考试题第I 卷 (选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.设集合A ={x|x >a },集合B ={-1,1,2},若A ∩B =B ,则实数a 的取值范围是 A.(1,+∞) B.(-∞,1)C.(-1,+∞)D.(-∞,-1)2.已知复数i1ia +-为纯虚数,那么实数a = (A )1- (B )12-(C )1 (D )123.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )图1初中生4500名高中生2000名小学生3500名图2A .200,20B .100,20C .200,10D .100,104. 已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A )100 (B )99 (C )98 (D )975. 设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .126. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的的体积为( )A .π238+ B .π+38C .π24+D .π+4 7. 已知直线l :x +ay -1=0(a ∈R )是圆C :224210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( )A 、2B 、、6 D 、8. 执行如图所示的程序框图,若输入n 的值为3,则输出的s 的值是( )A .1B .2C .4D .7 9. 甲、乙、丙三人站在一起照相留念,乙正好站在甲丙之间的概率为( ) A .21 B .31 C .41 D .61 10. 函数sin cos y x x x =+的图象大致为( )11. 已知抛物线x y 82=的焦点到双曲线)0,0(1:2222>>=-b a by a x E 的渐近线的距离不大于3,则双曲线E 的离心率的取值范围是( )A .]2,1(B .]2,1(C .),2[+∞D .),2[+∞12. 设()f x 是定义在R 上的偶函数,对任意的R x ∈,都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()12xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()log (2)0(1)a f x x a -+=>恰有3个不同的实数根,则实数a 的取值范围是( )(A ))2 (B )()2,+∞ (C)( (D ) ()1,2第II 卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分)13. 设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 14. 若x ,y 满足010x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y =+的最大值为15. 在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 16. 若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220l n l n l n a a a +++=. 三、解答题:(本题共6小题,共70分,解答过程应写出文字说明,证明过程或演算步骤). 17.已知函数2()cos 222x x x f x =.(Ⅰ) 求()f x 的最小正周期;(Ⅱ) 求()f x 在区间[π0]-,上的最小值.18.2018 年1 月1 日起全国统一实施全面两孩政策.为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如下表:(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X ,求随机变量X 的分布列和数学期望; (Ⅱ)根据调查数据,是否有 0090以上的把握认为“生二胎与年龄有关”,并说明理由: 参考数据:(参考公式:()()()()()22n ad bc K a b a d a c b d -=++++,其中n a b c d =+++)19. (本小题满分12分)如图所示,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC .E 是PC 的中点,作EF ⊥PB 交PB 于点F .(1)证明PA ∥平面EDB ; (2)证明PB ⊥平面EFD ; (3)求二面角C -PB -D 的大小. 20.(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k =+∈R ,使得0=⋅OB OA 成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.21.已知函数f (x )=ln x -a x,g (x )=f (x )+ax -6ln x ,其中a ∈R. (Ⅰ)当a =1时,判断f (x )的单调性;(Ⅱ)若g(x )在其定义域内为增函数,求正实数a 的取值范围;22.(本题满分10分) 选修4-1《几何证明选讲》 已知A 、B 、C 、D 为圆O 上的四点,直线DE 为圆O 的切线, AC∥DE ,AC 与BD 相交于H 点 (1)求证:BD 平分∠ABC ;(2)若AB=4,AD=6,BD=8,求AH 的长.23. (本小题满分10分)《选修4—4:坐标系与参数方程》 已知直线l的参数方程为2x t y =⎧⎪⎨=⎪⎩ (t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4). (1)求直线l 的倾斜角和曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A ,B两点,设点P ,求PA PB +. (24)(本小题满分10分)选修4—5:不等式选讲 已知函数()||f x x a =-(Ⅰ)若不等式()2f x ≤的解集为[0,4],求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若0x ∃∈R ,使得200()(5)4f x f x m m ++-<,求实数m 的取值范围.甘肃省兰州一中2018届高三第一次月考试题答案第I 卷 (选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

者楼中学2018届高三上学期9月月考理科数学试题Word版含答案

贵州省者楼中学2018届高三上学期9月月考理科数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知函数⎩⎨⎧≥+-<-=,0,46,0|,)lg(|)(3x x x x x x f 若关于x 的函数1)()(2+-=x bf x f y 有8个不同的零点, 则实数b 的取值范围是( ) A .),2(+∞ B .),2[+∞ C .)417,2( D .]417,2( 【答案】D2.已知奇函数f x ()与偶函数)(x g 满足2)()(+-=+-x x a a x g x f ,且a b g =)(,则)2(f 的值为( ) A . 2a B . 2 C .417 D .415 【答案】D3.设312.0212,)31(,3log ===c b a ,则( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<【答案】A4.函数2(4)|4|()(4)x x f x a x ⎧≠⎪-=⎨⎪=⎩,若函数2)(-=x f y 有3个零点,则实数a 的值为( )A .-2B .-4C .2D .不存在【答案】C5.若点(a ,b)在y =lgx 图像上,a ≠1,则下列点也在此图像上的是( )A .(1a ,b) B .(10a,1-b)C .(10a,b +1) D .(a 2,2b)【答案】D 6.已知函数21()(1)1f x x x =<--,则11()8f --=( ) A .-2 B .-3C .2D .3【答案】B7.若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像经过点)a ,则()f x =( )A .2log xB .12log xC .12xD .2x【答案】B8.若0.52a =,πlog 3b =,22πlog sin5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .b c a >>【答案】A9.若x ∈(e -1,1),a =lnx ,b =2lnx ,c =ln 3x ,则( )A .a<b<cB .c<a<bC .b<a<cD .b<c<a 【答案】C10.已知函数()()x x f a-=2log 1在其定义域上单调递减,则函数()()21log x x g a -=的单调减区间是( ) A . (]0,∞- B . ()0,1-C . [)+∞,0D . [)1,0【答案】B11.函数12()3sin log 2f x x x π=-的零点个数是( )A .2B .3C .4D .5【答案】D12.已知函数()22x f x =-,则函数()y f x =的图象可能是( )【答案】B第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.)10(,213<<>-+a a a x x 那么x 的取值范围是 【答案】⎭⎬⎫⎩⎨⎧-<51x x14.若幂函数(,)n y mx m n R =∈的图象经过点1(8,)4,则n = . 【答案】23-15.已知直线y =a 与函数()2x f x =及函数()32x g x =⋅的图象分别相交于A,B 两点,则A,B 两点之间的距离为 . 【答案】2log 316.已知函数⎪⎩⎪⎨⎧≥-<+=1,21,12)(2x x x x x f x 则=)]0([f f 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省潍坊市青州第三中学2018届高三数学9月月考试题 理 一、选择题(本大题共10小题,每小题5分,共50分) 1.已知集合A={x|y=lg(2x-x2)},B={y|y=2x,x>0},R是实数集,则(∁RB)∩A等于 ( ) A.[0,1] B.(0,1] C.(-∞,0] D.以上都不对 2.下列四个函数中,与y=x表示同一函数的是 ( )

A.y=(x)2 B.y=3x3 C.y=x2 D.y=x2x 3.设a=log3π,b=log23,c=log32,则 ( ) A.a>b>c B.a>c>b C.b>a>c D.b>c>a 4.由方程x|x|+y|y|=1确定的函数y=f(x)在(-∞,+∞)上是 ( ) A.增函数 B.减函数 C.先增后减 D.先减后增 5.函数f(x)=|x|-k有两个零点,则 ( ) A.k=0 B.k>0 C.0≤k<1 D.k<0 6.若0A.3y<3x B.logx3

C.log4x

7.函数y=lg|x|x的图象大致是 ( ) 8.若函数f(x)=212log,0,log(),0,xxxx若f(a)>f(-a),则实数a的取值范围( ) A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)

9.已知幂函数f(x)的图象经过点(18,24),P(x1,y1),Q(x2,y2)(x1的任意不同两点,给出以下结论: ①x1f(x1)>x2f(x2); ②x1f(x1)

③fx1x1>fx2x2;

④fx1x1其中正确结论的序号是 ( ) A.①② B.①③ C.②④ D.②③ 10.已知函数f(x)=112log(421)xx的值域为[0,+∞),则它的定义域可以是

( ) A.(0,1] B.(0,1) C.(-∞,1] D.(-∞,0]

二、填空题(本大题共4小题,每小题5分,共20分) 11.若命题“∃x∈R,使得x2+(a-1)x+1<0”是真命题,则实数a的取值范围为______. 12.已知对不同的a值,函数f(x)=2+ax-1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是________.

13.定义在R上的函数f(x)满足f(x)=2log(1),0(1)(2),0xxfxfxx,则 f(2 011)的值为__________. 14.定义:区间[x1,x2](x1b],值域为[0,2],则区间[a,b]的长度的最大值为________.

15.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已

知当x∈[0,1]时f(x)=(12)1-x,则 ①2是函数f(x)的周期; ②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数; ③函数f(x)的最大值是1,最小值是0;

④当x∈(3,4)时,f(x)=(12)x-3. 其中所有正确命题的序号是________. 选择题: 题 号 1 2 3 4 5 6 7 8 9 10

答 案 填空题:11_____________________ 12_____________________________ 13____________________ 14_______________ 15______________________

三、解答题(本大题共6小题,共75分) 16.(12分)(2018·合肥模拟)对定义在实数集上的函数f(x),若存在实数x0,使得f(x0)=x0,那么称x0为函数f(x)的一个不动点. (1)已知函数f(x)=ax2+bx-b(a≠0)有不动点(1,1)、(-3,-3),求a、b; (2)若对于任意实数b,函数f(x)=ax2+bx-b (a≠0)总有两个相异的不动点,求实数a的取值范围. 17.(12分)已知f(x)为定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数解析式f(x)=14x-a2x(a∈R). (1)写出f(x)在[0,1]上的解析式; (2)求f(x)在[0,1]上的最大值.

18.(12分)已知函数f(x)=2x-12|x|. (1)若f(x)=2,求x的值; (2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围. 19.(12分)已知函数f(x)的图象与函数h(x)=x+1x+2的图象关于点A(0,1)对称. (1)求函数f(x)的解析式; (2)若g(x)=f(x)+ax,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.

20.(13分)经市场调查,某城市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足f(t)=

20-12|t-10|(元). (1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式; (2)求该种商品的日销售额y的最大值与最小值. 21.(14分)对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数. (1)若函数f(x)为理想函数,求f(0)的值; (2)判断函数f(x)=2x-1 (x∈[0,1])是否为理想函数,并予以证明; (3)若函数f(x)为理想函数,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,求证:f(x0)=x0.

答案 1.B [由2x-x2>0, 得x(x-2)<0⇒0故A={x|00,得2x>1, 故B={y|y>1},∁RB={y|y≤1}, 则(∁RB)∩A={x|02.B 3.A [∵log32c. 又∵log23∴a>b,∴a>b>c.] 4.B [

①当x≥0且y≥0时, x2+y2=1,

②当x>0且y<0时,x2-y2=1, ③当x<0且y>0时,y2-x2=1, ④当x<0且y<0时,无意义. 由以上讨论作图如右,易知是减函数.] 5.B [令y=|x|,y=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象,得k>0.] 6.C [∵0logy3,(14)x>(14)y,即选项A、B、D错,故选C.] 7.D 8.C [由分段函数的表达式知,需要对a的正负进行分类讨论.

f(a)>f(-a)⇒ a>0log2a>log12a或

 a<0

log12-a>log2-a⇒ a>0a>1或

 a<0

-1

⇒a>1或-19.D [依题意,设f(x)=xα,则有(18)α=24,即(18)α=(18)12,所以α=12,于是f(x)=x12. 由于函数f(x)=x12在定义域[0,+∞)内单调递增,所以当x1从而有x1f(x1)结合函数图象,容易得出直线OP的斜率大于直线OQ的斜率,故fx1x1>fx2x2,所以③正确.] 10.A [∵f(x)的值域为[0,+∞), 令t=4x-2x+1+1, ∴t∈(0,1]恰成立,即0<(2x)2-2·2x+1≤1恰成立,0<(2x-1)2成立,则x≠0,(2x)2-2·2x+1≤1可化为2x(2x-2)≤0, ∴0≤2x≤2,即0≤x≤1, 综上可知011. 答案 (-∞,-1)∪(3,+∞) 解析 要使命题为真命题,只需Δ=(a-1)2-4>0, 即|a-1|>2, ∴a>3或a<-1. 12.(1,3) 13.-1 解析 由已知得f(-1)=log22=1, f(0)=0,f(1)=f(0)-f(-1)=-1,

f(2)=f(1)-f(0)=-1,

f(3)=f(2)-f(1)=-1-(-1)=0,

f(4)=f(3)-f(2)=0-(-1)=1,

f(5)=f(4)-f(3)=1,f(6)=f(5)-f(4)=0,

所以函数f(x)的值以6为周期重复性出现, 所以f(2 011)=f(1)=-1.

14.154

解析 由0≤|log0.5x|≤2解得14≤x≤4, ∴[a,b]长度的最大值为4-14=154. 15.①②④ 解析 由f(x+1)=f(x-1)可得f(x+2)=f[(x+1)+1]=f(x+1-1)=f(x),

∴2是函数f(x)的一个周期. 又函数f(x)是定义在R上的偶函数, 且x∈[0,1]时,

f(x)=(12)1-x,

∴函数f(x)的简图如右图,由简图可知②④也正确. 16.解 (1)∵f(x)的不动点为(1,1)、(-3,-3),

∴有 a+b-b=1,9a-3b-b=-3,∴a=1,b=3.„„„„„„„„„„„„„„„„„„(6分) (2)∵函数总有两个相异的不动点, ∴ax2+(b-1)x-b=0,Δ>0, 即(b-1)2+4ab>0对b∈R恒成立,„„„„„„„„„„„„„„„„„„„„(9分) Δ1<0,即(4a-2)2-4<0,„„„„„„„„„„„„„„„„„„„„„„„„(11分) ∴0分)

相关文档
最新文档