状态反馈控制器的设计

合集下载

毕业设计4“极点配置设计状态反馈控制器的算法”阅读材料-WSC

毕业设计4“极点配置设计状态反馈控制器的算法”阅读材料-WSC

阅读材料: 极点配置设计状态反馈控制器的算法工程实践中,系统的动态特性往往以时域指标给出,比如要求超调量小于等于多少,超调时间不超过多少,阻尼振荡频率不大于多少等。

例1(138P 例5.3.3)如例5-6图被控系统,设计状态反馈控制器,使得闭环系统是渐近稳定的,而且闭环系统的:超调量%5≤p σ,峰值时间(超调时间)s t p 50.≤,阻尼振荡频率10≤d ω。

例1 图1 系统结构图 解:仿照例5-5 )(1)(21s X s s X =,)(211)(32s X s s X +=,)(61)(3s U s s X += (1) ⇒ 状态方程: )()(6)()()(12)()()(3332221t u t x t xt x t x t xt x t x+-=+-== (2) 输出方程:1321)001(x x x x y =⎪⎪⎪⎭⎫⎝⎛= (3)由例5-6系统结构图,可以得到被控系统的一个状态空间模型。

x y u x x)001(1006001120010=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--=, (4) 容易检验该系统是能控的,因此,可以通过状态反馈来实现闭环系统的任意极点配置。

先写出开环系统的传递函数 072181)6)(12(1)(23+++=++=s s s s s s s G (5) 本题无开环零点,闭环系统的动态性能完全由闭环极点所决定。

由于所考虑的系统为3阶系统,故有3个闭环极点。

期望的3个闭环极点可以这样安排:一个极点远离虚轴,对闭环系统性能影响极小,于是可将系统近似成只有一对主导极点为22,11ζωζωλ-±-=n n j 的2阶系统。

ζ—2阶系统的阻尼比; n ω—2阶系统无阻尼自振频率。

由关系式: %5e 21/≤=--ξξπσ,s 5.012≤-=ζωπn p t (6)(参见《自动控制技术》,吴舒辞,中国林业出版社,2000年4月,37P 表2.5)当取 10707021≥=≥n ωζ,.,07.7≥n ζω时,满足上述条件。

极点配置法设计状态反馈控制器——自动控制原理理论篇

极点配置法设计状态反馈控制器——自动控制原理理论篇

设计算法--适用于用能控标准形表示的SI系统的算法

a0 f1 0 a1 f 2 1

an1 f n n1
f1 0 a0 f2 1 a1

fn n1 an1
举例
例8-21 设系统的状态空间描述为
x(t)

0 6
1 0 5x(t) 1u(t)
y(t) 2 1x(t)
试求:(1)求状态反馈矩阵F使闭环系统有期望 极点s1,2=-3±2j; (2)绘制带有状态反馈控制器的状态变量图
举例----求解过程
解: 0
B 1
0 1 0 1 AB 6 51 5
rankS


rankB

AB

0 1
1 5

2
系统能控。
举例----求解过程
期望闭环系统特征多项式为:
(s s1)(s s2 ) (s 3 2 j)(s 3 2 j) s2 6s 13
设: F f1 f2
s sI A BF
6 f1
SI系统,所以设 F f1 f2 fn
| sI A BF |
0 1
0 0
s 0
0
s


s

0
a0
0 a1
1

0

1



0
f1
f
2

f
n

an1 1
极点配置法设计状态反馈控制器
——《自动控制原理-理论篇》第8.8节

状态反馈控制器设计

状态反馈控制器设计

第五章 状态反馈控制器的设计题目:系统结构图如下图所示:要求:闭环系统的输出超调量σ≤5%,峰值时间t p ≤0.5s 。

分别求出开环、PID 闭环、状态反馈闭环、PID/状态反馈闭环的单位阶跃响应,并分析相应曲线得出结论。

1.开环系统单位阶跃响应图 1 开环系统仿真模型0.0.0.0.1.1.仿真时间(s )阶跃响应图2 开环系统单位阶跃响应分析:由图中的响应曲线可知开环系统不稳定,通过开环传递函数G K (s )=3211872s s s++也可以判断出开环系统不稳定。

2.闭环传递函数及其单位阶跃响应(1)闭环传递函数G B (s)=32118721s s s +++,特征根分别为λ1=-12.0138,λ2=-5.9722,λ3=-0.0139。

(2)闭环传递函数仿真模型及其单位阶跃响应曲线见图3、图4。

图3 闭环传递函数仿真模型图4 闭环传递函数单位阶跃响应分析:响应曲线表明,系统是稳定的,但是系统的响应时间太长,远达不到要求。

3.加入PID控制器,并进行参数整定后的单位阶跃响应图 5 PID控制仿真模型其中参数设置为:K p =256.8 ,K i =0.2,K d=23.2。

图6 PID 闭环控制输出波形图分析:通过Workspace 数据查询可知峰值时间tp=0.98686s ,最大输出值为1.0485,所以超调量为4.85%,满足要求,峰值时间达不到要求。

4.加入状态反馈控制器的单位阶跃响应图7 状态反馈控制仿真模型其中H1 到H3依次为10000、284.8、96.1。

0.0.0.0.1.-4t i m e(sec)O u t p u t图8 状态反馈控制单位阶跃响应分析:通过Workspace数据查询可知峰值时间tp=0.4492s,最大输出值为1.0449,所以超调量为4.49%,满足性能指标要求。

5.状态反馈/PID控制的单位阶跃响应图9 状态反馈/PID控制仿真模型其中PID参数设置为:K p =1.05 ,K i =0.01,K d=0;状态反馈控制H1 到H3依次为10000、284.8、96.1。

(完整版)状态反馈控制器的设计

(完整版)状态反馈控制器的设计

(完整版)状态反馈控制器的设计上海电⼒学院实验报告⾃动控制原理实验课程题⽬:状态反馈控制器的设计班级:姓名:学号:时间:⼀、问题描述已知⼀个单位反馈系统的开环传递函数为,试搭建simulink 模型。

仿真原系统的阶跃响应。

再设计状态反馈控制器,配置系统的闭环极点在,并⽤simulink 模型进⾏仿真验证。

⼆、理论⽅法分析MATLAB提供了单变量系统极点配置函数acker (),该函数的调⽤格式为K=place ( A,b,p)其中,P为期望闭环极点的列向量,K为状态反馈矩阵。

Acker ()函数时Ackerman 公式编写,若单输⼊系统可控的,则采⽤状态反馈控制后,控制量u=r+Kx 。

对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place (),其调⽤格式为K=place ( A,B,P)状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输⼊端与参考输⼊叠加形成控制量,作为受控系统的输⼊,实现闭环系统极点的任意配置,⽽且也是实现解耦和构成线性最优调节器的主要⼿段。

只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。

这个定理是⽤极点配置⽅法设计反馈矩阵的前提和依据。

在单输⼊,单输出系统中,反馈矩阵有唯⼀解,且状态反馈不改变系统的零点。

三、实验设计与实现1、搭建原系统的sumlink模型并观察其单位阶跃响应原系统sumlink模型原系统单位阶跃响应由原系统单位阶跃响应可知系统不稳定2、⽤极点配置法设计状态反馈控制器①利⽤matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b)A = -5 -6 01 0 00 1 0B = 1C = 0 0 10③系统能控性矩阵>> uc=ctrb(A,B)uc = 1 -5 190 1 -50 0 1 >> rank(uc) ans = 3 所以系统完全能控③系统能观型矩阵>> vo=obsv(A,C) vo = 0 0 100 10 010 0 0 >> rank(vo) ans = 3 所以系统完全能观所以可以⽤极点配置法设计状态反馈控制器④求解系统反馈矩阵>> p=[-3 -0.5+j -0.5-j];k=acker(A,B,p)k = -1.0000 -1.7500 3.7500 加⼊反馈后的系统闭环极点为:>>sysnew=ss(A-B*k,B,C,D);pole(sysnew)ans = -3.0000-0.5000 + 1.0000i-0.5000 - 1.0000i⑤搭建加⼊反馈控制器后系统的sumlink模型⑥观察新系统的单位阶跃响应四、实验结果分析加⼊反馈控制器后系统的闭环极点在,符合题⽬要求。

极点配置法设计状态反馈控制器——自动控制原理

极点配置法设计状态反馈控制器——自动控制原理

这两个多项式的系数相等,可得出:
0 0
1
1
n n1
i中含F阵系数fij
当F阵为1 n时
n个方程可解n个系数 fi
(i 1,2,...,n)
设计算法--适用于用能控标准形表示的SI系统的算法
设系统期望的闭环极点为s1、s2、sn ,则其
闭环特征式为s s1 s s2 s s3 s sn
SI系统,所以设 F f1 f2 fn
ห้องสมุดไป่ตู้
设计算法--适用于用能控标准形表示的SI系统的算法
s
1
0
0
0
0
s
1
0
0
0
0
0
s
1
a0 f1 a1 f2 a2 f3 an2 fn1 an1 fn s
sn (an1 fn )sn1 a1 f2 s a0 f1
设计算法--适用于用能控标准形表示的SI系统的算法
解:
系统能控。
举例----求解过程
期望闭环系统特征多项式为:
设: F f1 f2
F 7 1
w
u+
x2 ∫
--
++ -5
x2 x1
∫ x1
-
F 7 1
1
+
2
+
y
-6 1
7
a0 f1 0 a1 f 2 1
an1 f n n1
f1 0 a0 f2 1 a1
fn n1 an1
举例
例8-21 设系统的状态空间描述为
试求:(1)求状态反馈矩阵F使闭环系统有期望 极点s1,2=-3±2j; (2)绘制带有状态反馈控制器的状态变量图

现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计

现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。

状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。

状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。

本文将分别介绍状态反馈器和状态观测器的设计原理和方法。

一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。

其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。

通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。

2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。

常用的设计方法有极点配置法、最优控制法等。

3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。

状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。

4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。

二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。

其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。

2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。

常用的设计方法有极点配置法、最优观测器法等。

3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。

状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。

4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。

现代控制理论状态反馈控制器设计

现代控制理论状态反馈控制器设计
[ ] K = b0 − a0 b1 − a1 L bn−2 − an−2 bn−1 − an−1 T
例 已知被控系统的传递函数是
G(s) =
10
s(s + 1)(s + 2)
设计一个状态反馈控制器,使得闭环极点是-2,−1 ± j 解 确定能控标准型实现
⎡0 1 0⎤ ⎡0⎤ x& = ⎢⎢0 0 1⎥⎥ x + ⎢⎢0⎥⎥u
实现极点配置的条件:
3 + k3 = 4 2 + k2 = 6
k1 = 4
⇒ k1 = 4, k2 = 4,
极点配置状态反馈控制器是 u = −[4 4 1]x
k3 =1
分析:ห้องสมุดไป่ตู้点:能控标准型使得计算简单;
缺点:能控标准型中的状态往往难以直接测量;
解决方法:考虑新的实现。串连分解
u
1
x3
s+2
1 x2 s +1
确定参数 a0 , a1 , L, an−1 3。确定转化为能控标准型的变换矩阵 T = Γc[A~, B~](Γc[A, B])−1 4。确定期望特征多项式系数
(λ − λ1() λ − λ2 )L(λ − λn ) = λn + bn−1λn−1 + L + b1λ + b0
5。确定极点配置反馈增益矩阵
状态反馈控制律:
u = −[k0 k1 k2 ]x
得到的闭环系统: 特征多项式:
⎡0
x&
=
⎢ ⎢
0
⎢⎣− a0 − k0
1 0 − a1 − k1
0⎤
1
⎥ ⎥
x
=
Ac
x

状态反馈设计与实现

状态反馈设计与实现

状态反馈设计与实现状态反馈设计是一个重要的工程领域,广泛应用于各种系统,包括电气、机械、经济等。

它通过测量系统的输出或状态,并反馈到系统的输入,以实现对系统的精确控制。

以下是状态反馈设计的概念、方法、实现步骤和实例的简要概述。

一、状态反馈设计的概念状态反馈设计是一种控制系统设计方法,通过将系统的输出或状态信息反馈到系统的输入端,实现对系统的精确控制。

状态反馈控制器是一种根据系统当前状态信息调整控制输入的设计,以减小系统输出与期望输出之间的误差。

二、状态反馈设计的方法1.理论设计法:基于控制理论的方法,如根轨迹法、频率法等,对系统进行设计和优化。

2.仿真试验法:通过仿真实验对系统进行模拟运行,对不同控制策略进行比较和验证。

3.实用设计法:基于实际应用需求,结合理论分析和实验验证,进行系统的设计和优化。

三、状态反馈设计的实现步骤1.系统建模:建立被控系统的数学模型,包括状态方程、输出方程等。

2.控制器设计:根据系统模型和控制要求,设计合适的控制器,如PID控制器、极点配置控制器等。

3.反馈通道设计:根据系统模型和控制要求,设计合适的反馈通道,包括测量元件、信号处理电路等。

4.系统仿真与实验:对系统进行仿真实验,验证控制器的有效性和可行性。

5.系统调试与优化:根据实验结果,对系统进行调试和优化,以提高系统的性能和稳定性。

四、状态反馈设计的实例1.直流电机控制:通过测量电机的转速和电流,实现电机的精确控制。

2.温度控制:通过测量环境的温度,实现温度的精确控制。

3.机器人控制:通过测量机器人的位置和速度,实现机器人的精确控制。

五、总结状态反馈设计是一种广泛应用于各种工程领域的控制系统设计方法。

它通过测量系统的输出或状态信息,并反馈到系统的输入端,以实现对系统的精确控制。

在实际应用中,需要根据不同的系统模型和控制要求,选择合适的控制器和反馈通道,并进行仿真实验和调试优化。

同时,需要注意系统的稳定性和鲁棒性,以确保系统的性能和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海电力学院实验报告
自动控制原理实验课程
题目:状态反馈控制器的设计
班级:
姓名:
学号:
时间:
一、问题描述
已知一个单位反馈系统的开环传递函数为,试搭建simulink 模型。

仿真原系统的阶跃响应。

再设计状态反馈控制器,配置系统的闭环极点在,并用simulink模型进行仿真验证。

二、理论方法分析
MATLAB提供了单变量系统极点配置函数acker(),该函数的调用格式为 K=place(A,b,p)
其中,P为期望闭环极点的列向量,K为状态反馈矩阵。

Acker ()函数时Ackerman公式编写,若单输入系统可控的,则采用状态反馈控制后,控制量u=r+Kx。

对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place(),其调用格式为
K=place(A,B,P)
状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制量,作为受控系统的输入,
实现闭环系统极点的任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。

只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。

这个定理是用极点配置方法设计反馈矩阵的前提和依据。

在单输入,单输出系统中,反馈矩阵有唯一解,且状态反馈不改变系统的零点。

三、实验设计与实现
1、搭建原系统的sumlink模型并观察其单位阶跃响应
原系统sumlink模型
原系统单位阶跃响应
由原系统单位阶跃响应可知系统不稳定
2、用极点配置法设计状态反馈控制器
○1利用matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b)
A = -5 -6 0
1 0 0
0 1 0
B = 1
C = 0 0 10
D = 0
○2系统能控性矩阵
>> uc=ctrb(A,B)
uc = 1 -5 19
0 1 -5
0 0 1
>> rank(uc)
ans = 3
所以系统完全能控
○3系统能观型矩阵
>> vo=obsv(A,C)
vo = 0 0 10
0 10 0
10 0 0
>> rank(vo)
ans = 3
所以系统完全能观
所以可以用极点配置法设计状态反馈控制器○4求解系统反馈矩阵
>> p=[-3 -0.5+j -0.5-j];k=acker(A,B,p) k = -1.0000 -1.7500 3.7500
加入反馈后的系统闭环极点为:
>>sysnew=ss(A-B*k,B,C,D);pole(sysnew)
ans = -3.0000
-0.5000 + 1.0000i
-0.5000 - 1.0000i
○5搭建加入反馈控制器后系统的sumlink模型
○6观察新系统的单位阶跃响应
四、实验结果分析
加入反馈控制器后系统的闭环极点在,符合题目要求。

所以实验结果为正确。

五、结论与讨论
这次实验做的是用MATLAB函数设计合适的状态变量反馈。

首先老师让我们用手算的方法做了一遍,后来又用MATLAB算了一遍,得到了相同的结果,总之实验进行的很成功,这是最后一次实验了,这门实验课让我掌握了MATLAB的基本用法,收益很多。

相关文档
最新文档