解直角三角形应用题
解直角三角形的应用及解答

解直角三角形的应用及解答1.如图1是两扇推拉门,AB是门槛,AD,BC是可转动门宽,现将两扇门推到如图2的位置(平面示意图),其中tan∠DAB=,tan∠CBA=,测得C,D间的距离为4dm,则门槛AB的长为dm.2.如图,AD是土坡AB左侧的一个斜坡,坡度为55°,村委会在坡底D处建另一个高为3米的平台,并将斜坡AD改为AC,坡比i=1:1,求土坡AB的高度.(精确到0.1米,参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43.)3.如图,某建筑楼顶立有广告牌DE,小亮准备利用所学的数学知识估测该主楼AD的高度.由于场地有限,不便测量,所以小亮沿坡度i=1:0.75的斜坡从看台前的B处步行15米到达C处,此时,测得广告牌底部D的仰角为45°,广告牌顶部E的仰角为60°(身高忽略不计),已知广告牌DE=10米,则该主楼AD的高度约为米(结果保留根号).4.小宸想利用测量知识测算湖中小山的高度.他站在湖边看台上,清晰地看到小山倒映在平静的湖水中,如图所示,他在点O处测得小山顶端的仰角为45°,小山顶端A在水中倒影A′的俯角为60°.已知:点O到湖面的距离OD=3m,OD⊥DB,AB⊥DB,A、B、A′三点共线,A'B=AB,求小山的高度AB.(光线的折射忽略不计;结果保留根号)5.为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习.如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向(30+30)km处.学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是35km/h.(1)求学校到红色文化基地A的距离?(2)哪组同学先到达目的地?请说明理由(结果保留根号).参考答案与试题解析1.如图1是两扇推拉门,AB是门槛,AD,BC是可转动门宽,现将两扇门推到如图2的位置(平面示意图),其中tan∠DAB=,tan∠CBA=,测得C,D间的距离为4dm,则门槛AB的长为260dm.【解答】解:过D作DF⊥AB于F,过C点作CG⊥AB于G,过点D作DE⊥CG于E,则四边形DFGE为矩形,∴DE=FG,EG=DF,∠DEC=90°,设AD=BC=x,则AB=2x,∵tan∠DAB=,tan∠CBA=,∴sin∠A=,sin∠B=,∴DF=,AF=,CG=,BG=,∴CE=CG﹣EG=CG﹣DF=﹣=,DE=FG=AB﹣AF﹣BG=2a﹣﹣=,在Rt△CDE中,DC=dm,DE2+CE2=DC2,即,解得x=130,∴AB=2x=260dm.2.如图,AD是土坡AB左侧的一个斜坡,坡度为55°,村委会在坡底D处建另一个高为3米的平台,并将斜坡AD改为AC,坡比i=1:1,求土坡AB的高度.(精确到0.1米,参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43.)【解答】解:过点C作CE⊥AB于E,设AE=x米,∵CD⊥BD,AB⊥CD,∴四边形CDBE为矩形,∴BE=CD=3米,CE=DB,∵斜坡AC的坡比i=1:1,∴CE=AE=x米,∴AB=(x+3)米,在Rt△ADB中,tan∠ADB=,即≈1.43,解得:x≈6.98,则AB=x+3=9.98≈10.0(米),答:土坡AB的高度约为10.0米.3.如图,某建筑楼顶立有广告牌DE,小亮准备利用所学的数学知识估测该主楼AD的高度.由于场地有限,不便测量,所以小亮沿坡度i=1:0.75的斜坡从看台前的B处步行15米到达C处,此时,测得广告牌底部D的仰角为45°,广告牌顶部E的仰角为60°(身高忽略不计),已知广告牌DE=10米,则该主楼AD的高度约为(17+5)米(结果保留根号).【解答】解:过C作CF⊥AE于F,CG⊥AB于G,如图所示:则四边形AFCG是矩形,∴AF=CG,∵斜坡AB的坡度i=1:0.75==,BC=15米,∴BG=9(米),AF=CG=12(米),设DF=x米.在Rt△DCF中,∠DCF=45°,∴CF=DF=x米.在Rt△ECF中,∠ECF=60°,∴EF=tan60°•CF=x(米),∵DE=10米,∴x﹣x=10,∴x=5(+1),∴DF=5(+1)米,∴AD=AF+DF=12+5(+1)=(17+5)米,故答案为:(17+5).4.小宸想利用测量知识测算湖中小山的高度.他站在湖边看台上,清晰地看到小山倒映在平静的湖水中,如图所示,他在点O处测得小山顶端的仰角为45°,小山顶端A在水中倒影A′的俯角为60°.已知:点O到湖面的距离OD=3m,OD⊥DB,AB⊥DB,A、B、A′三点共线,A'B=AB,求小山的高度AB.(光线的折射忽略不计;结果保留根号)【解答】解:过点O作OE⊥AB于点E,则BE=OD=3m,设AE=xm,则AB=(x+3)m,A′E=(x+6)m,∵∠AOE=45°,∴OE=AE=xm,∵∠A′OE=60°,∴tan60°==,即=,解得x=3+3,∴AB=3+3+3=(6+3)m.5.为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习.如图,学校在点B处,A位于学校的东北方向,C位于学校南偏东30°方向,C在A的南偏西15°方向(30+30)km处.学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是35km/h.(1)求学校到红色文化基地A的距离?(2)哪组同学先到达目的地?请说明理由(结果保留根号).【解答】解:(1)作BD⊥AC于D.依题意得,∠BAE=45°,∠ABC=105°,∠CAE=15°,∴∠BAC=30°,∴∠ACB=45°.在Rt△BCD中,∠BDC=90°,∠ACB=45°,∴∠CBD=45°,∴∠CBD=∠DCB,∴BD=CD,设BD=xkm,则CD=xkm,在Rt△ABD中,∠BAC=30°,∴AB=2BD=2xkm,tan30°=,∴=,∴AD=x,在Rt△BDC中,∠BDC=90°,∠DCB=45°,∴sin∠DCB==,∴BC=x,∵CD+AD=30+30,∴x+x=30+30,∴x=30,∴AB=2x=60(km);(2)第二组先到达目的地,理由:∵BD=30km,∴BC=x=30km,第一组用时:60÷40=1.5(h);第二组用时:30÷35=(h),∵<1.5,∴第二组先到达目的地,答:第二组先到达目的地.。
解直角三角形的应用测试题带答案

解直角三角形的应用测试题之迟辟智美创作一、选择题(本年夜题共10小题,共30.0分)1.小明利用测角仪和旗杆的拉绳丈量学校旗杆的高度如图,旗杆PA的高度与拉绳PB的长度相等小明将PB 拉到的位置,测得为水平线,测角仪的高度为1米,则旗杆PA的高度为A. B. C. D.2.如图,长4m的楼梯AB的倾斜角为,为了改善楼梯的平安性能,准备重新建造楼梯,使其倾斜角为,则调整后的楼梯AC的长为A. B. C. D.2 3 43.楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为现要在楼梯上铺一条地毯,已知米,楼梯宽度1米,则地毯的面积至少需要A. 米B. 米C. 米D. 米4.上午9时,一条船从A处动身,以每小时40海里的速度向正西方向航行,9时30分达到B处如图从A、B 两处罚别测得小岛M在北偏东和北偏西方向,那么在B处船与小岛M的距离为 A. 20海里B. 海里C. 海里D. 海里5.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长m为A. B. C. D.6.如图所示,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为,再向电视塔方向前进120米达到F处,又测得电视塔顶端A的仰角为,则这个电视塔的高度单元:米为A. B. 61C. D. 1216 7 87.某校八年级生物兴趣小组租两艘快艇去微山湖生物考察,他们从同一码头动身,第一艘快艇沿北偏西方向航行50千米,第二艘快艇沿南偏西方向航行50千米,如果此时第一艘快艇不动,第二艘快艇向第一艘快艇靠拢,那么第二艘快艇航行的方向和距离分别是A. 南偏东,千米B. 北偏西,千米C. 南偏东,100千米D. 北偏西,100千米8.如图,一艘海轮位于灯塔P的南偏西方向,距离灯塔60nmile的A处,它沿正南方向航行一段时间后,达到位于灯塔P的北偏西方向上的B处,这时,B处与灯塔P的距离为 A. nmileB. nmileC.nmileD. nmile9.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度:,则坝底AD 的长度为A. 26米B. 28米C. 30米D. 46米9 101110.如图是某水库年夜坝的横截面示意图,已知,且AD、BC之间的距离为15米,背水坡CD的坡度:,为提高年夜坝的防洪能力,需对年夜坝进行加固,加固后年夜坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度:4,则年夜坝底端增加的长度CF 是米.A. 7B. 11C. 13D. 20二、填空题(本年夜题共10小题,共30.0分)11.为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形已知迎水坡面米,背水坡面米,,加固后拦水坝的横断面为梯形ABED,,则CE的长为______ 米12.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为,测得底部C的俯角为,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为______ 米精确到1米,参考数据:12 14 1513.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了______14.如图,长4m的楼梯AB的倾斜角为,为了改善楼梯的平安性能,准备重新建造楼梯,使其倾斜角为,则调整后楼梯AC长为______ 米15.如图,一名滑雪运带动沿着倾斜角为的斜坡,从A滑行至B,已知米,则这名滑雪运带动的高度下降了______米参考数据:,,16.如图,为丈量某栋楼房AB的高度,在C点测得A点的仰角为,朝楼房AB方向前进10米达到点D,再次测得A点的仰角为,则此楼房的高度为______ 米结果保管根号.16 171817.如图,从热气球C处测得空中A、B两点的俯角分别为、,如果此时热气球C处的高度为200米,点A、B、C在同一直线上,则AB两点间的距离是______米结果保管根号.18.如图,水库堤坝的横断面是梯形,测得BC长为30m,CD长为,斜坡AB的坡比为1:3,斜坡CD的坡比为1:2,则坝底的宽AD为______19.如图,某堤坝的斜坡AB的斜角是,坡度是,则______.20.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在空中C处同一方向上分别测得A处的仰角为,B处的仰角为已知无人飞机的飞行速度为3米秒,则这架无人飞机的飞行高度为结果保管根号______ 米三、计算题(本年夜题共4小题,共24.0分)21.如图,某数学兴趣小组要丈量一栋五层居民楼CD的高度该楼底层为车库,高米;上面五层居住,每层高度相等测角仪支架离地米,在A处测得五楼顶部点D的仰角为,在B处测得四楼顶部点E的仰角为,米求居民楼的高度精确到米,参考数据:22.某兴趣小组借助无人飞机航拍校园如图,无人飞机从A处水平飞行至B处需8秒,在空中C处同一方向上分别测得A处的仰角为,B处的仰角为已知无人飞机的飞行速度为4米秒,求这架无人飞机的飞行高度结果保管根号23.如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为,教学楼底部B的俯角为,量得实验楼与教学楼之间的距离.求的度数.求教学楼的高结果精确到,参考数据:,24.如图,在年夜楼AB的正前方有一斜坡CD,米,坡角,小红在斜坡下的点C处测得楼顶B的仰角为,在斜坡上的点D处测得楼顶B的仰角为,其中点A、C、E在同一直线上.求斜坡CD的高度DE;求年夜楼AB的高度结果保管根号四、解答题(本年夜题共2小题,共16.0分)25.如图,年夜楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C 的俯角为,测得年夜楼顶端A的仰角为点B,C,E在同一水平直线上,已知,,求障碍物B,C两点间的距离结果精确到参考数据:,26.如图,某湖中有一孤立的小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PQ通往小岛,某同学在观光道AB上测得如下数据:米,,请求出小桥PQ的长,结果精确到米谜底和解析【谜底】1. A2. B3. D4. B5. A6. C7. B8. B9. D10. C11. 812. 20813. 2514.15. 28016.17.18. 13019.20.21. 解:设每层楼高为x米,由题意得:米,,,在中,,,在中,,,,,解得:,则居民楼高为米.22. 解:如图,作,水平线,由题意得:,,,,,,,,,则.23. 解:过点C作,则有,,;由题意得:,在中,,在中,,教学楼的高,则教学楼的高约为.24. 解:在中,米,,,米;过D作,交AB于点F,,,,即为等腰直角三角形,设米,四边形DEAF为矩形,米,即米,在中,,米,米,米,,,,在中,根据勾股定理得:,解得:,则米.25. 解:如图,过点D作于点F,过点C作于点H.则,在直角中,,,.在直角中,,,,.答:障碍物B,C 两点间的距离约为.26. 解:设米,在直角中,,,在直角中,,,米,,解得:米.答:小桥PQ的长度约是米.【解析】1. 解:设,在中,,,,,.故选:A.设,在中,根据,列出方程即可解决问题.本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型.2. 解:在中,,,在中,,.故选B.先在中利用正弦的界说计算出AD,然后在中利用正弦的界说计算AC即可.本题考查了解直角三角形的应用坡度坡角:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的峻峭水平,一般用i暗示,常写成:m的形式把坡面与水平面的夹角叫做坡角,坡度i与坡角之间的关系为:.3. 解:在中,米,米,地毯的面积至少需要米;故选:D.由三角函数暗示出BC,得出的长度,由矩形的面积即可得出结果.本题考查了解直角三角形的应用、矩形面积的计算;由三角函数暗示出BC是解决问题的关键.4. 解:如图,过点B作于点N.由题意得,海里,.作于点N.在直角三角形ABN中,.在直角中,,则,所以海里.故选B.过点B作于点根据三角函数求BN的长,从而求BM的长.解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.5. 解:,.故选A.根据三角函数的界说即可求解.本题考查了三角函数的界说,理解界说是关键.6. 【分析】根据题意求出CE的长,根据三角形的外角的性质和等腰三角形的性质求出AE的长,根据正弦的界说计算即可.本题考查的是解直角三角形的应用仰角俯角问题,理解仰角的概念、熟记锐角三角函数的界说是解题的关键.【解答】解:由题意得,,,,,,.故选:C.7. 解:第一艘快艇沿北偏西方向,第二艘快艇沿南偏西方向,,,,,第二艘快艇沿南偏西方向,,,第二艘快艇航行的方向和距离分别是:北偏西,千米.故选:B.根据题意得出以及,进而得出第二艘快艇航行的方向和距离.此题主要考查了方向角以及勾股定理,正确掌控方向角的界说是解题关键.8. 解:如图作于E.在中,,,,在中,,,故选:B.如图作于在中,求出PE,在中,根据即可解决问题.本题考查方向角、直角三角形、锐角三角函数的有关知识解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.9. 解:坝高12米,斜坡AB的坡度:,米,米,米,故选:D.先根据坡比求得AE的长,已知,即可求得AD.此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.10. 解:过D作于G,于H,,,背水坡CD的坡度:,背水坡EF的坡度:4,,,米,故选C.过D作于G,于H,解直角三角形即可获得结论.本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数暗示相关线段的长度,难度一般.11. 解:分别过A、D作,,垂点分别为F、G,如图所示.在中,米,,,,.在中,,米,.在中,,,,.即CE的长为8米.故谜底为8.分别过A、D作下底的垂线,设垂足为F、在中,已知坡面长和坡角的度数,可求得铅直高度AF的值,也就获得了DG的长;在中,由勾股定理求CG的长,在中,根据正切函数界说获得GE的长;根据即可求解.本题考查的是解直角三角形的应用坡度坡角问题,锐角三角函数的界说,勾股定理作辅助线构造直角三角形是解答此类题的一般思路.12. 解:由题意可得:,解得:,,解得:,故该建筑物的高度为:,故谜底为:208.分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.13. 解:如图,过点B作于点E,坡度::,:,,,.他升高了25m.故谜底为:25.首先根据题意画出图形,由坡度为1:,可求得坡角,又由小明沿着坡度为1:的山坡向上走了50m,根据直角三角形中,所对的直角边是斜边的一半,即可求得谜底.此题考查了坡度坡角问题此题比力简单,注意能构造直角三角形并用解直角三角形的知识求解是解此题的关键,注意数形结合思想的应用.14. 解:在中,,,在中,,.故谜底是:.先在中利用正弦的界说计算出AD,然后在中利用正弦的界说计算AC即可.本题考查了解直角三角形的实际应用中的坡度坡角问题,难度不年夜,注意细心运算即可.15. 解:如图在中,,这名滑雪运带动的高度下降了280m.故谜底为280如图在中,,可知这名滑雪运带动的高度下降了280m.本题考查解直角三角形、坡度坡角问题、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的界说,属于中考常考题型.16. 解:在直角三角形ADB中,,,,在直角三角形ABC中,,,,,解得:.故谜底为:.首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及构造方程关系式,进而可解,即可求出谜底.本题考查解直角三角形的应用仰角俯角问题,要求学生能借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形.17. 解:从热气球C处测得空中A、B两点的俯角分别为、,,,,,是等腰直角三角形,,在中,,,,.故谜底为:.先根据从热气球C处测得空中A、B两点的俯角分别为、可求出与的度数,再由直角三角形的性质求出AD与BD的长,根据即可得出结论.本题考查的是解直角三角形的应用仰角俯角问题,熟知锐角三角函数的界说是解答此题的关键.18. 解:作于E,于F,斜坡CD的坡比为1:2,即,,又,,,由题意得,四边形BEFC是矩形,,,斜坡AB 的坡比为1:3,,即,,故谜底为:130m.作于E,于F,根据坡度的概念分别求出AE、DF,结合图形计算即可.本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度是坡面的铅直高度h和水平宽度l的比是解题的关键,掌握矩形的判定和性质的应用.19. 解::,则.故谜底是:.根据坡度就是坡角的正切值即可求解.本题主要考查了坡度的界说,理解坡度和坡角的关系是解题的关键.20. 解:如图,作,水平线,由题意得:,,,,,,,,,.故谜底为:.作,水平线,根据题意确定出与的度数,利用锐角三角函数界说求出AD与BD的长,由求出BC的长,即可求出BH的长.此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数界说是解本题的关键.21. 设每层楼高为x米,由求出的长,进而暗示出与的长,在直角三角形中,利用锐角三角函数界说暗示出,同理暗示出,由求出AB的长即可.此题属于解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数界说是解本题的关键.22. 如图,作,水平线,根据题意确定出与的度数,利用锐角三角函数界说求出AD与BD的长,由求出BC的长,即可求出BH的长.此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数界说是解本题的关键.23. 过点C作CE与BD垂直,根据题意确定出所求角度数即可;在直角三角形CBE中,利用锐角三角函数界说求出BE的长,在直角三角形CDE中,利用锐角三角函数界说求出DE的长,由求出BD的长,即为教学楼的高.此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数界说是解本题的关键.24. 在直角三角形DCE中,利用锐角三角函数界说求出DE的长即可;过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设,暗示出BC,BD,DC,由题意获得三角形BCD为直角三角形,利用勾股定理列出关于x的方程,求出方程的解获得x的值,即可确定出AB的长.此题考查了解直角三角形仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.25. 如图,过点D作于点F,过点C作于点通过解直角获得DF的长度;通过解直角获得CE 的长度,则.本题考查了解直角三角形仰角俯角问题要求学生能借助仰角构造直角三角形并解直角三角形.26. 设米,在直角和直角中分别利用x暗示出AQ和BQ的长,根据,即可列方程求得x的值.本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数暗示出相关线段的长度,难度一般.。
解直角三角形应用专题带答案

解直角三角形应用专题带答案解直角三角形应用专题练1.在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度。
用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°。
求该雕塑的高度(测角仪高度忽略不计,结果不取近似值)。
2.一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处。
它沿XXX方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处。
求此时船距灯塔的距离(参考数据:√2≈1.414,√3≈1.732,结果取整数)。
3.2018年4月12日,菏泽国际牡丹花会拉开帷幕,XXX用直升机航拍技术全程直播。
在直升机的镜头下,观测曹州牡丹园A处的俯角为30°,B处的俯角为45°。
如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号)4.XXX在某桥附近试飞无人机。
为了测量无人机飞行的高度AD,XXX通过操控器指令无人机测得桥头B、C的俯角分别为∠EAB=60°,∠EAC=30°,且D、B、C在同一水平线上。
已知桥BC=30米,求无人机飞行的高度AD(精确到0.01米,参考数据:√2≈1.414,√3≈1.732)。
5.我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰。
其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米。
由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°。
若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据√3≈1.732)。
6.随着航母编队的成立,我国海军日益强大。
2018年4月12日,XXX在南海海域隆重举行海上阅兵。
在阅兵之前我军加强了海上巡逻。
巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离XXX为400海里。
解直角三角形及其应用题目

解直角三角形是数学中的一个重要概念,它涉及到利用三角函数来求解三角形的未知元素。
在解直角三角形的问题中,我们通常知道三角形的一个锐角及其对应的两边(直角边和斜边),或者知道两个锐角和一边。
通过使用正弦、余弦和正切等三角函数,我们可以找到三角形的其他元素。
下面解直角三角形的题目示例:1、【题目】在直角三角形ABC中,∠C = 90°,AB = 5cm,BC = 4cm。
求AC 的长度。
【解析】利用勾股定理求解。
在直角三角形中,AC2= AB2–BC2。
代入已知数值,AC2 = 52– 42 = 9,所以AC = 3cm。
2、【题目】在直角三角形中,∠A = 30°,∠C = 90°,BC = 3cm。
求AB 的长度。
【解析】利用正弦函数求解。
sin A = BC/AB,所以AB = BC/sin A = 3/sin 30° = 6cm。
3、【题目】在直角三角形中,∠B = 45°,∠C = 90°,AC = 2cm。
求AB 的长度。
【解析】利用正切函数求解。
tan B = AC/BC,所以BC = AC/tan B = 2/tan 45° = 2cm。
因为∠B = 45°,所以AB = sqrt(2) * BC = 2sqrt(2)cm。
4、【题目】在直角三角形中,∠A = 60°,∠C = 90°,AB = 4cm。
求BC 和AC的长度。
【解析】利用余弦函数和勾股定理求解。
cos A = AC/AB,所以AC = AB * cos A = 4 * cos 60° = 2cm。
然后利用勾股定理,BC2 = AB2– AC2 = 16 - 4 = 12,所以BC = 2sqrt(3)cm。
5、【题目】一艘船以15节(海里/小时)的速度向正北方向航行。
同时,一股水流以5节的速度从东向西流过。
求船的实际航向和速度。
(完整版)解直角三角形的应用经典题型

解直角三角形应用经典1.如图,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米)2.如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米, 参考数据: 414.12≈,732.13≈).3.施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米. (1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17c m 的长方体台阶来铺,需要铺几级台阶?4. 在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距83km 的C 处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.NM 东北BCAl17cmABCDA B 12P CD G 65. 如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)7.图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.8.在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707, tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)AB45°60°C E D9. 为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.10.如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为______米(精确到0.1).(参考数据:414.12≈732.13≈)82.011. 2009年首届中国国际航空体育节在莱芜举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米) (参考,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)12. 摩天轮是嘉峪关市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒.求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,结果保留整数).ABC D45°60°BAC13.小明想知道西汉胜迹中心湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.14. 小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)15.如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.B37° 48° DCA。
(完整word版)解直角三角形的应用中考练习题

解直角三角形的应用练习题一.选择题(共5小题)1.(2012•襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为()A.(4+1.6)m B.(12+1.6)m C.(4+1.6)m D.4m2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D.50米A.100米B.50米C.米3.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米4.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米5.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为A.20海里B.10海里C.20海里D.30海里()二.填空题6.(2009•仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC为_________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)7.(2009•安徽)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了_________m.8.(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出_________个这样的停车位.(≈1.4)9.(2014•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是_________海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)10.(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为_________米.三.解答题(共5小题)11.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)12.(2014•铁岭)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)13.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)14.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.15.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)解直角三角形的应用练习题参考答案与试题解析一.选择题(共5小题)1.(2012•襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为()A.(4+1.6)m B.(12+1.6)m C.(4+1.6)m D.4m考点:解直角三角形的应用.分析:根据已知得出AK=BD=12m,再利用tan30°==,进而得出CD的长.解答:解:∵BD=12米,李明的眼睛高AB=1.6米,∠AOE=60°,∴DB=AK,AB=KD=1.6米,∠CAK=30°,∴tan30°==,解得CK=4(米),即CD=CK+DK=4+1.6=(4+1.6)米.故选:A.点评:本题考查的是解直角三角形的应用,根据题意得出tan30°==解答是解答此题的关键.2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.D.50米米考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.点评:此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.3.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:先根据坡比求得AE的长,已知CB=10m,即可求得AD.解答:解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选:D.点评:此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.4.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.故选:D.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10海里C.20海里D.30海里考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.解答:解:如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.二.填空题(共5小题)6.(2009•仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC为 3.5米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)考点:解直角三角形的应用-仰角俯角问题.专题:应用题;压轴题.分析:图中有两个直角三角形△ABD、△ACD,可根据两个已知角度,利用正切函数定义,分别求出BD和CD,求差即可.解答:解:根据题意:在Rt△ABD中,有BD=AD•tan52°.在Rt△ADC中,有DC=AD•tan35°.则有BC=BD﹣CD=6(1.28﹣0.70)=3.5(米).点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.7.(2009•安徽)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了2()m.考点:解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:利用所给角的正弦函数求两次的高度,相减即可.解答:解:由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了2()m.点评:本题重点考查了三角函数定义的应用.8.(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)考点:解直角三角形的应用.专题:调配问题.分析:如图,根据三角函数可求BC,CE,由BE=BC+CE可求BE,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.解答:解:如图,BC=2.2×sin45°=2.2×≈1.54米,CE=5×sin45°=5×≈3.5米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.14米,(56﹣5.04)÷3.14+1=50.96÷3.14+1≈16+1=17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.点评:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.9.(2014•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.10.(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为100米.考点:解直角三角形的应用.专题:几何图形问题.分析:过点P作PE⊥AB于点E,先求出∠APE及∠BPE、∠ABP的度数,由锐角三角函数的定义即可得出结论.解答:解:过点P作PE⊥AB于点E,∵∠APC=75°,∠BPD=30°,∴∠APB=75°,∵∠BAP=∠APC=75°,∴∠APB=∠BAP,∴AB=PB=200m,∵∠ABP=30°,∴PE=PB=100m.故答案为:100.点评:本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.三.解答题(共5小题)11.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用.分析:(1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;(2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.12.(2014•铁岭)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,作辅助线EF⊥AC,通过平角减去其他角从而得到∠AEF=45°即可求出AE的长度.解答:解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°﹣45°﹣15°=30°,∴EF=CE=135米,∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°﹣45°﹣60°﹣30°=45°,∴AE=135≈190.35米点评:本题考查了解直角三角形的应用,解答本题的关键是作辅助线EF⊥AC,以及坡度和坡角的关系.13.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)考点:解直角三角形的应用;菱形的性质.分析:(1)证明△CED是等边三角形,即可求解;(2)分别求得当∠CED是60°和120°,两种情况下AD的长,求差即可;(3)分别求得当∠CED是60°和120°,两种情况下DG的长度,即可求得x的范围.解答:解:(1)连接CD(图1).∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm;(2)根据题意得:AB=BC=CD,当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H(图2),则∠CEH=60°,CH=HD.在直角△CHE中,sin∠CEH=,∴CH=20•sin60°=20×=10(cm),∴CD=20cm,∴AD=3×20=60≈103.9(cm).∴103.9﹣60=43.9(cm).即点A向左移动了43.9cm;(3)当∠CED=120°时,∠DEG=60°,∵DE=EG,∴△DEG是等边三角形.∴DG=DE=20cm,当∠CED=60°时(图3),则有∠DEG=120°,过点E作EI⊥DG于点I.∴∠DEI=∠GEI=60°,DI=IG,在直角△DIE中,sin∠DEI=,∴DI=DE•sin∠DEI=20×sin60°=20×=10cm.∴DG=2DI=20≈34.6cm.则x的范围是:20cm≤x≤34.6cm.点评:本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个等边三角形.14.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:(1)分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长线于点H,根据AB∥CD∥EF,AM∥BC∥DE,分别解Rt△ABN、Rt△DCG、Rt△FEH,求出BN、DG、FH的长度,继而可求出FM的长度;(2)在Rt△FAM中,根据sin∠FAM=,求出AF的长度,然后利用勾股定理求出AM的长度.解答:解:(1)分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长在Rt△ABN中,∵AB=6m,∠BAM=30°,∴BN=ABsin∠BAN=6×=3m,∵AB∥CD∥EF,AM∥BC∥DE,同理可得:DG=FH=3m,∴FM=FH+DG+BN=9m;(2)在Rt△FAM中,∵FM=9m,sin∠FAM=,∴AF=27m,∴AM==18(m).即AM的长为18m.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数解直角三角形,注意勾股定理的应用.15.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.。
解直角三角形典型应用20例子

解直角三角形.典型应用题20例1.已知:如图,河旁有一座小山,从山顶 A 处测得河对岸点 C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽 CD 为50m .现需从山顶 A 到河对岸点C 拉一条笔直的缆 绳AC ,求山的高度及缆绳 AC 的长(答案可带根号)•2•已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔 M 在北偏西45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少 ?(精确到0.1海里,J 3止1.732)3.已知:如图,在两面墙之间有一个底端在端在B 点;当它靠在另一侧墙上时,梯子的顶端在45°.点D 到地面的垂直距离 DE =3J2m ,求点B 到地面的垂直距离 BC •4.已知:如图,小明准备测量学校旗杆 的影子恰好落在水平地面和斜坡的坡面上, 上的影长CD = 8m ,太阳光线AD 与水平地面成26°角,斜坡CD 与水平地面所成的锐 角为30°,求旗杆 AB 的高度(精确到1m ) •A 点的梯子,当它靠在一侧墙上时,梯子的顶D 点.已知/ BAC = 60°,/ DAE=AB 的高度,当他发现斜坡正对着太阳时,旗杆AB测得水平地面上的影长 BC = 20m ,斜坡坡面北A5.已知:如图,在某旅游地一名游客由山脚一个景点B ,再由B 地沿山坡BC 行走320米到达山顶C ,如果在山顶 C 处观测到景点 B 的俯角为60°.求山高CD (精确到0.01米).5.已知:如图,小明准备用如下方法测量路灯的高度:他走到路灯旁的一个地方,竖起一 根2m 长的竹竿,测得竹竿影长为 1m ,他沿着影子的方向,又向远处走出两根竹竿的 长度,他又竖起竹竿,测得影长正好为2m .问路灯高度为多少米 ?运动员从营地A 出发,沿北偏东60°方向走了 500 30°方向走了 500m ,到达目的地 C 点.求IIIA 沿坡角为30°的山坡AB 行走400m ,到达6.已知:如图,在一次越野比赛中,到达B 点,然后再沿北偏西北n(1)A 、C 两地之间的距离;⑵确定目的地C 在营地A 的什么方向?已知:如图,在1998年特大洪水时期,要加固全长为10000m 的河堤.大堤高5m ,坝顶宽4m ,迎水坡和背水坡都是坡度为1 : 1的等腰梯形.现要将大堤加高坡度改为1 : 1.5.已知坝顶宽不变,求大坝横截面面积增加了多少平方米, 多少立方米的土石?(1)BC 的长; ⑵△ ABC 的面积.(1)求AB 的长;a⑵求证:—一si n ot7. 1m ,背水坡完成工程需已知:如图,在△ ABC 中, 9. 已知:如图,在△ ABC 中, AC = b , BC = a ,锐角/ A = Ct ,/ B =P .__b sin P . A拓展、探究、思考AB = c , AC = b ,锐角/ A = Ct .RRt △ ADC 中,/ D = 90°,/ A=a ,/ CBD = P , AB = a.用含a 及P的三10.已知:如图,在角函数的式子表示CD的长.11.已知:△ ABC 中,/ A = 30°, AC = 10,12.已知:四边形 ABCD 的两条对角线 AC 、=a (0 °v a v 90° ),求此四边形的面积. BD 相交于 E 点,AC = a , BD = b , / BEC13 ..已知:如图, 长.(精确到 AB = 52m , / DAB = 430.01m),/ CAB = 40°,求大楼上的避雷针 CD 的□□□□□□□□□ □□口□□口口口口口□□口口□□口口14.已知:如图, 知测角仪AB 的高为在距旗杆 25m 的A 处,用测角仪测得旗杆顶点C 的仰角为30°,已BC =5J2,求 AB 的长.4 1如图,△ ABC 中,AC = 10, si nC=-,si nB=-,求 AB .3如图,在O O 中,/ A =/ C ,求证:AB = CD (利用三角函数证明).如图,P 是矩形ABCD 的CD 边上一点,PE 丄AC 于E , PF 丄BD 于F , AC18.已知:如图,一艘渔船正在港口 A 的正东方向40海里的B 处进行捕鱼作业,突然接到通知,要该船前往C 岛运送一批物资到 A 港,已知C 岛在A 港的北偏东60 ° 方向,且在B 的北偏西45°方向.问该船从B 处出发,以平均每小时20海里的速 度行驶,需要多少时间才能把这批物资送到A 港(精确到1小时)(该船在C 岛停留半个小时"(丁㊁止1.41, J 3 7.73, J 6 止 2.45)15 .已知:16.已知:17.已知:=15, BC = 8,求 PE + PF.C19.已知:如图,直线y = —x+ 12分别交X轴、y轴于A、B点,将△ AOB折叠,使A 点恰好落在0B的中点C处,折痕为DE .(1)求AE 的长及sin / BEC 的值; ⑵求△ CDE 的面积.20..已知:如图,斜坡 PQ 的坡度i = 1 : J 3,在坡面上点0处有一根1m 高且垂直于水平面的水管0A ,顶端A 处有一旋转式喷头向外喷水,水流在各个方向沿相同的 抛物线落下,水流最高点 M 比点A 高出1m ,且在点A 测得点M 的仰角为30°, 以0点为原点,OA 所在直线为 标系•设水喷到斜坡上的最低点为(1) 写出A 点的坐标及直线 PQ 的解析式; (2) 求此抛物线AMC 的解析式;⑶求 I X C — X B I ; ⑷求B 点与C 点间的距离.y 轴,过O 点垂直于OA 的直线为X 轴建立直角坐 B ,最高点为C.。
解直角三角形应用题

解直角三角形应用题解直角三角形的应用一、仰角、俯角、方向角:1.在离地高为30米的高楼窗台处测得地面花坛中心标志物的俯角为60°,那么这一标志物离高楼的距离为米.2.如果在距离某一大楼100米的地面上,测得这幢大楼顶的仰角为30°,那么这幢大楼高为米.3.如果某飞机的飞行高度为m千米,从飞机上看到地面控制点的俯角为α,那么此时飞机与地面控制点之间的距离是().(A)αsinm(B)αcosm(C)αtg⋅m(D)αctg⋅m4.如图,飞机P在目标A的正上方1100m处,飞行员测得地面目标B的俯角30α=,那么地面目标BA、之间的距离为米(结果保留根号).5.如图,小明用一块有一个锐角为304米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米)6.如图,张华同学在学校某建筑物的C点处测得旗杆顶部A点的仰角为30,旗杆底部B点的俯角为45.若旗杆底部B点到建筑物的水平距离9BE=米,旗杆台阶高1米,则旗杆顶点A离地面的高度为米(结果保留根号).7.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?αB(第4请说明理由.8.如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB 上,测量湖中两个小岛C 、D 间的距离.从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°.已知小山AB 的高为180米,求小岛C 、D 间的距离.(计算过程和结果均不取近似值)9.汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(.如图7).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)10.某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A 、B 相距 3 米,探测线与地面的夹角分别是30°和 60°(如图),试确定生命所在点 C 的深度.(结果精确到0.1米,参考数据:2 1.41,3 1.73≈≈)11.如图8,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上.(1)改善后滑滑板会加长多少?(精确到0.01)QB CP A 45060︒30︒(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由(参考数据:2.449=== )二 、坡角、坡度:1.已知一段公路在斜坡上,坡度i=1︰3,若汽车在斜坡上行驶100米,则汽车升高 米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形应用题
直角三角形是日常生活中常见的一种三角形,因为其特定的角度关系,使得对其进行一系列数学运算以及技术应用都显得方便和便捷。
在学习和应用直角三角形的过程中,解决一些应用题也是非常有必要的。
本文将详细介绍一些解直角三角形应用题的重要方法与技巧。
一、三边比例与角度多少
在某些情况下,通过已知直角三角形的三边比例,可以推算出其内部的角度关系。
如下所示,已知直角三角形的三边比例,求其内部所有角度的大小。
根据直角三角形的定义,可以知道斜边上对应的角度是直角,那么只需要求出其余两个角度就可以了。
设三边长度分别为a,b,c,设两个内角为A,B,那么根据三角函数的定义可以得到下列方程组:
sin A = a / c
cos A = b / c
tan A = a / b
通过这些公式,可以得到角A和角B的大小。
当然,如果只有两个角度是已知的,也可以借助三角函数式子求得第三个角度。
二、三角形上一点对角度的影响
已知直角三角形ABC中,C为直角,AB=c,已知点D在斜边AC上,且满足AD=BC,求角度B和角度C的大小。
这就是典型的直角三角形应用题。
首先,因为AD和BC长度相等,那么可知三角形ACD和三角形BCD的面积相等,根据三角形面积公式得到:
AD×CD/2 = BC×CD/2
AD = BC×CD/AC
将已知数据代入,化简得到:
CD=2AC/(1+√5)
接着,根据对应角的两点组合定理可得到如下关系式:
tan B = BD/AB = AD/AB
sin C = BD/BC = AD/AC
代入已知的数据,得到:
tan B = (2AC / (1+√5)) / c
sin C = (2AC / (1+√5)) / √(AC^2 + c^2)
通过这些方程,可以计算出角B和角C的大小。
三、海伦公式
海伦公式(Heron's formula)是解任意形状三角形面积的重要公式之一。
对于任意形状的三角形,海伦公式的表述如下所示:
S = √(p(p-a)(p-b)(p-c))
其中,S表示三角形的面积,a,b,c表示三角形的三边长度,p则表示三角形半周长,即:
p = (a+b+c)/2
在求解直角三角形的面积时,可以运用海伦公式。
已知直角三角形的两个直角边的长度a和b,求斜边c。
由勾股定理可得:
c = √(a^2 + b^2)
代入海伦公式中,可以得到:
S = 1/2 × a × b
此外,若已知直角三角形的面积S和一条直角边的长度a,求另一条直角边的长度b,也可以借助海伦公式。
设斜边长度为c,代入公式得到:
S = 1/2 × a × b
S = 1/2 × c × a
c = 2S / a
代入勾股定理可得到:
b = √(c^2 - a^2)
利用以上公式,可以实现直角三角形的各种应用题的解法。
掌握这些技巧和方法,并在日常生活中加以运用,将会极大地提高应对数学问题的能力。