接地电阻降阻方法
降低接地电阻的几种措施

直方向上的土 壤电阻 率分布 现 场可 采用等距四 极法测睛
土壤电阻率, 用等距四极法测量土壤电阻率时. 改变间距
时可测出不葡深度 的土壤电阻率。
在高土壤电 阻率的 地区, 当发电厂、 变电所20m 00
内有较低电阻率的土壤 时, 可敷设 外引接地体 在确定要
采用的降低接地电阻的措施时, 先对发电厂、 首 变电所餍 围的地质进行认真的勘探、 取样、 测量. 发电厂、 测出 变电 所四周土壤电 阻率的分布。 土壤电阻事较低、 找出 适台做
对于外引接地体除要满足接地电阻的阻值 外, 还要满
为了消除接地短路电流对电 力设备和人身 安全的威
胁, 必须对 电力设 施加装合适的接地装 置 , 短路 电流能 使
够可靠 地泄 八地下。 对此, 所的 变电 接地电阻一般要求为 R 加0仃(为计算用的流经接 ≤ 0 I 地装置的 入地短路电流) . 高压 输电 线路的 工频接地电阻 需按表 1 要隶取值。 但在丘
维普资讯
降低接地电
河 南省 南 阳 市
随着我国国民经济的快速发展. 对电力的需求也日 增大, 为满足国民 经济及人民群众生活水 平的提高. 电 事业也在跨越式的 发展, 整个电力网 络越来越大. 电力系 统的 接地短路电流也 越来越大, 电力设备的接地装置对电
造成污染。 ,
通过降阻剂的扩散和渗透作用降低接地体周围的土
壤电阻率。在扩散和渗透作用方面, 一般化学降阻剂强于 其他型式的降阻剂。 膨润土类的降阻剂扩散和渗透作用较 差。 但降阻剂的稳定性和长效性与扩散和渗透作用是矛盾 的,扩散和渗透好的降阻剂其稳定性和长效性比较差, 主 要是扩散和渗透性强的降阻剂容易随雨水的流动而流失。 在接地体周围施加降阻剂后 , 相当于扩大了接地体的
接地降阻剂使用方法

接地降阻剂使用方法一、什么是接地降阻剂接地降阻剂是一种用于提高接地电阻性能的化学物质。
在电力系统中,接地电阻是指将设备或系统的电位与地电位之间的电阻。
接地降阻剂可以降低接地电阻,提高接地效果,保证电力系统的安全运行。
二、接地降阻剂常见的使用方法2.1 接地点的选择在使用接地降阻剂之前,首先需要选择接地点。
接地点应选择在电力系统中合适的位置,通常选择在土壤中含有足够湿度且导电性良好的地方。
2.2 土壤处理在使用接地降阻剂之前,需要对土壤进行处理。
具体的土壤处理方法如下:1.清理接地点附近的杂物和积水,确保土壤表面干燥清洁。
2.使用铁耙或铲子等工具松土,破坏土壤表面结皮,提高土壤的导电性能。
3.用清水洗净接地点附近的土壤表面,以确保接地剂能够充分渗透到土壤中。
2.3 接地剂的选择接地剂是接地降阻剂的主要成分,不同的接地剂有不同的适用场景和材料特性。
在选择接地剂时,应考虑以下因素:1.土壤类型:不同的土壤类型对接地剂的需求不同,包括土壤的含水量、质地、含盐量等。
2.环境因素:环境的湿度、温度、PH值等因素也会影响接地剂的性能选择。
3.电力系统要求:根据电力系统的要求,选择适合的接地剂,确保其能够满足要求的接地电阻值。
2.4 接地剂的施工方法接地剂的施工方法主要包括以下步骤:1.将接地剂均匀撒布在接地点周围,覆盖面积应根据具体情况而定。
2.使用工具(如铁耙、铁锹等)将接地剂与土壤充分混合,以保证接地剂能够均匀渗透到土壤中。
3.接地剂与土壤混合后,按照一定的压实工艺将土壤压实,确保接地剂与土壤之间紧密贴合,提高接地效果。
4.施工完成后,对接地点进行保护措施,避免接地剂被外部环境损害,影响接地效果。
三、接地降阻剂的注意事项在使用接地降阻剂时,需要注意以下事项:3.1 安全措施在接地降阻剂的施工过程中,需要采取必要的安全措施,确保施工人员的安全。
包括佩戴防护手套、口罩等防护用具,避免接触接地剂对身体造成伤害。
刍议110kV送电线路杆塔接地电阻降阻措施

3 . 2关于垂直 接地体 垂直接 地体是线路杆塔 接地的常用措 施 , 但位 于山 区的线 路由于经过岩溶石 山较多 , 特 别是 位于岩石地 带的杆塔 , 垂直接 地极的施 工 参考文 献 较 为困难 . 时可结 合岩石裂缝使 用垂直接 地 这 极 。在地下有金 属矿 , 或地下有低 电阻率 的地 【 扬兰, 1 ] ຫໍສະໝຸດ 放奇, 李景禄. 送电线路杆塔接地降
一
12 2一
中国新技术新产品
阻措施的探讨『. c 中国高等学校电力系统及其 1 自动化 专业第 2 届 学术年会 ,0< 0 O 20 2) . 『 李景禄 . 于降 阻剂在 接地 工程应 用方面的 2 】 关 探 讨啊. 电瓷避雷 器 , 0( :53. 2 2 ) —8 0 53
M .宁夏 大地 出版 社 , 【 刘 过 兵 . 矿 新技 术【 】 3 】 采 M. 北京 : 炭 工业 出 煤 开采 沉 陷与环境 保护 问题 ,是 摆在 煤 炭工业 制 性 标 准执 行 手 册 【 ] 2 o4 0 . 可持续发展任务面前的一个重大课题。 版 社 . 0 2 20 . 参 考文献 f 杜 计 平. 理 全 . 矿特 殊 开 采 方 法【 ] 2 1 汪 煤 M. 徐 【 ' 臣, 4t H 梅 胡振琪. 煤矿 区复垦农 田景观演 【 陈 荣光 . 山企业 污 染 防治 与 环境 保 护 强 州 : 国矿 业大 学 出版社 , 0. 1 】 矿 中 2 3 0 变及 控 制研 M . 京 : ] 北 地质 出版社 . 0 . 2 5 . 0 7
08 以下 。 . m
因接地工 程属于 隐蔽 工程 , 以在该工程 所 中要对 每一 个环 节进行全过程 的认真的技术监 督。 对新建杆塔最好使用铺设接地体和降阻剂 ( 接地模 块 ) 或 进行降 阻 , 可收 到事半功倍 这样 的效果 。对 改造 降阻 工程要 结合 现场有 利地
降低接地电阻的方法

为了防止电能的浪费、保护人身平安和设备平安等,降低接地电阻是很有必要的,降低接地电阻的方法有很多种,下面是我在网上看到的总结比较全比较常用的方法,不知道有没有和我一样对降低接地电阻的方法存在疑惑的朋友,不管怎么样,大家一起学习一下咯!如果你知道更多的方法,也可以分享啊!共同学习共同进步!1 更换土壤这种方法是采用电阻率较低的土壤(如:粘土、黑土及砂质粘土等)替换原有电阻率较高的土壤,置换围在接地体周围0.5m以和接地体的1/3处。
但这种取土置换方法对人力和工时消耗都较大。
2 人工处理土壤(对土壤进展化学处理)在接地体周围土壤中参加化学物,如食盐、木炭、炉灰、氮肥渣、电石渣、石灰等,提高接地体周围土壤的导电性。
采用食盐,对于不同的土壤其效果也不同,如砂质粘土用食盐处理后,土壤电阻率可减小1/3~1/2,砂土的电阻率减小3/5~3/4,砂的电阻率减小7/9~7/8;对于多岩土壤,用1%食盐溶液浸渍后,其导电率可增加70%。
这种方法虽然工程造价较低且效果明显,但土壤经人工处理后,会降低接地的热稳定性、加速接地体的腐蚀、减少接地体的使用年限。
因此,一般来说,是在万不得以的条件下才建议采用。
3 深埋接地极当地下深处的土壤或水的电阻率较低时,可采取深埋接地极来降低接地电阻值。
这种方法对含砂土壤最有效果。
据有关资料记载,在3m深处的土壤电阻系数为 100%,4m深处为75%,5m深处为60%,6m深处为60%,6.5m深处为50%,9m深处为20%,这种方法可以不考虑土壤冻结和枯槁所增加的电阻系数,但施工困难,土方量大,造价高,在岩石地带困难更大。
4 多支外引式接地装置如接地装置附近有导电良好及不冻的河流湖泊,可采用此法。
但在设计、安装时,必须考虑到连接接地极干线自身电阻所带来的影响,因此,外引式接地极长度不宜超过100m。
5 利用接地电阻降阻剂在接地极周围敷设了降阻剂后,可以起到增大接地极外形尺寸,降低与起周围介质之间的接触电阻的作用,因而能在一定程度上降低接地极的接地电阻。
输电杆塔接地电阻影响因素降阻措施

浅谈输电杆塔接地电阻影响因素及降阻措施摘要:输电线路杆塔接地对电力系统的安全稳定运行至关重要,由于杆塔接地不良而发生的雷害事故所占的线路故障比例非常高。
本文阐述了杆塔接地的普遍性要求,并对输电线路杆塔中接地电阻偏高原因及其降阻措施方面进行了分析探讨。
关键词:输电线路;杆塔接地;影响因素;降阻措施输电线路的接地,既是杆塔保护接地,又是线路防雷保护接地。
接地装置的设计施工及运行维护,是一个系统的工程,只有全过程质量控制,才能保证线路的接地始终处于良好状态,才能保证线路安全运行。
1 输电杆塔接地的普遍性要求1.1 对杆搭接地电阻要求关于杆搭的接地电阻,dl/t620—1997《交流电气装置的过电压保护和绝缘配合》第6.1.4条规定:有避雷线的线路,每基杆塔不连避雷线的工频接地电阻,在雷季干燥时,不宜超过表1所列数值表l 有避雷线的线路杆塔的工频接地电阻土壤电阻率(ωm) ≤100 >100~500 >500~1000 >1000~2000 >2000接地电阻(ω) 10 15 20 25 30注:如土壤电阻率超过2000ωm,接地电阻很难降低到30ω时,可采用6~8根总长不超过500m 的放射形接地体,或采用连续伸长接地体,接地电阻不受限制。
对杆塔接地电阻的要求是随着杆塔所在位置的土壤电阻率的升高而放宽的。
这是考虑到投资与电网安全的一种最优“性价比”。
在雷电活动强烈的地方和经常发生雷击故障的杆塔和线段,应尽可能地降低杆塔接地电阻。
规程第6.1.7条还规定:中雷区及以上地区35kv 及66kv 无避雷线线路宜采取措施,减少雷击引起的多相短路和两相异点接地引起的断线事故,钢筋混凝土杆和铁塔宜接地,接地电阻不受限制,但多雷区不宜超过30ω。
钢筋混凝土杆和铁塔应充分利用其自然接地作用,在土壤电阻率不超过100ωm或有运行经验的地区,可不另设人工接地装置。
第6.1.8规定:钢筋混凝土杆铁横担和钢筋混凝土横担线路的避雷线支架、导线横担与绝缘子固定部分或瓷横担固定部分之间,宜有可靠的电气连接并与接地引下线相连。
输电线路接地电阻问题和降阻措施浅析

输电线路接地电阻问题和降阻措施浅析架空输电线路杆塔接地对电力系统的安全稳定运行至关重要,降低杆塔接地电阻是提高线路耐雷水平,减少线路雷击跳闸率的主要措施。
由于杆塔接地电阻高而产生的雷击闪络事故相当多。
由于在大部分位于高原山区,工程地质条件复杂,多数杆塔的接地电阻过高,且锈蚀严重,造成线路耐雷水平低,经常发生雷电绕击、反击,使线路跳闸,进而影响电网的安全稳定运行。
本文结合某高原山区220kV输电线路工程杆塔接地施工为例,论述了工程施工过程中接地电阻偏高的影响因素,经采用多种降阻方法,使之达到合格范围,对防止雷击跳闸、保证电网安全意义重大,以期为类似工程提供参考。
标签:电力系统;输电线路;接地电阻;影响因素;降阻方法1前言随着我国超高压、特高压电网的快速发展,输电线路防雷接地的重要性日益突出,但是高土壤电阻率地区的接地问题多年来一直没有彻底解决。
一方面,随着电力系统的发展,由雷击输电线路引起的事故时有发生,尤其在雷电活动频繁、土壤电阻率高和地形复杂的高原山区,雷击输电线路而引起的事故率更高。
另一方面,随着电力系统容量的迅速增加,输电线路发生单相接地故障时的短路电流也越来越大,从而流经地线的短路电流也越来越大,为了满足地线热稳定的需要,就要采用单位长度电阻较小的地线,从而导致地线的截面过大。
特别是随着OPGW复合光缆在电力系统中的广泛使用,这一问题越来越突出。
特别是在我国西北地区,气候干燥,降水稀少,输电线路路径又大多选择在高寒山区,工程区出露基岩类型较多,而位于山区的送电线路,由于土壤电阻率高、地形、地势复杂,交通不便施工难度大,杆塔接地电阻普遍偏高。
因此,如何有效地解决高原山区接地电阻超标的问题,降低高海拔山区复杂地形条件下输电线路接地电阻接地电阻是电网工程设计、施工、运行、验收共同面临的问题,降低杆塔接地装置的接地电阻具有非常重要的现实意义。
2 影响接地电阻的主要因素2.1 地质条件因素输电线路所处的地质条件对接地电阻影响较大,通过对不同地质条件下输电线路接地电阻大小的研究,主要表现在一下三个结论:①土壤电阻率和输电线路的杆塔接地电阻是正比例关系,所以土壤电阻率偏高是导致杆塔接地电阻超标的一个主要原因。
接地电阻的计算与影响接地电阻的因素

接地电阻的计算与影响接地电阻的因素接地电阻的大小影响着用电设备操作人员的安全以及设备的正常运行。
本文通过接地电阻计算公式分析影响接地电阻的几个主要因素,并结合工程实际讨论降低接地电阻的若干措施,并比较这些措施对接地电阻阻值的影响。
标签:接地电阻;影响;电阻率1、前言接地是维护电力系统安全可靠运行,保障设备和运行人员安全的重要措施之一。
接地电阻值是确认接地装置的有效性以及判断接地系统是否符合设计要求的重要参数。
在项目设计前期,就要对接地系统的接地电阻阻值进行计算,以判断照此方案设计接地装置能否满足规范及业主要求。
本文以化工厂的接地系统为背景,介绍了几种国内外常用的接地电阻计算方法,并以伊朗甲醇项目为实例进行计算和比较,分析影响接地电阻的因素,并提出了一些自己的看法。
2、接地电阻的计算2.1、国内计算方法GB 50065-2011 《交流电气装置的接地设计规范》附录A中给出了人工接地极工频接地电阻的计算公式。
对于以水平接地极为主边缘闭合的复合接地网的接地电阻可利用下式计算:2.2、IEEE计算方法IEEE Std 80-2000 IEEE Guide for Safety in AC Substation Grounding 第14章中给出了两种接地电阻的算法:Sverak算法和Schwarz公式。
2.2.1、Sverak算法:3、案例分析下面就以MEKPCO伊朗甲醇项目为例,按照不同设计方案,采用上述几种算法对接地电阻进行计算。
图3.1给出了该项目全场接地网总图:厂区位置土壤电阻率。
厂区接地网为沿着厂区围墙和栅栏敷设的边缘闭合接地网,长280m,宽230m,,水平接地体总长度,埋设深度,接地极采用铜包钢,共打120根。
下面分别以水平接地体选择95㎡裸铜线(直径)和95㎡PVC黄绿线两种方案计算全厂接地电阻。
3.1、方案一:水平接地体采用95㎡裸铜线采用裸导体作为水平接地体是国内外普遍做法,因为裸导体直接与土壤接触可以起到散流的作用,此时接地网为既有水平接地体又有垂直接地体的边缘闭合型复合接地网。
沙漠地区降低接地电阻值方法浅谈

沙漠地区降低接地电阻值方法浅谈摘要:我国西北干旱地区广泛分布着荒漠土,主要分布在内蒙古、甘肃、青海和新疆等地区。
沙漠地区主要成份就是荒漠土,在沙漠地区施工,不可避免的会面对接地电阻不达标的问题,接地电阻是电流由接地装置流入大地在经大地流向另一接地体或向远处扩散所遇到的电阻,因荒漠土电阻率高达ρ≥500Ω•m,所以常规的接地方法无法满足沙漠地区接地电阻阻值的需求。
本文主要以沙漠地区为例,详细介绍降低接地电阻值的具体方法,首先要了解接地电阻的要求并计算出接地电阻值,其次要了解沙漠地区降低电阻值的特点和具体用法,最后加以实施。
关键词:沙漠地区;高土壤;接地电阻值;接地装置;土壤电阻率格尔木至库尔勒铁路新疆段位于新疆维吾尔自治区东南部,地处新疆巴音郭楞蒙古族自治州境内。
新疆段线路东起青海省茫崖石棉矿,进入新疆境内线路穿越阿尔金山,沿着库鲁塔克沙漠和塔克拉玛干沙漠交界向西,抵达库尔勒市,正线长度约 708.182 公里,沿途多为沙漠地区。
在沙漠地区建立的通信基站及其它设备点,通常情况下,为保证机房内设备的安全运行,在室内设置工作接地汇集线、保护接地汇集线、电源防雷接地汇集线,以及设置于室外通信线路入口处的室外接地汇集线。
工作接地汇集线与保护接地汇集线宜合设,称为工作保护接地汇集线;电源防雷接地汇集线宜独立设置,受条件限制时,可与室外接地汇集线合设。
电源防雷接地汇集线用于连接由室外引入的第一级交流电源浪涌保护界的 PE 线及防雷箱外壳。
工作保护接地汇集线用于连接直流电源系统的正极、机房内的设备机柜外壳(包括长途电缆配线柜)、室内电缆屏蔽层、防静电地板金属支架(或支架下的铜箔带)、室内电缆桥架等。
接地汇集线宜采用 400mm×100mm×3mm 的铜排,并用截面积不小于 50mm2(或2×25mm2 单点冗余连接)的有绝缘护套多股铜缆互联后,最终与室外接地装置互联,为更有效保证接地,一般就近与通信机房地网做可靠连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接地电阻降阻方法 Prepared on 24 November 20201 引言变电站接地网对于电力系统的可靠运行和变电站工作人员的人身安全起着重要作用,其接地电阻、跨步电压与接触电压是变电站接地系统的重要技术指标,是衡量接地系统的有效性、安全性以及鉴定接地系统是否符合要求的重要参数。
然而,有些变电站由于受地理条件的限制,不得不建在高土壤电阻率地区,导致这些变电站的接地电阻、跨步电压与接触电压的设计计算值偏高,无法满足现行标准的要求。
近年来,随着电力系统短路容量的增加,由于接地不良引起的事故扩大问题屡有发生,因此接地问题越来越受到重视。
在设计施工过程中如何合理确定接地装置的设计方案,降低接地电阻,这是变电站电气设计施工的重点之一。
2 变电站接地网电阻偏高的原因变电站接地网电阻偏高的原因有多方面的,归纳起来有以下几个方面的原因。
客观条件方面一是土壤电阻率偏高。
特别是山区,由于土壤电阻率偏高,对系统接地电阻影响较大;二是土壤干燥。
干旱地区、沙卵石土层等相当干燥,而大地导电基本是靠离子导电,干燥的土壤电阻率偏高。
勘探设计方面在地处山区复杂地形地段的变电站,由于士壤不均匀,土壤电阻率变化较大,这就需要对每处地网进行认真的勘探、测量。
根据地形、地势、地质情况,设计出切合实际的接地装置。
如果不根据每处地网的地形、地势情况合理设计接地装置并计算其接地电阻,而是套用一些现成的图纸或典型设计,那么就从设计上就留下了先天性不足,造成地网接地电阻偏高。
施工方面对于不同地区变电站的接地来说,精心设计重要,但严格施工更重要。
因为对于地形复杂,特别是位于山岩区的变电站,接地地网水平接地沟槽的开挖和垂直接地极的打入都十分困难,而接地工程又属于隐蔽工程,如施工过程中不能实行全过程的技术监督和必要的监理,就可能出现如下一些问题:一是不按图施工。
尤其是在施工困难的山区,屡有发生水平接地体敷设长度不够,少打垂直接地极等;二是接地体埋深不够。
山区、岩石地区,由于开挖困难,接地体的埋深往往不够,由于埋深不够会直接影响接地电阻值;三是回填土的问题,有关规范要求用细土回填,并分层夯实,在实际施工时往往很难做到,尤其是在岩石地段施工时,由于取土不便,往往采用开挖出的碎石及建筑垃圾回填,这样还会加快接地体的腐蚀速度;四是采用木炭或食盐降阻,这是最普遍的做法。
采用木炭或食盐降阻,会在短期内收到降阻效果,但这是不稳定的。
因为这些降阻剂会随雨水而流失,并加速接地体的腐蚀,缩短接地装置的使用寿命。
运行方面有些接地装置在建成初期是合格的,但经一定的运行周期后,接地电阻就会变大,除了前面介绍的由于施工时留下的隐患外,以下一些问题也值得注意:一是由于接地体的腐蚀,使接地体与周围土壤的接触电阻变大,特别足在山区酸性土壤中,接地体的腐蚀速度相当快,会造成一部分接地体脱离接地装置;二是在接地引下线与接地装置的连接部分因锈蚀而使电阻变大或形成开路:三是接地引下线接地极受外力破坏时误损坏等。
3 接地电阻降阻方法为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。
由公式(1)可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容;二是改善地质电学性质,减小地的电阻率和介电系数。
接地网是在接地系统的基础,由接地环(网)、接地极(体)和引下线组成,以往常有种误解,把接地环作为接地的主体,很少使用接地体,在接地要求不高或地质条件相当优越的情况下,接地环也能够起到接地的作用,但是通常的情况下,这是不可行的,接地环可以起到辅助接地地作用,主导作用是用接地体来完成的。
决定接地电阻大小的因素很多,下面我们以接地环作接地主体的情形来分析传统地网的接地公式:式中:式(2)表明,传统的接地方式在土壤电阻率已经确定的情况下,要想达到设计要求的电阻必须有足够的接地面积,要降低接地电阻只有扩大接地面积,每扩大4倍的接地面积,接地电阻会降低一倍。
式(3)、(4)表明,在上述的接地网中,要降低接地电阻的另一个方法是加大接地材料的尺寸,但是耗材太大而且效果并不理想。
在变电站具体解决接地网电阻偏高的问题,首先要对其原因进行认真的分析,到现场进行认真的勘探,结合相应的理论基础,依据相关技术标准规范,制定出切合实际的降阻措施。
技术措施接地工程本身的特点就决定了周围环境对工程效果的决定性的影响,脱离了工程所在地的具体情况来设计接地工程是不可行的。
设计的优劣取决于对当地土壤环境的诸多因数的综合考虑。
土壤电阻率、土层结构、含水情况、季节因数、气候以及可施工面积等等因数决定了接地网形状、大小、工艺材料的选择,是接地设计中重要的第一手资料,。
因此设计施工前,要确保完成以下几项工作:(1)要精心勘探测量,要对每处遥测点地网所在位置的地形、地势、地质情况进行准确勘探,测量接地体埋设点周围的土壤电阻率及其分布情况,找出可以利用的地质结构;(2)要调查所在地的雷电活动情况和规律,决定所采取的防雷措施及其对接地电阻的要求;(3)要调查所处地段土壤对钢接地体的年腐蚀和土壤的酸碱度等;(4)要根据以上几项内容进行计算和设计,制定切合实际的降阻措施和施工方案。
降阻方法(1)敷设水平外延接地。
因为水平放设施工费用低,不但可以降低工频接地电阻,还可以有效地降低冲击接地电阻。
(2)深埋式接地极。
在地电阻率随地层深度增加而减小较快的地方,可以采用深埋接地体的方法减小接地电阻[5]。
因此利用大地性质,深埋接地体后,使接地体深入到地电阻率低的地层中,通过小的地电阻率来达到减小接地电阻的目的。
在埋设地点选择时,应考虑:选择地下水较丰富及地下水位较高的地方;接地网附近如有金属矿体,可将接地体插入矿体上,利用矿体来延长或扩大人工接地体的几何尺寸;深埋接地体的间距宜大于20m,可不计互相屏蔽的影响。
但施工困难,土方量大,造价高,在岩石地带困难更大。
(3)利用接地电阻降阻剂[2]。
在接地极周围敷设了降阻剂后,可以起到增大接地极外形尺寸,降低接触电阻的作用。
降阻剂是由几种物质配制而成的化学降阻剂,是具有导电性能良好的强电解质和水分。
这些强电解质和水分被网状胶体所包围,网状胶体的空格又被部分水解的胶体所填充,使它不致于随地下水和雨水而流失,因而能长期保持良好的导电作用。
而降低阻剂的主要作用是降低与地网接触的局部土壤电阻率,换句话说,是降低地网与土壤的接触电阻,而不是降低地网本身的接地电阻。
这是目前采用的一种较新和积极推广普及的方法。
降阻剂已有超过二十年的工程运用历史,经过不断的实践和改进,现在无论是性能还是使用施工工艺都已经是相当成熟的产品了。
(4)利用电解离子接地系统(Ionic Earthing Array,简称IEA)。
IEA近几年在新建变电所中得到广泛的应用,并取得一定的效果。
有研究和实践证明:土壤电阻率过高的直接原因是因为缺乏自由离子在土壤中的辅助导电作用,IEA能在土壤中提供大量的自由离子,从而有效的解决接地问题。
IEA由先进的陶瓷复合材料、合金电极、中性离子化合物组成,以确保能提供稳定的、可靠的接地保护。
IEA的主体是铜合金管,以确保较高的导电性能及较长的使用寿命,其内部含有特制的、无毒的电解离子化合物,能够吸收空气中的水分,通过潮解作用,将活性电解离子有效释放到周围土壤中,正是因为IEA不断的自动释放活性电解离子使得周围土壤的导电性能能始终保持在较高水平,于是故障电流能顺畅的扩散到周围的土壤中,从而充分发挥接地系统的保护作用。
另外,IEA所包含的特制回填料具有非常好的膨胀性、吸水性及离子渗透性,使IEA与周围的土壤保持良好的接触界面,无论天气或周围环境如何变化,都能使IEA保持最佳的接地保护效果。
但投资相对也是比较大的。
(5)其他方法。
如何降低接地电阻目前已成为工程建设的难点之一,除了以上方法外,增加地网的埋设深度、利用深孔爆破接地技术[3]、自然接地体、局部换土、深井接地、扩大接地面积和采用两层水平接地网[4]等等也都有一定的可行性。
根据各个工程的不同情况可以选择适合的降阻措施,而各种方法也不是孤立的,可以相互配合,以取得更好的实际效果。
精心施工及运行维护精心的施工才能达到良好的设计的实施效果,看起来不重要的实施细节常常导致严重的后果。
因为接地网工程是隐蔽工程,当施工完成后,错误不一定马上可以检测到,即使发现问题补救也是很麻烦的,尤其是防腐细节。
因此,设计图纸和施工方案制定出后,就要到现场精心组织施工。
对水平接地体,垂直接地体的布置严格按设计要求布置,对各焊接头质量,降阻剂的使用,回填土等每个环节严格把关。
当然,工程结束后要加强运行维护;要针对地网工程接地装置运行中容易发生的问题,加强运行维护和巡视检查,及时进行缺陷处理。
定期进行接地电阻和回路电阻测量,以保证接地一直处于良好的状态。
4 结束语变电站接地网的设计应结合实际情况进行, 接地装置能否发挥它应起的作用,关键在于设计和施工运行这两个环节。
首先是设计,它是保证接地装置效果的前提条件;其次是施工运行维护,施工的工艺和质量是保证接地装置效果的基础,是体现设计目的的手段,而维护是后期地保养及使用期限的延长。
因而在高土壤电阻率地区的变电站设计与建设中,必须注重优化设计与综合治理,以充分提高地网建设地经济性与安全运行地可靠性,同时降阻效率高、抗腐蚀性好、成份稳定、价格低廉地新型降阻材料亦将成为接地网降阻研究的主流。
接地电阻降阻方法为了达到降低接地网接地电阻之目的,首先需要从理论上研究降低接地电阻的方法。
由公式R=ρε/C可以看出,降低接地电阻有以下两种途径,一是增大接地体几何尺寸,以增大接地体的电容C;二是改善地质电学性质,减小地的电阻率和介电系数ε。
下面分别讨论降低接地电阻的一些方法。
1增大接地网面积由上面接地电阻的物理概念,依据式(),大地电阻率ρ和介电系数ε不容易改变,而接地电阻R与接地网电容C成反比:从理论上分析,接地网电容C 主要由它的面积尺寸决定,与面积成正比,所以接地网面积与接地电阻成反比。
减小接地网接地电阻,增大接地网面积是可行途径。
一个有多根水平接地体组成的接地网可以近似地看成一块孤立的平板,借用平板接地体接地电阻计算公式,当平板面积增大一倍时,接地电阻减小%。
2增加垂直接地体依据电容概念,增加垂直接地体可以增大接地网电容。
当增加的垂直接地体长度和接地网长、宽尺寸可比拟时,接地网由原来的近似于平板接地体趋近于一个半球接地体,电容会有较大增加,接地电阻会有较大减小。
由埋深为零半径为r的圆盘和半径为r的半球电容之比4εr/2πεr可得,接地电阻减小36%。
但是对于大型接地网,其电容主要是由它的面积尺寸决定,附加于接地网上有限长度(2~3m)的垂直接地体,不足以改变决定电容大小的几何尺寸,因而电容增加不大,亦接地电阻减小不多。