数学北师大版八年级下册《平行四边形的判定》

合集下载

2022年北师大版数学八下《利用四边形边的关系判定平行四边形》教案

2022年北师大版数学八下《利用四边形边的关系判定平行四边形》教案

6.2平行四边形的判定第1课时利用四边形边的关系判定平行四边形1.掌握平行四边形的判定定理;(重点)2.综合运用平行四边形的性质与判定定理1、2解决问题.(难点)一、情境导入我们已经知道,如果一个四边形是平行四边形,那么它就是一个中心对称图形,具有如下的一些性质:1.两组对边分别平行且相等;2.两组对角分别相等;3.两条对角线互相平分.那么,怎样判定一个四边形是否是平行四边形呢?当然,我们可以根据平行四边形的原始定义:两组对边分别平行的四边形是平行四边形加以判定.那么是否存在其他的判定方法呢?二、合作探究探究点一:两组对边分别相等的四边形是平行四边形如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.试探究四边形DAEF是平行四边形.解析:根据题中的等式关系可推出两组对边分别相等,从而可判断四边形DAEF为平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF =BC,∴△ABC≌△DBF,∴AC=DF=AE,同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).方法总结:利用两组对边分别相等的四边形是平行四边形时,证明边相等,可通过三角形全等解决.探究点二:一组对边平行且相等的四边形是平行四边形如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF ∥BE,四边形ABCD是平行四边形吗?请说明理由.解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF =∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.第1课时分式的有关概念1.了解分式的概念,能正确判断一个代数式是否是分式;2.掌握分式有(无)意义、值为零的条件.(难点)一、情境导入一个小村庄现有耕地600公顷,林地150公顷,为了保护环境,退耕还林,村委会计划把原来“开山造林”时造出的x公顷耕地还原成林地,那样林地的面积是耕地面积的几分之几?如何用x的式子表示?这个式子有什么特征?它与整式有什么不同?二、合作探究探究点一:分式的概念【类型一】判断代数式是否为分式在式子1a、2xyπ、3a2b3c4、56+x、x7+y8、9x+10y中,分式的个数有()A.2个B.3个C.4个D.5个解析:1a、56+x、9x+10y这3个式子的分母中含有字母,因此是分式.其他式子分母中均不含有字母,是整式,而不是分式.故选B.方法总结:分母中含有字母的式子就是分式,注意π不是字母,是常数.【类型二】 探究分式的规律观察下面一列分式:x 3y ,-x 5y 2,x 7y3,-x 9y4,…(其中x ≠0). (1)根据上述分式的规律写出第6个分式;(2)根据你发现的规律,试写出第n (n 为正整数)个分式,并简单说明理由.解析:(1)根据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变化规律得出答案.解:(1)观察各分式的规律可得:第6个分式为-x 13y 6;(2)由已知可得:第n (n 为正整数)个分式为(-1)n +1×x 2n +1yn ,理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且偶数个为负,∴第n (n 为正整数)个分式为(-1)n +1×x 2n +1y n. 方法总结:此题主要考查了分式的定义以及数字变化规律,得出分子与分母的变化规律是解题关键.【类型三】 根据实际问题列分式每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.nx +my x +y 元B.mx +ny x +y 元C.m +n x +y元 D.12(x m +y n )元解析:由题意可得杂拌糖每千克的价格为mx +nyx +y元.故选B.方法总结:解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系,列出代数式.探究点二:分式有无意义的条件及分式的值【类型一】 分式有意义的条件分式x -1(x -1)(x -2)有意义,则x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .以上结果都不对 解析:∵分式有意义,∴(x -1)(x -2)≠0,∴x -1≠0且x -2≠0,∴x ≠1且x ≠C.方法总结:分式有意义的条件是分母不等于零.【类型二】 分式无意义的条件使分式x3x -1无意义的x 的值是( )A .x =0B .x ≠0C .x =13 D .x≠13解析:由分式有意义的条件得3x -1≠0,解得x ≠13.则分式无意义的条件是x=13,故选C. 方法总结:分式无意义的条件是分母等于0.【类型三】 分式值为0的条件若使分式x 2-1x +1的值为零,则x 的值为( )A .-1B .1或-1C .1D .1和-1解析:由题意得x 2-1=0且x +1≠0,解得x =1,故选C.方法总结:分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、板书设计1.分式的概念:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式. 2.分式AB有无意义的条件:当B ≠0时,分式有意义;当B =0时,分式无意义.3.分式AB 值为0的条件:当A =0,B≠0时,分式的值为0.本节采取的教学方法是引导学生独立思考、小组合作,完成对分式概念及意义的自主探索.提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程中获得了解决新知识的途径.在这一环节提问应注意循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成.。

数学北师大版八年级下册平行四边形的判定第一课时

数学北师大版八年级下册平行四边形的判定第一课时

《平行四边形的判定》教学设计一.教学目标:1、经历探索四边形是平行四边形的条件的过程,在活动中发展学生的探究意识和有条理的表达能力.2、探索并证明平行四边形的判定定理及其他相关结论,发展演绎推理能力.3、体会归纳、类比、转化等数学思想。

二.教学重点、难点::1、探索四边形是平行四边形的条件,分两个层次:通过操作和合情推理发现结论;得出平行四边形的判定方法,说明理由。

2、平行四边形性质和判定的综合应用.三.教学方法与教学手段:配合多媒体,讲练结合、活动探索交流.四.教学过程:1、情境创设回忆:平行四边形的概念..两组对边分别平行的四边形是平行四边形。

平行四边形有哪些性质?⑴平行四边形的对边平行⑵平行四边形的对边相等⑶平行四边形的对角相等⑷平行四边形的对角线相互平分【设计说明】首次探索四边形是平行四边形的条件,其说理依据只能是平行四边形的概念,对于下面几条的探索就可以利用第一个条件.复习性质是为了和判定方法的对比,分清区别和联系,为应用作准备.自然、合理,符合学生的任知规律2、探索活动让学生用课前准备的4根(长度两两相等)的小棒,选用其中的小棒搭出平行四边形或平行四边形的模型.想一想,你有几种方法,你搭的为什么是平行四边形?学生充分活动后,在全班交流,学生可以提出多种方法,1、一般为用4根小棒,相等的边作为对边顺次相连.DBDB 结合图形要求学生写出已知条件,并说明理由. 已知:四边形ABCD 中,AB=CD ,AD=BC ,说明四边形ABCD 为平行四边形. 分析:连接AC ,证明ΔABC ≌ΔCDA, 得到∠1=∠2;∠3=∠4. 从而有AB ∥CD ,AD ∥BC.根据两组对边分别平行的四边形是平行四边形得到ABCD 为平行四边形.总结::两组对边分别相等的四边形是平行四边形.2、议一议(1)取2根长度相等的细木条,你能将它们摆放在一张纸上,使得这两根细木条的四个端点恰好是一个平行四边形的四个叮当当吗?(2)如果四边形有一组对边相等,那么还需要添加什么条件,才能使它成为平行四边形?与同伴交流.(学生可能添加”,另一组对边相等”也可能添加”这组对边平行”,还可能添加”另一组对边平行"或'一组对角相等",可以对前两种情况进行证明,对后两种情况举出相应的反例。

北师大版 八年级数学 平行四边形的判定

北师大版 八年级数学 平行四边形的判定

平行四边形的判定课前测试【题目】课前测试在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种【答案】B【解析】试题分析:根据平行四边形的判定方法中,①②、②④、①③、③④均可判定是平行四边形.解:根据平行四边形的判定,符合条件的有4种,分别是:①②、②④、①③、③④.故选:B.总结:【难度】3本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3种来判定.【题目】课前测试如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.求证:四边形BDEF为平行四边形.【答案】四边形BDEF为平行四边形【解析】试题分析:由等腰三角形的性质得出∠ABC=∠C,证出∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,得出∠DEG=∠C,证出∠F=∠DEG,得出BF∥DE,即可得出结论;证明:∵△ABC是等腰三角形,∴∠ABC=∠C,∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形,∴∠DEG=∠C,∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC,∴∠F=∠DEG,∴BF∥DE,∴四边形BDEF为平行四边形;总结:本题考查了平行四边形的判定与性质、等腰三角形的性质、等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.【难度】4知识定位适用范围:北师大版,8年级知识点概述:平行四边形是初中几何应用的重点,很多大题的证明都需要用到这一知识点,也是中考的重要考查部分.同学们学习这一章节要掌握并灵活运用平行四边形的性质以及判定,后面学矩形、正方形、菱形等四边形综合题都是在平行四边形的基础上展开的,所以非常关键.适用对象:成绩中等注意事项:大部分学生试听这个内容主要想听平行四边形的判定方法.重点选讲:①平行四边形的判定方法②平行四边形判定的应用③平行四边形性质和判定的综合应用知识梳理知识梳理1:平行四边形的判定方法知识梳理2:平行四边形判定的应用在具体的几何题目中,分析题目的条件,针对不同的题目选择不同的判定方法来证明平行四边形.(1)两组对边分别平行的四边形是平行四边形(定义法) 数学语言描述:若AB//CD ,AD//BC ,则ABCD(2)两组对边分别相等的四边形是平行四边形数学语言描述:若AB=CD ,AD=BC ,则 ABCD (3)两组对角分别相等的四边形是平行四边形数学语言描述:若∠A=∠C ,∠B=∠D ,则 ABCD(4)一组对边平行且相等的四边形是平行四边形数学语言描述:若AB//CD ,AB=CD ,则ABCD (5)对角线互相平分的四边形是平行四边形数学语言描述:若OA=OC,OB=OD ,则ABCD总结:5种判定方法都是利用全等三角形来证明两组对边平行,从而得出四边形ABCD 是平行四边形知识梳理3:平行四边形性质和判定的综合应用思考:1、平行四边形的性质有哪些?2、如何判定一个四边形是平行四边形?3、有关平行四边形几何大题中该如何处理解题解答提示:紧抓平行四边形的性质和判定,分析题目条件进行解题.例题精讲【题目】已知四边形ABCD,有以下4个条件:①AB∥CD;②AB=DC;③AD∥BC;④AD=BC.从这4个条件中选2个,不能判定这个四边形是平行四边形的是()A.①②B.①③C.①④D.②④【答案】C【解析】试题分析:根据平行四边形的判定方法即可一一判断;解:A、由①②可以判定四边形ABCD是平行四边形;故本选项不符合题意;B、由①③可以判定四边形ABCD是平行四边形;故本选项不符合题意;C、由①④无法判定四边形ABCD是平行四边形,可能是等腰梯形,故本选项符合题意;D、由②④可以判定四边形ABCD是平行四边形;故本选项不符合题意;故选:C.总结:本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.【难度】3【题目】下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【答案】C【解析】试题分析:根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.解:根据平行四边形的判定定理,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.总结:此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.【难度】3【题目】如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在平面直角坐标系内找一点D,使得以点A、B、C、D为顶点构成的四边形是平行四边形,那么点D的坐标是.【答案】(﹣6,5)或(2,5)或(0,﹣7)【解析】试题分析:画出图形即可解决问题,满足条件的点D有三个;解:观察图象可知,满足条件的点D有三个,坐标分别为(﹣6,5)或(2,5)或(0,﹣7)故答案为(﹣6,5)或(2,5)或(0,﹣7);总结:本题考查平行四边形的判定,坐标与图形的性质等知识,解题的关键是学会正确画出图形,利用图象法解决问题.【难度】4【题目】题型2:平行四边形判定的应用已知:如图,点A,F,C,D在同一直线上,AF=DC,AB∥DE,AB=DE,连接BC,BF,CE.求证:四边形BCEF是平行四边形.【答案】四边形BCEF是平行四边形【解析】试题分析:想办法证明BC=EF,BC∥EF即可解决问题;证明:∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形.总结:本题考查平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形的全等的条件,属于中考常考题型.【难度】3【题目】题型2 变式训练1:平行四边形判定的应用如图在四边形ABCD中,AD∥BC,AE⊥BD,CF⊥BD,E、F为垂足,且AE=CF.求证:四边形ABCD是平行四边形.【答案】四边形ABCD是平行四边形【解析】试题分析:先证△ADE≌△CBF,据此得出AD=BC,结合AD∥BC即可得证.证明∵AD∥BC,∴∠ADE=∠CBF,又∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,∵,∴△ADE≌△CBF(AAS),∴AD=BC,∴AD∥BC,∴四边形ABCD是平行四边形.总结:本题主要考查平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定与性质.【难度】3【题目】题型2 变式训练2:平行四边形判定的应用如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF.(1)求证:△ACD≌△CBF;(2)以AD为边作等边三角形△ADE,点D在线段BC上的何处时,四边形CDEF是平行四边形.【答案】(1)△ACD≌△CBF;(2)D点在任意位置,四边形CDFE是平行四边形.【解析】试题分析:(1)直接利用等边三角形的性质结合全等三角形的判定与性质得出答案;(2)直接利用等边三角形的性质结合平行四边形的判定方法得出答案.(1)证明:∵△ABC为等边三角形,∴∠B=∠ACD=60°,AC=BC,在△ACD和△CBF中,∴△ACD≌△CBF(SAS);(2)解:D点在任意位置,四边形CDFE是平行四边形,∵∠BDE+60°=∠DAC+60°,∴∠BDE=∠DAC,又∵∠DAC=∠BCF,∴∠BDE=∠BCF,∴ED∥CF,又∵△ACD≌△CBF,∴CF=AD=DE,∴四边形是CDEF平行四边形.总结:此题主要考查了平行四边形的判定以及全等三角形的判定与性质和等边三角形的性质等知识,正确应用等边三角形的性质是解题关键.【难度】4【题目】题型3:平行四边形性质和判定的综合应用如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.【答案】(1)四边形BMDN是平行四边形;(2)13.【解析】试题分析:(1)只要证明DN∥BM,DM∥BN即可;(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题;(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;(2)解:∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=5,在Rt△AFN中,AN===13.总结:本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【难度】3【题目】题型3 变式训练1:平行四边形性质和判定的综合应用如图,▱ABCD中,点E、F在对角线AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】四边形BEDF是平行四边形【解析】试题分析:只要证明OE=OF,OB=OD即可解决问题.证明:连接BD交AC于O.∵四边形ABCD是平行四边形,∴AO=CO BO=DO,∵AE=CF,∴AO﹣AE=CO﹣CF,即EO=FO,∴四边形BEDF为平行四边形.总结:本题考查平行四边形的性质和判定,解题的关键是学会添加常用辅助线,熟练掌握对角线互相平分的四边形是平行四边形.【难度】3【题目】题型3 变式训练2:平行四边形性质和判定的综合应用如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.【答案】(1)四边形ABDE是平行四边形;(2)2√13.【解析】试题分析:(1)根据平行四边形的性质和判定证明即可;(2)根据菱形的判定和三角函数解答即可.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四边形ABDE是平行四边形;(2)∵AD=DE=4,∴AD=AB=4.∴▱ABCD是菱形,∴AB=BC,AC⊥BD,BO=,∠ABO=.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,AO=AB•sin∠ABO=2,.∴BD=.∵四边形ABDE是平行四边形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.总结:本题考查了平行四边形的判定与性质以及菱形的判定,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.【难度】4【题目】兴趣篇1如图,在3×3的正方形网格中,以线段AB为对角线作平行四边形,使另两个顶点也在格点上,则这样的平行四边形最多可以画个.【答案】5【解析】试题分析:根据平行四边形的判定方法即可解决问题;解:在直线AB的左下方有5个格点,都可以成为平行四边形的顶点,所以这样的平行四边形最多可以画5个.总结:本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【难度】3【题目】兴趣篇2如图4×4的正方形网格每个小正方形的边长为1,每个小正方形的顶点叫格点,点A,B(均在格点上)的位置如图,若以A,B为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有个.【答案】7【解析】试题分析:根据已知条件即可得到结论.解:∵AB=2,平行四边形的面积=2,∴高=1,∴符合条件的平行四边形如图所示,共7个.总结:本题考查了平行四边形的判定,正确的作出图形是解题的关键.【难度】3【题目】如图,在平面直角坐标系中,以O(0,0)、A(1,﹣1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A.(3,﹣1)B.(﹣1,﹣1) C.(1,1)D.(﹣2,﹣1)【答案】D【解析】试题分析:根据以O(0,0)、A(1,﹣1)、B(2,0)为顶点,构造平行四边形,根据平行四边形的判定分别对答案A,B,C,D进行分析即可得出符合要求的答案.解:A、∵以O(0,0)、A(1,﹣1)、B(2,0)为顶点,构造平行四边形,当第四个点为(3,﹣1)时,∴BO=AC1=2,∵A,C1,两点纵坐标相等,∴BO∥AC1,∴四边形OAC1B是平行四边形;故此选项正确;B、∵以O(0,0)、A(1,﹣1)、B(2,0)为顶点,构造平行四边形,当第四个点为(﹣1,﹣1)时,∴BO=AC2=2,∵A,C2,两点纵坐标相等,∴BO∥AC2,∴四边形OC2AB是平行四边形;故此选项正确;C、∵以O(0,0)、A(1,﹣1)、B(2,0)为顶点,构造平行四边形,当第四个点为(1,1)时,∴BO=AC1=2,∵A,C1,两点纵坐标相等,∴C3O=BC3=,同理可得出AO=AB=,进而得出C3O=BC3=AO=AB,∠OAB=90°,∴四边形OABC3是正方形;故此选项正确;D、∵以O(0,0)、A(1,﹣1)、B(2,0)为顶点,构造平行四边形,当第四个点为(﹣1,﹣1)时,四边形OC2AB是平行四边形;∴当第四个点为(﹣2,﹣1)时,四边形OC2AB不可能是平行四边形;故此选项错误.故选:D.总结:此题主要考查了平行四边形的判定,理解平行四边形的对边平行且相等,是判断本题的关键.【难度】3【题目】如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是.【答案】两组对边分别相等的四边形是平行四边形【解析】试题分析:先根据分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,得出AB=DC,AD=BC,再判断四边形ABCD是平行四边形的依据.解:根据尺规作图的画法可得,AB=DC,AD=BC,∴四边形ABCD是平行四边形,故答案为:两组对边分别相等的四边形是平行四边形.总结:本题主要考查了平行四边形的判定,解题时注意:两组对边分别相等的四边形是平行四边形.符号语言为:∵AB=DC,AD=BC,∴四边行ABCD是平行四边形.【难度】3【题目】如图,AE∥FD,AE=FD,B、C在直线EF上,且BE=CF,(1)求证:△ABE≌△DCF;(2)试证明:以A、B、D、C为顶点的四边形是平行四边形.【答案】(1)△ABE≌△DCF;(2)以A、B、D、C为顶点的四边形是平行四边形.【解析】试题分析:(1)根据SAS即可证明;(2)只要证明AB∥CD,AB=CD即可解决问题;(1)证明:∵AE∥DF,∴∠AEF=∠DFE,∴∠AEB=∠DFC,∵AE=FD,BE=CF,∴△AEB≌△DFC.(2)解:连接AC、BD.∵△AEB≌△DFC,∴AB=CD,∠ABE=∠DCF,∴AB∥DC,∴四边形ABDC是平行四边形.总结:本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【难度】3【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【答案】(1)四边形BCFD为平行四边形;(2)9.【解析】试题分析:(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD 是平行四边形.(2)在Rt△ABC中,求出BC,AC即可解决问题;(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形.(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AB=3,AC=BC=3,∴S平行四边形BCFD=3×=9.总结:本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【难度】4【题目】如图,在四边形ABCD中,AB∥CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AC与BD互相平分.【答案】(1)△ABE≌△CDF;(2)AC与BD互相平分.【解析】试题分析:(1)用ASA判定两三角形全等即可证明.(2)只要证明四边形ABCD是平行四边形即可解决问题.证明:(1)∵AB∥CD,∴∠ABE=∠CDF,∵BF=DE,∴BF﹣EF=DE﹣EF,即BE=DF.∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BE=DF,∴△ABE≌△CDF.(2)∵△ABE≌△CDF,∴∠ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,∴AO=CO,BO=DO.总结:本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,利用特殊四边形的性质解决问题.【难度】3。

第18讲平行四边形的判定八年级数学下册讲义(北师大版)(原卷版)

第18讲平行四边形的判定八年级数学下册讲义(北师大版)(原卷版)

第18讲平行四边形的判定目标导航1.掌握平行四边形性质与判定定理。

2.会应用平行四边形的性质与判定定理解决相关的几何证明和计算问题.知识精讲知识点01 平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.【知识拓展】(2021秋•芙蓉区校级期末)如图,在▱ABCD中,∠ABC的平分线交AD于E,∠BEA=30°,则∠A的大小为()A.150°B.130°C.120°D.100°【即学即练1】(2022•乐清市一模)如图,在▱ABCD中,AB=BE,∠C=70°,则∠BAE的度数为()A.35°B.45°C.55°D.65°【即学即练2】(2022春•睢宁县月考)▱ABCD的对角线相交于点O,BD=14,AC=10,则BC的长可以是()A.8B.20C.14D.22知识点02 平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.【知识拓展】(2021秋•芝罘区期末)如图,四边形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC 上一点,且BM=9cm,点E从点A出发以1cm/s的速度向点D运动,点F从点C出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t(s),则当以A、M、E、F为顶点的四边形是平行四边形时,t的值是()A.B.3C.3或D.或【即学即练1】(2022春•金华月考)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.OB=OD,OA=OC B.AD∥BC,AB=CDC.AB∥CD,AD∥BC D.AB∥CD,AB=CD【即学即练2】(2022春•渝中区校级月考)在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB∥CD,∠A=∠C B.AB∥CD,AD=BCC.AB=BC,CD=DA D.∠A=∠B,∠C=∠D【即学即练3】(2022春•丹徒区月考)在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,M 是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为时,以A、M、E、F为顶点的四边形是平行四边形.知识点03 平行四边形的判定与性质平行四边形的判定与性质的作用平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.运用定义,也可以判定某个图形是平行四边形,这是常用的方法,不要忘记平行四边形的定义,有时用定义判定比用其他判定定理还简单.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.【知识拓展】(2021秋•仓山区校级期末)下列条件中,能判定四边形是平行四边形的是()A.一组对边平行B.对角线互相平分C.一组对边相等D.对角线互相垂直【即学即练1】(2021秋•开福区校级期末)如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,,求AB的长.【即学即练2】(2022春•九龙坡区校级月考)在四边形ABCD中,AC、BD交于点O,AD∥BC,BO=DO.(1)证明:四边形ABCD是平行四边形;(2)过点O作OE⊥BD交BC于点E,连接DE.若∠CDE=∠CBD=15°,求∠ABC的度数.【即学即练3】(2021秋•栖霞市期末)在△ABC中,∠C=90°,AC=6,BC=8,若以A,B,C,D为顶点的四边形是平行四边形,则此平行四边形的周长为.【即学即练4】(2021秋•栖霞市期末)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.【即学即练5】(2021秋•栖霞市期末)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形.(1)证明:四边形AEFD是平行四边形;(2)求∠DFE的度数.【即学即练6】(2021秋•曲阳县期末)如图所示,△AOD关于直线l进行轴对称变换后得到△BOC,则以下结论中,不一定正确的是(填字母序号)A.∠1=∠2B.∠3=∠4C.l垂直平分AB,且l垂直平分CDD.AC与BD互相平分【即学即练7】(2022春•渝水区校级月考)如图,在▱ABCD中,AB=8cm,AD=12cm,点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止运动).设运动t(s)(其中t>0)时,以P、D、Q、B四点组成的四边形是平行四边形,则t 的所有可能取值为.能力拓展一.选择题(共2小题)1.(2019•湖北自主招生)如图,平行四边形DEFG 内接于△ABC,已知△ADE ,△EFC,△DBG的面积为1,3,1,那么▱DEFG的面积为()A.2B.2C.3D.42.(2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二.填空题(共2小题)3.(2019•湖北自主招生)如图,直线AB、IL、JK、DC互相平行,直线AD、IJ、LK、BC互相平行,四边形ABCD面积为90,四边形EFGH面积为55,则四边形IJKL面积为.4.(2017•金牛区校级自主招生)如图,点P是▱ABCD内一点,S△P AB=7,S△P AD=4,则S△P AC=.三.解答题(共8小题)5.(2017•市南区校级自主招生)如图,E是平行四边形ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若AB=AF,试判断四边形ACFD的形状,并说明理由.6.(2018•西湖区校级自主招生)如果用铁丝围成如图一样的平行四边形,需要用铁丝多少厘米?7.(2020•北碚区自主招生)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE =∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.8.(2019•麻城市校级自主招生)如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD 中点.求证:AP=BC.9.(2019•南岸区自主招生)如图,平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.10.(2018•宝山区校级自主招生)AB∥CD,AB=15,CD=10,AD=3,CB=4,求S四边形ABCD.11.(2018•江岸区校级自主招生)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连接AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.12.(2019•渝中区校级自主招生)如图,平行四边形ABCD中,BD为对角线,点F在AB上,连接DF、CF,且BD=BC,过F点作FE⊥CB交CB的延长线于点E.(1)如图1,当F为AB的中点,∠A=60°,AD=2,求CE;(2)如图2,若∠FDB=2∠FCB,求证:FD=2BE.分层提分题组A 基础过关练一.选择题(共7小题)1.(2021•南岗区校级开学)在▱ABCD中,若∠A=38°,则∠C等于()A.142°B.132°C.38°D.52°2.(2021•唐山一模)证明:平行四边形的对角线互相平分.已知:如图四边形ABCD是平行四边形,对角线AC、BD相交于点O.求证:OA=OC,OB=OD,嘉琪的证明过程如图.证明过程中,应补充的步骤是()A.AB=CD,AD=BC B.AB∥BC,AD=BCC.AB∥CD,AD∥BC D.AB∥CD,AB=CD3.(2021秋•襄都区校级期末)平行四边形ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm4.(2022•大渡口区模拟)如图,在平行四边形ABCD中,DE平分∠ADC,∠DEC=30°,则∠ADC=()A.30°B.45°C.60°D.80°5.(2021秋•桓台县期末)如图,在▱ABCD中,若∠A=∠D+40°,则∠B的度数为()A.110°B.70°C.55°D.35°6.(2022春•洪泽区月考)平行四边形的对角线长为x,y,一边长为14,则x,y的值可能是()A.8和16B.10和14C.18和10D.10和247.(2021秋•高新区校级期末)如图,点P是平行四边形ABCD边AD上的一点,E,F分别是BP,CP的中点,已知平行四边形ABCD面积为24,那么△PEF的面积为()A.12B.3C.6D.4二.填空题(共4小题)8.(2021秋•芝罘区期末)如图,平行四边形ABCD中,AC、BD相交于点O,OE⊥BD交AD、BC于E、F,若△ABE的周长为10,则四边形ABCD的周长是.9.(2022春•泰州月考)已知▱ABCD周长是48cm,AC和BD相交于O,且△AOB的周长比△BOC的周长小4cm,则CD的长是cm.10.(2022春•玉林月考)如图,在平行四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC =4,AC=10,则平行四边形ABCD的面积为.11.(2022春•洪泽区月考)在▱ABCD中,若∠B+∠D=160°,∠C=°.三.解答题(共4小题)12.(2021秋•沂源县期末)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形,并说明理由.13.(2022春•泰州月考)如图所示,已知点E,F在▱ABCD的对角线BD上,且BE=DF.(1)求证:△ABE≌△CDF;(2)连接AF,CE,求证:四边形AECF是平行四边形.14.(2022春•东台市月考)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.求证:四边形EGFH是平行四边形.15.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.题组B 能力提升练一.选择题(共3小题)1.(2022春•盐都区月考)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.正确的个数是()A.1个B.2个C.3个D.4个2.(2022春•江都区月考)如图,在平行四边形ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E和F,若BE=6,则CF=()A.6B.8C.10D.133.(2021秋•莱州市期末)如图,在▱ABCD中,E是AD边的中点,BE平分∠ABC.若AB=2,则▱ABCD 的周长是()A.11B.12C.13D.14二.填空题(共4小题)4.(2022春•宝应县月考)在四边形ABCD中,分别给出四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.以其中的两个条件能判定四边形ABCD为平行四边形的有种不同的选择.5.(2022春•沭阳县月考)已知在平面直角坐标系中,有点O(0,0)、A(2,2)、B(5,2)、C这四点.以这四点为顶点画平行四边形,则点C的坐标为.6.(2022春•江都区月考)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=18,则△BOC的周长为.7.(2022春•江都区月考)在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别是(0,2)、(﹣3,﹣4)、(2,﹣4),则顶点D的坐标是.三.解答题(共4小题)8.(2021秋•莱阳市期末)如图,在▱ABCD中,延长AD到点E,延长CB到点F,使得DE=BF,连接EF,分别交CD,AB于点G,H,连接AG,CH.求证:四边形AGCH是平行四边形.9.(2021秋•东阳市期末)如图,在平行四边形ABCD中,AD=8,AB=12,∠A=60°,点E,G分别在边AB,AD上,且AE=AB,AG=AD,作EF∥AD、GH∥AB,EF与GH交于点O,分别在OF、OH上截取OP=OG,OQ=OE,连结PH、QF交于点I.(1)四边形EBHO的面积四边形GOFD的面积(填“>”、“=”或“<”);(2)比较∠OFQ与∠OHP大小,并说明理由.(3)求四边形OQIP的面积.10.(2021秋•沙坪坝区校级期末)如图,在▱ABCD中,E、F分别为AB、CD边上两点,FB平分∠EFC.(1)如图1,若AE=2,EF=5,求CD的长;(2)如图2,∠BCD=45°,BC⊥BD,若G为EF上一点,且∠GBF=∠EFD,求证:FG+2FD=AB.11.(2021秋•莱芜区期末)点E是▱ABCD的边CD上的一点,连接EA并延长,使EA=AM,连接EB并延长,使EB=BN,连接MN,F为MN的中点,连接CF,DM.(1)求证:四边形DMFC是平行四边形;(2)连接EF,交AB于点O,若OF=2,求EF的长.题组C 培优拔尖练一.填空题(共8小题)1.(2021春•贵阳期末)如图所示,点O为▱ABCD内一点,连接BD,OA,OB,OC,OD,已知△BCO的面积为3,△ABO的面积为5,则阴影部分的面积是.2.(2021春•沙坪坝区校级期中)如图,在平行四边形ABCD中,∠A=90°,AD=10,AB=8,点P在边AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且PM=CN,连接MN交CP于点F,过点M作ME⊥CP于E,则EF=.3.(2021春•永嘉县校级期中)如图所示,在平行四边形ABCD中,AB=3,BC=4,∠B=60°,E是BC 的中点,EF⊥AB于点F,则△DEF的面积为平方单位.4.(2020秋•仓山区校级期末)如图,在平行四边形ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD 的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG,BG,则S△BEG=.5.(2021春•武汉期末)如图,在△ABC中,∠BAC=60°,∠ABC=45°,AD平分∠CAB交BC于点D,P为直线AB上一动点.以DP、BD为邻边构造平行四边形DPQB,连接CQ,若AC=4.则CQ的最小值为.6.(2021•太原一模)如图,在▱ABCD中,AD=6,对角线BD⊥CD,∠BAD=30°,∠BAD与∠CDB的平分线交于点E,延长DB到点F,使DF=AD,连接EF,则EF的长为.7.(2020春•鹿城区期中)如图在平行四边形ABCD中,∠ABC=60°,AB=4,四条内角平分线围成四边形EFGH面积为,则平行四边形ABCD面积为.8.(2020•青羊区模拟)如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP =60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=.二.解答题(共6小题)9.(2020春•北碚区校级月考)在平行四边形ABCD中,AC⊥CD,E为BC中点,点M在线段BE上,连接AM,在BC下方有一点N,满足∠CAD=∠BCN,连接MN.(1)若∠BCN=60°,AE=5,求△ABE的面积;(2)若MA=MN,MC=EA+CN,求证:AB=AE.10.(2020•南海区一模)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.11.(2019秋•沙坪坝区校级期中)如图所示,平行四边形ABCD和平行四边形CDEF有公共边CD,边AB 和EF在同一条直线上,AC⊥CD且AC=AF,过点A作AH⊥BC交CF于点G,交BC于点H,连接EG.(1)若AE=2,CD=5,求△BCF的周长;(2)求证:BC=AG+EG.12.(2019春•阿荣旗期末)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC =26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,从运动开始.使PQ∥CD和PQ=CD,分别需经过多少时间?为什么?13.(2019春•萧县期末)如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C 出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形.14.(2018秋•东湖区校级期末)如图,等边△ABC的边长为8,动点M从点B出发,沿B→A→C→B的方向以3cm/s的速度运动,动点N从点C出发,沿C→A→B→C方向以2cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.。

北师大版八年级数学下册 平行四边形的性质与判定 专题(附答案)

北师大版八年级数学下册 平行四边形的性质与判定 专题(附答案)

北师大版八年级数学下册平行四边形的性质与判定专题(附答案)综合滚动练:平行四边形的性质与判定一、选择题(每小题4分,共32分)1.在平行四边形ABCD中,若∠A+∠C=120°,则∠A 的度数是()。

A。

100° B。

120° C。

80° D。

60°2.如图,在平行四边形ABCD中,点O是对角线AC,BD的交点,下列结论错误的是()。

A。

AB∥CD B。

AB=CD C。

AC=BD D。

OA=OC3.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()。

A。

4∶3∶3∶4 B。

7∶5∶5∶7 C。

4∶3∶2∶1 D。

7∶5∶7∶54.平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是()。

A。

(-2,1) B。

(-2,-1) C。

(-1,-2) D。

(-1,2)5.如图,在平行四边形ABCD中,点E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()。

A。

BE=DF B。

BF=DE C。

AE=CF D。

∠1=∠26.如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E。

若AB=6,EF=2,则BC的长为()。

A。

8 B。

10 C。

12 D。

147.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于E,CF∥AE交AD于F,则∠BCF等于()。

A。

40° B。

50° C。

60° D。

80°8.(2017·龙东中考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()。

A。

22 B。

20 C。

22或20 D。

18二、填空题(每小题4分,共24分)9.已知AB∥CD,添加一个条件使得四边形ABCD为平行四边形。

八年级数学下册第六章《平行四边形》知识点归纳北师大版

八年级数学下册第六章《平行四边形》知识点归纳北师大版

八年级数学下册第六章《平行四边形》知识点归纳北师大

八年级数学下册第六章《平行四边形》知识点归纳(北师大版)
一、平行四边形性质
1.定义:两组对边分别平行的四边形叫做平行四边形。

2性质:
(1)平行四边形是中心对称图形,两条对角线的交点是它的对称中心。

(2)平行四边形对边相等;
(3)平行四边形对角相等;
(4)平行四边形对角线互相平分
二、平行四边形判定
1、判定:
(1)两组对边分别相等的四边形是平行四边形;
(2)对角线互相平分的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
2、平行线之间的距离:如果两条直线互相平行,则其中一条直线上的任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离。

三、三角形的中位线
第 1 页/ 共 2 页。

北师大版(新)八年级下册数学6.2 平行四边形判定(1)

3如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.
第四环节 回顾小结:
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
第三环节 巩固练习
例1如图6-10,在平行四边形ABCD中,E、F分别是AD和BC的中点.
求证:四边形BFDE是平行四边形.
随堂练习:
A
B
C
D
1.如图:线段AD是线段BC经过平移所得到的,分别连接AB、CD.四边形ABCD是平行四边形吗?为什么?
2.如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?
(3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.
课后反思:
课题:第3课时平行四边形判定
教师个性化设计、学法指导或学生笔记
教学目标:知识技能目标:1.会证明平行四边形的2种判定方法.2.理解平行四边形的这两种判定方法,并学会简单运用.过程与方法目标:1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.情感态度价值观目标:通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
已知:如图6-8(1),在四边形ABCD中,AB=CD,BC=AD
求证:四边形ABCD是平行四边形.
得出:_________________________________________________是平行四边形。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档