气相色谱-质谱联用原理及应用介绍
气质联用原理及应用

• 气质联用原理介绍 • 气质联用仪器介绍 • 气质联用样品处理技术 • 气质联用应用实例 • 气质联用技术展望
01
气质联用原理介绍
气质联用的定义
气质联用(GC-MS)是一种将 气相色谱(GC)与质谱(MS)
相结合的检测技术。
它通过气相色谱将复杂样品分离 成单一组分,然后利用质谱对分 离后的组分进行鉴定和结构分析。
样品制备
样品净化
去除样品中的杂质和干扰物质,以提高分析的准确性和可靠性。
样品浓缩
将样品中的目标化合物浓缩,以便进行后续的分析。
衍生化技术
衍生化反应
通过衍生化反应将目标化合物转化为更适合分析的形式,以 提高检测的灵敏度和选择性。
衍生化试剂
选择合适的衍生化试剂,以确保衍生化反应的效率和效果。
04
气质联用应用实例
特点。
工作原理
通过电场和磁场将带电粒子分离, 根据粒子质量和电荷比的不同进行 检测。
应用领域
在化学、生物学、医学等领域中用 于鉴定未知物、药物代谢、疾病诊 断等。
接口技术
作用
接口技术是将气相色谱仪与质谱 仪连接起来的关键部件,实现气 相色谱仪的流出物与质谱仪的进
样口的对接。
工作原理
通过高温、高真空条件将气相色 谱仪的流出物进行蒸发和离化,
药物代谢和药效的评估
通过气质联用技术,可以评估药物在体内的代谢和药效,为临床用药提供科学依据。
05
气ቤተ መጻሕፍቲ ባይዱ联用技术展望
技术发展与创新
01
02
03
高效能分离系统
采用更高效的分离柱和先 进的加热技术,提高分离 效率和灵敏度。
新型检测器
开发高灵敏度、高分辨率 的新型检测器,如飞行时 间质谱和离子阱质谱。
GC-MS工作原理

GC-MS工作原理GC-MS(气相色谱-质谱联用技术)是一种常用的分析方法,它结合了气相色谱和质谱两种技术,能够对复杂的混合物进行分析和鉴定。
本文将从引言概述、正文内容和总结三个方面,详细介绍GC-MS的工作原理。
引言概述:GC-MS是一种广泛应用于化学、生物、环境等领域的分析方法,它通过将样品分离和鉴定,能够确定样品中的化学成份和结构。
GC-MS的工作原理基于气相色谱和质谱两种技术的结合,具有高分辨率、高灵敏度和高选择性的特点。
正文内容:1. 气相色谱(GC)的原理1.1 色谱柱色谱柱是气相色谱的核心部件,它通过填充物或者涂层将混合物中的化合物分离开来。
常见的色谱柱有毛细管柱和填充柱,其选择取决于样品的性质和分析的目的。
1.2 色谱条件色谱条件包括温度、流速和载气选择等。
通过调节这些条件,可以实现对样品中各组分的分离和保留。
1.3 检测器检测器用于检测样品中化合物的信号,常用的检测器有火焰离子化检测器(FID)和电子捕获检测器(ECD)等。
2. 质谱(MS)的原理2.1 离子化质谱中的离子化过程将分离后的化合物转化为离子,使其可以被质谱仪检测到。
常用的离子化方法有电子轰击离子化(EI)和化学离子化(CI)等。
2.2 质谱仪质谱仪由离子源、质量分析器和检测器组成。
离子源将离子化的化合物引入质谱仪,质量分析器对离子进行分析和鉴定,检测器用于检测离子信号并生成质谱图。
2.3 质谱图解析质谱图是质谱仪输出的结果,通过对质谱图进行解析,可以确定样品中的化合物种类和相对丰度。
3. GC-MS的工作原理GC-MS将气相色谱和质谱联用,通过气相色谱对样品进行分离,然后将分离后的化合物引入质谱仪进行鉴定。
GC-MS可以实现高分辨率的分析,同时具有高灵敏度和高选择性的特点。
4. GC-MS的应用领域4.1 化学分析GC-MS广泛应用于化学分析领域,可以对有机物、无机物及其它化合物进行分析和鉴定。
4.2 生物医药GC-MS在生物医药领域中用于药物代谢研究、生物标志物的分析和鉴定等。
气相色谱质谱联用仪原理

气相色谱质谱联用仪原理
气相色谱质谱联用仪原理
气相色谱质谱联用仪(GC/MS)是分析化学中最常用的分析技术之一。
它的原理是利用化学反应将样品の中的物质(气态分子)分解为单一的离子(物质分子),然后通过两个不同的仪器:气相色谱仪和质谱仪,对不同的离子进行分析和测量,从而实现快速准确的成分分析和测量功能。
气相色谱质谱联用仪一般实现样品的分析分解,分解所得离子大多是由三种部分组成:被测样本,解离介质和离子化剂。
被测样品通过气相色谱被离解成各种成分,这些成分的浓度和比例可以通过气相色谱仪测量出来;解离介质有助于成分的分离,这是一种热敏液体溶剂系统,通常由水、醇、氯仿及其他溶剂混合;离子化剂可以将被测物质分解成离子,并将该离子通过质谱仪进行测量和分析,通过特定的软件进行分析。
气相色谱质谱联用仪包含了两个主要部分:一个室温型高温气相色谱仪以及一个三极管电离器质谱仪。
前者采用离子源放大器,可以有效地将原子的分子离解为离子;而后者通过特殊的端口量程及容积电路,实现高增益及低噪声的容积控制,以通过电离室和闪烁管向催化电子器投射电离电子,获得上千倍的增益,从而在极短的时间内实现精准的成分质量测定。
气相色谱质谱联用仪的优势非常明显,它可以同时测量样品的总体分析组成,也可以准确测量成分的有机和无机成分,可以用于实时动态检测,从而获得较为准确而可靠的分析数据, c在食品医药、环境保护、化学气针、血液分析、汽车制造等领域有着广泛的应用。
总之,气相色谱质谱联用仪具有高精度、准确度高、分析快速和检索快速等多个优点,是当今最流行的分析技术之一。
它提供了一种简单、高效、快速的分析方法,对化学、食品、环境保护。
气相色谱质谱联用仪的工作原理

气相色谱质谱联用仪的工作原理
气相色谱质谱联用仪(GC-MS)是一种结合气相色谱和质谱两种技术的分析仪器,主要用于分析有机化合物的结构和成分。
其工作原理可以分为以下几个步骤:
1. 气相色谱分离
首先,样品通过气相色谱柱被分离成单个的化合物,每个化合物到达检测器的时间不同。
通过控制柱温升高速率和保持时间,可以有效地分离化合物成分。
2. 质谱检测
分离出来的化合物在质谱检测器中被进一步分析。
质谱仪将化合物分解成电离子,然后使用电磁场将这些离子分离并通过检测器检测。
3. 质谱谱图分析
通过分离出来的不同离子,可以在质谱谱图上分析出每个化合物的分子量和结构,因为每个分子会产生不同的质谱谱图。
4. 数据分析
通过覆盖气相色谱和质谱的数据,可以得出关于每个化合物的更多信
息,因此可以用于定量和结构分析。
总之,气相色谱质谱联用仪结合了两种分析技术,可以提高对复杂化合物的分析能力。
分离化合物的气相色谱柱和质谱分析的数据分析为化合物的鉴定提供了准确的信息。
气相质谱联用仪原理

气相质谱联用仪原理气相质谱联用仪(GC-MS)是一种常用的分析仪器,它将气相色谱(GC)和质谱(MS)两种技术结合在一起,能够对复杂混合物进行高效、灵敏的分析。
在本文中,我们将详细介绍气相质谱联用仪的原理,以及它是如何工作的。
首先,让我们来了解一下气相色谱(GC)的原理。
气相色谱是一种在气相载气流动的条件下进行的色谱分离技术。
样品首先被注入到色谱柱中,然后通过色谱柱的填充物进行分离,不同成分在填充物中的停留时间不同,从而实现了分离。
GC的分离效果取决于填充物的选择,不同的填充物可以对不同类型的化合物进行分离。
接下来,让我们来了解质谱(MS)的原理。
质谱是一种通过对化合物进行碎裂并分析碎片离子质荷比来确定分子结构的技术。
在质谱仪中,样品首先被电离成离子,然后通过一系列的电场加速和偏转,最终被分离成不同质荷比的离子。
这些离子被传入质谱仪的检测器中进行检测和分析,从而确定样品的分子结构。
那么,气相质谱联用仪是如何将这两种技术结合在一起的呢?在GC-MS中,气相色谱和质谱是紧密耦合在一起的。
首先,样品通过气相色谱进行分离,不同成分在色谱柱中被分离并逐一进入质谱。
然后,色谱柱的输出被引入质谱仪中,样品被电离并进行质谱分析。
通过这种方式,GC-MS能够对复杂混合物进行高效、灵敏的分析,不仅可以得到样品的组成成分,还可以确定化合物的结构。
总的来说,气相质谱联用仪通过结合气相色谱和质谱两种技术,能够实现对复杂混合物的高效分析。
它的原理是基于气相色谱和质谱的分离和分析技术,通过紧密耦合在一起,实现了对化合物的分离和结构分析。
这使得它在化学分析、环境监测、食品安全等领域有着广泛的应用前景。
希望本文能够帮助您更好地理解气相质谱联用仪的原理和工作方式。
气相色谱-质谱(GC-MS)联用技术及其应用

气相色谱-质谱(GC-MS)联用技术及其应用摘要:气相色谱法—质谱(GC-MS)联用技术是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
其在环境中的应用主要包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
本文主要列举了GC-MS在职业卫生检测、医药、农药残留检测、食品、刑事鉴识和社会安全方面的应用。
关键词:GC-MS,应用,药物检测,环境1 气相色谱-质谱(GC-MS)联用气相色谱法–质谱法联用(Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
GC-MS 的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
GC-MS也用于为保障机场安全测定行李和人体中的物质。
另外,GC-MS还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。
气相色谱—质谱(GC—MS)联用技术是由两个主要部分组成:即气相色谱(GC)部分和质谱(MS)部分。
气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。
GC是用气体作为流动相的色谱法,当试样流经柱子时,根据混合物组分分子的化学性质的差异而得到分离。
分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。
GC可以将混合物分离为纯物质,但是GC 只依靠保留时间定性,很大程度上具有不可靠性。
MS是通过将每个分子断裂成离子化碎片并通过其质荷比来进行测定,可以确定待测物的分子量、分子式,但MS只能对纯物质进行定性,对混合组分定性无能为力。
把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多倍。
单用气相色谱或质谱是不可能精确地识别一种特定的分子的。
通常,经质谱仪处理的需要是非常纯的样品,而使用传统的检测器的气相色谱(如火焰离子化检测器)当有多种分子通过色谱柱的时间一样时(即具有相同的保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子。
气相色谱质谱联用仪方法原理及仪器概述

一、概述气相色谱质谱联用仪(GC-MS)是一种非常重要的分析仪器,它结合了气相色谱和质谱两种分析技术,能够对复杂样品中的化合物进行高灵敏度和高选择性的分析。
本文将介绍气相色谱质谱联用仪的基本原理,仪器组成和工作流程,希望能够对相关领域的研究人员和技术人员有所帮助。
二、气相色谱质谱联用仪的原理1. 气相色谱原理:气相色谱是一种基于化合物在气相载气流动相中分离的技术。
化合物混合物在进样口被蒸发成蒸气,随后通过载气将其引入色谱柱,不同化合物因分配系数的差异而在色谱柱中以不同的速率移动,最终被分离出来。
2. 质谱原理:质谱是一种利用化合物分子的质荷比进行分析的技术,化合物经过电离后,生成一系列离子,这些离子根据不同的质量和电荷来探测。
质谱技术的关键在于将离子进行分离并对其进行检测。
3. 联用原理:气相色谱质谱联用仪结合了气相色谱和质谱的优势,通过气相色谱对化合物进行分离和富集,再将分离后的化合物以雄厚的射流进入质谱进行离子化、分离和检测,从而实现对复杂混合物的高灵敏度和高选择性分析。
三、气相色谱质谱联用仪的仪器概述1. 气相色谱部分:主要包括进样口、色谱柱、载气源、检测器等组成部分。
进样口用于气相化合物的进样和蒸发,色谱柱用于分离化合物,载气源提供载气以及维持色谱柱的流动等。
2. 质谱部分:主要包括离子源、质量过滤器、检测器等组成部分。
离子源用于电离化合物产生离子,质量过滤器用于对离子进行分离,检测器用于对离子进行检测和计数。
3. 数据系统:用于控制仪器运行、采集数据和进行数据处理的计算机系统。
四、气相色谱质谱联用仪的工作流程1. 样品进样:将需要分析的样品通过进样口蒸发成气态,进入气相色谱部分进行分离。
2. 气相色谱分离:化合物在色谱柱中根据分配系数进行分离,不同化合物会在不同时间点出现在检测器中。
3. 化合物离子化:分离后的化合物通过离子源被电离成为离子,不同化合物产生的离子有不同的质荷比。
4. 质谱分析:离子经过质量过滤器进行分离,并被检测器进行检测和计数。
tg-gc联用工作原理

tg-gc联用工作原理
tg-gc联用是一种常用的化学分析方法,它结合了气相色谱(GC)和质谱(MS)的优点,可以用于分析各种挥发性有机物和非挥发性有机物。
本文将介绍tg-gc联用工作原理、仪器组成、应用范围等方面,帮助读者了解该方法的基本知识和应用场景。
一、工作原理
tg-gc联用是一种分离和分析技术,它通过将样品在气相色谱柱中分离成不同的组分,然后使用质谱仪对每个组分进行定性定量分析。
在气相色谱中,样品中的不同组分因分子大小、极性、电负性等因素而具有不同的保留时间,通过分离不同的组分,可以实现对复杂样品中有机物的分析。
质谱仪则可以对每个组分进行离子化、分离、检测,从而获得每个有机物的分子量、化学结构等信息。
二、仪器组成
tg-gc联用仪器主要包括气相色谱仪、质谱仪、连接系统、软件系统等部分。
气相色谱仪用于分离样品中的不同组分,质谱仪用于检测每个组分的离子信息,连接系统用于连接色谱仪和质谱仪,软件系统用于数据采集、处理和分析。
三、应用范围
tg-gc联用方法广泛应用于环境监测、食品检测、药物分析、化学合成等领域。
它可以分析空气、水体、土壤等环境样品中的挥发性有机物和非挥发性有机物,也可以用于检测食品中的农药残留、兽药残留等有害物质,还可以用于药物分析中药物的鉴别、纯度检测等。
此外,tg-gc联用方法还可以用于化学合成中反应条件的优化、中间体的监测等。
总之,tg-gc联用是一种高效、灵敏、可靠的化学分析方法,具有广泛的应用前景。
通过了解其工作原理、仪器组成和适用范围,我们可以更好地应用该方法解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相色谱法-质谱联用气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。
GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。
GC-MS也用于为保障机场安全测定行李和人体中的物质。
另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。
GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。
所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。
而非专一性测试则只能指出试样中有哪类物质存在。
尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。
目录1 历史2 仪器设备2.1 GC-MS吹扫和捕集2.2 质谱检测器的类型3 分析3.1 MS全程扫描3.2 选择的离子检测3.3 离子化类型3.3.1 电子离子化3.3.2 化学离子化3.4 GC-串联MS4 应用4.1 环境检测和清洁4.2 刑事鉴识4.3 执法方面的应用4.4 运动反兴奋剂分析4.5 社会安全4.6 食品、饮料和香水分析4.7 天体化学4.8 医药5 参考文献6 参考书目7 外部链接历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。
当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。
价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。
1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。
到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。
1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。
FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。
1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。
到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。
今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。
气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。
气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基聚硅氧烷)。
当试样流经柱子时,根据个组分分子的化学性质的差异而得到分离。
分子被柱子所保留,然后,在不同时间(叫做保留时间)流出柱子。
流出柱子的分子被下游的质谱分析器做俘获,离子化、加速、偏向、最终分别测定离子化的分子。
质谱仪是通过把每个分子断裂成离子化碎片并通过其质荷比来进行测定的。
GC-MS schematic把气相色谱和质谱这两部分放在一起使用要比单独使用那一部分对物质的识别都会精细很多很多倍。
单用气相色谱或质谱是不可能精确地识别一种特定的分子的。
通常,经质谱仪处理的需要是非常纯的样品,而使用传统的检测器的气相色谱(如,火焰离子化检测器)当有多种分子通过色谱柱的时间一样时(即具有相同的保留时间)不能予以区分,这样会导致两种或多种分子在同一时间流出柱子。
在单独使用质谱检测器时,也会出现样式相似的离子化碎片。
将这两种方法结合起来则能减少误差的可能性,因为两种分子同时具有相同的色谱行为和质谱行为实属非常罕见。
因而,当一张分子识别质谱图出现在某一特定的GC-MS分析的保留时间时,将典型地增高了对样品种感兴趣的被分析物的确定性。
GC-MS吹扫和捕集在分析挥发性化合物时,可以用吹扫和俘获(Purge and Trap,P&T)浓缩器系统导入样品。
提取目标被分析物,并与水混合,然后导入气密性室。
用惰性气体,比如氮气(N2)往水中鼓泡;这就叫做吹扫。
挥发性化合物运动到水上方的顶空(headspace)。
并被压力梯度驱使(由引入吹扫气体所引起)流出气密室。
这些挥发性化合物被沿着顶线抽往“阱”。
阱是一个装有吸附材料的、处于室温下的柱子。
它将通过把这些挥发性化合物转化成液相而保持住。
然后,加热给阱样品化合物经过一个挥发性界面被引入GC-MS柱,阱在这里相当一个分流进样系统。
质谱检测器的类型和气相色谱(GC)联合使用的的质谱的最常见类型是四极杆质谱仪,有时根据惠普(现在的安捷伦)的商品名叫做“质量选择检测器”(MSD)。
其他相对普遍的是离子阱质谱仪。
另外,扇形磁场质谱仪气质联用中也有使用,然而,这些特别的仪器价格昂贵,体积庞大不适用于高通量服务的实验室。
气质联用中还可能遇到的其他的质谱检测器有:飞行时间检测器(time of flight ,TOF)、串联四极杆检测器(tandem quadrupoles ,MS-MS)(请见下面内容。
)或在离子阱的情况下MSn这里n指的是质谱级数。
分析典型的质谱检测有两种途径:全程扫描和选择性离子检测(Selective Ion Monitoring ,SIM)。
典型的GC-MS能够根据对仪器的设定,分别地或同时地执行这两种功能。
MS全程扫描当以全程扫描方式收集数据时,确定一个质量片段目标范围并输入仪器。
一个典型的检测质量片段的广度范围可以是质荷比(m/z)50到质荷比400。
扫描范围的确定很大程度上决定于分析者预期试样中所含的物质,同时要考虑容易和其他可能的干扰成分。
MS不应设定成寻找太低质量的片段,否则,会测到空气(发现如质荷比为28的氮气),二氧化碳(m/z 44)或其他可能的干扰。
另外,如果选择一个很大的扫描范围,由于每次扫描必需测定很宽的质量范围,所耗费的时间长,结构每秒钟扫描的次数减少,从而降低仪器的灵敏度。
全程扫描对于测定试样中的未知化合物有用。
当需要证实或解析试样中的化合物时,它比SIM能提供更多的信息。
在开发仪器方法的时候,通常首先用全程扫描模式分析被测试的溶液确定保留时间和质量碎片指纹图,然后,转向SIM仪器方法。
选择的离子检测当在仪器方法中输入选择监测(selected ion monitoring ,SIM)某种离子片段时,仅有那些质量的片段被质谱仪监测。
SIM的优点是由于每次扫描时,仪器仅寻找少量片段(比如,三个片段)其监测限较低。
每秒钟能进行更多次的扫描。
由于仅仅监测所感兴趣的几个质量片段,基质干扰典型的低,为进一步确证潜在的阳性结果的可能性,相对重要的是与已知参比标准进行比较确定各种离子片段的离子比。
离子化类型在分子通过柱子后,流经连接管线进入质谱仪,然后,被用各种方法离子化,每一次仅用其中的一种方法。
一旦样品被达成碎片后,将被监测。
通常用电子倍增二极管检测。
电子倍增二极管将离子化的质量片段转化成电信号后进行测定。
离子化技术是不依赖于使用全程扫描还是SIM的。
电子离子化到目前为止,最常用的也许是标准形式的离子化过程是电子离子化(electron ionization,EI)。
分子进入MS(其源为四极杆或离子阱MS的离子阱本身),在那里他们被由灯丝射出饿电子所轰击。
这里的灯丝不很像标准电灯泡里的灯丝。
电子以特定的、可以重复的方式将分子击成片段。
这一“硬离子化”技术导致产生更多低质荷比(m/z)的碎片,如果,仍存在的话,也非常少接近分子质量单位的物种。
质谱专家所说的“硬离子化”是使用分子电子轰击,而所谓“软质子化”是由导入的气体和分子碰撞使分子带电荷。
分子片段的模式依赖于应用于系统的电子的能量,典型的是70 eV(电子伏特)。
使用70 eV能方便所产生的谱图和制造商提供的图库软件或美国国家标准研究所(the National Institute of Standards NIST-USA)开发的图库软件里的标准质谱进行比较。
图库的搜索使用匹配算法,比如基于几率的匹配和基于点积的匹配。
化学离子化:Chemical ionization在化学质谱法中,是将一种气体,典型地是甲烷或氨气引入质谱仪中。
根据所选择的技术(正CI或负CI),该试剂气体将与电子和被分析物发生作用引起感兴趣的分子的‘软’离子化。
较软的化学离子化与硬的化学离子化相比将较低程度的造成分子碎片化。
使用化学离子化的主要益处之一是产生紧密对应于感兴趣的被分析物的分子量的质量碎片。
正的化学离子化在正的化学离子化(Positive Chemical Ionization ,PCI)中试剂气体与目标分子相互作用,最经常是进行质子交换。
这将产生相对大量的该物种。
负的化学离子化在负化学离子化中(Negative Chemical Ionization ,NCI)试剂气体降低自由电子对目标被分析物的碰撞。
该降低了的能量典型地使大的碎片不再继续断裂,保持其大的含量。
仪器分析的最初目的是为一种物质定量。
这要通过在产生的谱图中比较各原子质量间的相对浓度来实现。
有可能通过两种方法实现定量分析。
比较法和从头分析法。
比较分析的关键是将所获得的被分析物的谱图与谱库里的谱图进行比较,在谱库中是否存在具有和该物质特征一致的样品的谱图。
这种比较最好靠电脑来执行,因为由于标度的变化,会产生很多视觉上的扭曲。
电脑同时还能关联更多的数据,(比如,由气相色谱测定的保留时间),以至获得更精确的结果。
另一种方法是测量各质谱峰的相对峰高。
在该方法中,将最高的质谱峰指定为100%,其他的峰根据对最高峰的相对比例标出其百分相对高度。
将所有的大于3%相对高度的峰都进行标注。
通常通过母体峰来确定未知化合物的总质量。
用母体峰的总质量值与所推测的该化合物中所含元素的化学式相适配。
对于具有许多同位素的元素,可以用谱图中的同位素模式确定存在的元素。
一旦化学式与谱图相匹配,就能确定分子结构和成键方式,而且,必需和GC-MS记录的特点相一致。
典型地,这种测定是通过和仪器配备的程序自动进行的,仪器给出样品中可能存在的元素的列表。
“全谱”分析考虑谱图中所有的峰。