相异步电动机接线盒

相异步电动机接线盒
相异步电动机接线盒

第四章三相异步电动机试题和答案解析

第四章 三相异步电动机 一、 填空(每空1分) 1. 如果感应电机运行时转差率为s ,则电磁功率,机械功率和转子铜耗之间的比例是 2:P :e Cu P p Ω= 。 答 s :s)(1:1- 2. ★当三相感应电动机定子绕组接于Hz 50的电源上作电动机运行时,定子电流的频率为 ,定子绕组感应电势的频率为 ,如转差率为s ,此时转子绕组感应电势的频率 ,转子电流的频率为 。 答 50Hz ,50Hz ,50sHz ,50sHz 3. 三相感应电动机,如使起动转矩到达最大,此时m s = ,转子总电阻值约为 。 答 1, σσ21X X '+ 4. 。 5. ★感应电动机起动时,转差率=s ,此时转子电流2I 的值 , 2cos ? ,主磁通比,正常运行时要 ,因此起动转 矩 。 答 1,很大,很小,小一些,不大 6. ★一台三相八极感应电动机的电网频率Hz 50,空载运行时转速为735转/分,此时转差率为 ,转子电势的频率为 。当转差率为时,转子的转速为 ,转子的电势频率为 。 答 ,1Hz , 720r/min ,2Hz 7. 三相感应电动机空载时运行时,电机内损耗包括 , , ,和 ,电动机空载输入功率0P 与这些损耗相平衡。 答 定子铜耗,定子铁耗,机械损耗,附加损耗 8. 三相感应电机转速为n ,定子旋转磁场的转速为1n ,当1n n <时为 运行状态;当1n n >时为 运行状态;当n 与1n 反向时为 运行状态。 答 电动机, 发电机,电磁制动 9. 增加绕线式异步电动机起动转矩方法有 , 。 答 转子串适当的电阻, 转子串频敏变阻器 10. — 11. ★从异步电机和同步电机的理论分析可知,同步电机的空隙应比异步电机的空气隙要 ,其原因是 。 答 大,同步电机为双边励磁

正确理解异步电动机电磁转矩的不同表达式

正确理解异步电动机电磁转矩的不同表达式 摘要:电磁转矩是三相异步电动机的最重要的物理量,电磁转矩对三相异步电动机的拖 动性能起着极其重要的作用,直接影响着电动机的起动、调速、制动等性能。正确理解电磁转矩的物理表达式,参数表达式和实用表达式,是正确分析电动机运行特性的关键。正确运用电磁转矩的不同表达式,是正确计算电磁转矩和合理选择电动机的关键。 关键词:理解 电磁转矩 表达式 以交流电动机为原动机的电力拖动系统为交流电力拖动系统。三相异步电动机由于结构简单,价格便宜,且性能良好,运行可靠,故广泛应用于各种拖动系统中。电磁转矩对三相异步电动机的拖动性能起着极其重要的作用,直接影响着电动机的起动、调速、制动等性能,其常用表达式有以下三种形式。 一、电磁转矩的物理表达式 由三相异步电动机的工作原理分析可知,电磁转矩T 是由转子电流I2 与旋转磁场相互作用而产生的,所以电磁转矩的大小与旋转磁通Φ及转子电流的乘积成正比。转子电路既有电阻又有漏电抗,所以转子电流I 2可以分解为有功分C 量I 2OS ?2和无功分量I 2Sin ?2 两部分。因为电磁转矩T 决定了电动机输出的机械功率即有功功率的大小,所以只有电流的有功分量I 2COS ?2才能产生电磁转矩,故电动机的电磁转矩为 T=C T φm I 2COS ?2 (1) 式中,T —电磁转矩(N*m ) φm —每极磁通(Wb ) C T —异步电机的转矩常数 上述电磁转矩表达式很简洁,物理概念清晰,可用于定性分析异步电动机电磁转矩T 与 φm 和I 2 COS ?2之间的关系。 二、电磁转矩的参数表达式 在具体应用时,电流I 2 和COS ?2 都随转差率S 而变化,因而不便于分析异步电动机 的各种运行状态,下面导出电磁转矩的参数表达式。 转子绕组中除了电阻R 2外,也存在着漏感抗X s2,且X s2 =SX 20 ,因此转子每相绕组内的 阻抗为 () 2 202 22 22 22SX R X R Z s +=+= (2) 旋转磁场在转子每相绕组中的感应电动势的有效值为E 2,且E 2=SE 20 , E 20为转子不动时的转子感应电动势,而转子每相绕组的电流 () 220222022 2SE R SE Z E I += = (3)

电机检查接线及调试

电机检查接线及调试 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

电机检查接线及调试 电机是一种用来进行电能与机械能相互转换的电磁机械。其运行原理基于电磁感应定律和电磁力定律两个基本定律。 (一)电机的分类 1.电机按其功能可分为发电机、电动机、变流机及控制电机。其中变流机包括变频机、升压机、感应调压器、调相机、变相机以及交流电与直流电之间变换的变流机等。 2.按电机电流类型分类可分为直流电机和交流电机。交流电机又可分为同步电机和异步电机,异步电机分为鼠笼式感应电机和绕线式感应电机。 3.按电机相数分为单相电机及多相(常用三相)电机。 各类电机都可有不同的工作制定额、安装型式及防护类型、通风冷却方式以及绕组绝缘等级,因此电机又可按上述各项进行分类。电机还可按其容量或尺寸的大小而分为大、中、小型和小功率电机。 (二)各类电机的结构特点与用途 直流电机其运行特性随励磁方式而异,通常按励磁方式分类:其励磁由电机本身供给的分自励、并励、复励和串励;由另外的电源如可控硅变流器供电的称他励;由永磁体励磁的称永磁电机。 由于可以从交流电网通过可控硅变流器提供直流电源,可控硅变流器既取代了直流发电机,也扩大了直流电动机的使用范围。如可控硅变流器作为部件与小型直流电动机组合在一起,成为机电一体的产品,直流发电机需要量日趋减

少,主要用作同步电机的励磁机和无交流电网供电而又需要直流电源的场合等。 同步电机主要用作发电机,如汽轮、水轮、柴油发电机等;也作电动机如同步电动机、磁阻同步电动机、磁滞同步电动机等,用来驱动恒速运转的中、大型机械,如鼓风机、水泵、球磨机、压缩机、轧钢机及小型微型设备仪器或作控制元件等;还用作调相机,向电网输送电感性或电容性的无功功率。 异步电机是基于气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩而实现能量转换的一种交流电机,主要作电动机用。其运行转速与旋转磁场转速(同步转速)间存在一定差异,即所谓异步,这是产生转矩的必要条件。由于转子绕组电流是感应产生的,故异步电机也称为感应电机。 异步电机广泛用于驱动机床、水泵、鼓风机、压缩机、起重卷扬设备、矿山机械、轻工机械、农副产品加工机械等大多数工农业生产机械,以及家用电器和医疗器械等。异步电动机在各种电动机中应用最广、需要量最大,电力传动机械中有90%左右由异步电动机驱动,其用电量约占电网总负荷的一半以上。(三)电动机的型号及选择 1.型号 目前电动机更新换代产品(Y系列)已然取代了老产品(J2、JO2、JR、JR02等),新产品的特点是电动机效率比较高、节能、噪声低、震动小、温升低、重量轻等。Y系列电动机型号如图2-2-7所示。 图2-2-7Y系列电动机型号 常用的产品代号有: Y——小型三相交流鼠笼异步电动机(取代J2系列);

弱磁运行下异步电动机调速系统的转矩及功率特性

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T sing hua Un iv (Sci &Tech),2011年第51卷第7期 2011,V o l.51,N o.71/26873-878 弱磁运行下异步电动机调速系统的转矩及功率特性 杨 耕1, 郑 伟1, 陆 城2, 陈伯时3 (1.清华大学自动化系,北京100084;2.台达能源技术(上海)有限公司,上海201209; 3.上海大学机电学院,上海200072) 收稿日期:2010-06-04 基金项目:国家自然科学基金项目(60674096)作者简介:杨耕(1957)),男(汉),四川,教授。 E -mail:yan ggeng@mail.tsin https://www.360docs.net/doc/a77060245.html, 摘 要:在弱磁调速下,异步电动机变频系统电磁转矩控制的非线性特性、以及系统最大输出电压和电流的限制,使得转矩和功率控制比较复杂。该文分析了弱磁调速区间内最大电磁转矩与电动机参数、系统电压电流约束之间的关系,给出了改善控制性能所需的系统最大电磁转矩和最大功率随定子同步频率以及最大电流约束变化的定量关系。实物实验验证了这些特性。 关键词:感应电动机;弱磁控制;转矩特性;弱磁区域中图分类号:T M 301;T M 346文献标志码:A 文章编号:1000-0054(2011)07-0873-06 Torque and power characteristics of induction motor drive in flux weakening region YANG G en g 1,ZHE NG Wei 1,LU Chen g 2,CH EN Boshi 3(1.Department of Automation,T singhua University, Beijin g 100084,China; 2.Delta Electronics (Shanghai)Co.,Ltd. Shanghai 201209,China;3.S chool of Mechatronics Engineering and Automation, S hanghai University,Shanghai 200072,China)Abstract:In the flux -weakening operation regi on of an inverter -induction m otor drive,th e control of electromagnetic torque (EM T)and pow er becomes complicated,due to the nonlinear characteris tic of th e EM T and output voltage/current con strain ts of the drive.For th e con trol performance im provement,this paper describ es th e fun ction of th e max imum EM T about the m otor param eters an d th e voltage/current cons traints,and pres ents th e algorithms of th e m aximum E M T and th e electromotive pow er along w ith the variation of stator frequ ency as w ell as the current limitations.T est res ults verify the algorithm s.Key words:induction m otor; flux w eak ening control; tor qu e characteristic;flux w eakening region 一般认为,异步电动机在额定频率以上的弱磁运行具有恒功率调速的特性[1-3] ,但在交流变频器驱动电机运行时,由于变频器最大输出电压和最大输出电流的限制(以下简称为电压电流限制),此时的 调速特性远比一般所述的/恒功率特性0复杂。然而,从系统实现的角度出发,如果采用具有转矩控制内环的结构,由于弱磁运行时电磁转矩控制环和磁 链控制环之间不再解耦,系统需要实时求取电压电流限制下随速度变化的电磁转矩指令以及励磁电流指令。此时的系统控制框图可用图1表示,励磁电流指令的求取如图中阴影部分所示,需要求解一个由多个变量构成的超越方程。由于算法十分复杂, 基于现有的实时控制器难以实现。 图1 具有转矩闭环的典型弱磁控制方法示意 迄今,韩国学者Kim 和Sul 提出的转矩最大化的弱磁调速方法[4-5]最具影响力。该方法的基本结构仍然同图1,其基本思想是:假定调速过程中弱磁变化缓慢,从而可以基于转子磁场定向条件下的电机模型分析问题;首先基于系统电压、电流限制给出弱磁调速范围内对应同步频率所能产生最大电磁转矩的励磁电流曲线;然后在实时系统中依此曲线给出励磁电流指令,同时根据最大电流限制和励磁电流对转矩电流指令进行限幅。该方法避免了超越方程的实时求解,也保证了在缓慢弱磁过程中系统对最大电流和最大母线电压最大程度地利用,因

各种管子敷设方式对照表

sc:焊接钢管 tc:电线管 pc:硬质塑料管 ct:电缆桥架 cp:金属软管 SR:钢线槽 RC:水煤气管 导线敷设部位: SR:沿钢索敷设 CLE:沿柱或跨柱敷设 WE:沿墙面敷设 CE:沿天棚面或顶棚面敷设 ACE:在能进入的吊顶在敷设 BC:暗敷设在梁内 CLC:暗敷设在柱子内 wc:暗敷设在墙内 FC:预埋在地面内 cc:暗敷设在顶板内 新标注,PC聚氯乙烯硬管FPC半硬管KPC 波纹管CT,为桥架敷设 KBG,JBG是薄壁电线管的一个变种,属于行业标准标注,不是国标,和SC等不是一回事SC是规范上的焊管,而且是厚壁的,壁厚通常不小于3mm KBG---扣压式电气导管,用专用的压钳将套接管与导管压接紧固;JBG---紧固式电气导管,套管与导管使用用螺丝紧固. JDG、KBG管成为扣压式镀锌钢管,不用防腐、不用跨接。是黄色的。壁厚为1.2mm。。。。 2.5左右。广泛应用,节省钢材。安装简便,功效高。但要用正规厂家的,否则弯曲时,易扁、开裂。要用配套的弯曲工具和弹簧。 JDG导管及系列产品是我公司在吸收国内外同类先进技术的改进型,与日本JIS工业标准相一致,并与GB50303、GB50300相吻合,即改变了传统熔焊和套丝复杂的施工工艺,也弥补了国内市场同类产品易滑扣等不良现象。 选材精当 JDG导管及系列产品均采用优质钢材,经精密加工而成,双面镀锌,既美观,又有良好的防腐性能。 施工方便 无需电焊机和套丝设备,也不需做跨接地线,无须刷漆,省去了传统熔焊和套丝等复杂的施工工序。 只需将直管接头连接管与管,螺纹管接头连接管与接线盒,定位后用专用工具拧紧(拧断)螺钉即可,与接线盒连接处用锁母紧定即可。管路转弯处用弯管器可现场弯曲相应的弧度。适用范围广 JDG导管有超轻型管和轻管两种,超轻型管可用于明敷,轻型管既可明敷亦可暗敷。适用于工业与民用建筑及市政管线中电线电缆的穿线保护,尤其适用于日趋推崇的智能写字楼的综合布线系统。 性能优越 JDG导管相对国产镀锌管、SC管等市场同类产品,在综合性能方面具有十分显著的优势。工程验收

相异步电动机_习题参考答案

三相异步电动机习题参考 1 在额定工作情况下的三相异步电动机,已知其转速为960r/min ,试问电动机的同步转速是多少?有几对磁极对数?转差率是多大? 解:∵ n N =960(r/min) ∴n 1=1000(r/min) p=3 04.01000 960100011=-=-=n n n s N 2 有一台六极三相绕线式异步电动机,在f=50HZ 的电源上带额定负载动运行,其 转差率为,求定子磁场的转速及频率和转子磁场的频率和转速。 解:六极电动机,p =3 定子磁场的转速即同步转速n 1=(60×50)/3=1000(r/min) 定子频率f 1=50Hz 转子频率f 2=sf 1=×50=1Hz 转子转速n =n 1(1-s )=1000=980(r/min) 3 Y180L-4型电动机的额定功率为22kw ,额定转速为1470r/min ,频率为50HZ ,最大电磁转矩为。 试求电动机的进载系数入? 解:1431470 22955095502=?=?=N N N n P T 2.2143 6.314===N m T T λ 4 已知Y180M-4型三相异步电动机,其额定数据如下表所示。 求:(1)额定电流I N ; (2)额定转差率S N ; (3)额定转矩T N ;最大转矩T M 、启动转矩Tst 。 解:(1)额定电流I N ==N N N N U P η?cos 31=91.086.03803105.18????=(A) (2)额定转差率S N =(1500-1470)/1500=

(3)额定转矩T N =9550×1470=120 最大转矩T M =×120=264 启动转矩Tst=×120=240 5 Y225-4型三相异步电动机的技术数据如下:380v 、50HZ 、△接法、定子输入功率P 1N =、定子电流I 1N =、转差率S N =,轴上输出转矩T N =,求:(1)电动机的转速n 2,(2)轴上输出的机械功率P 2N ,(3)功率因数N ?cos (4)效率ηN 。 解:(1)从电动机型号可知电动机为4极电机,磁极对数为p =2,由 1 21n n n s -= 所以 1480)013.01(1500)1(12=-?=-=s n n (r/min) (2)∵N N m n P T 29550? = ∴45955014804.29095502=?==N m N n T P (KW ) (3) ∵N L L N Cos I U P ?3 1= ∴88.02 .8438031075.4833 1=???==L L N N I U P Cos ? (4)923.075.484512===N N N P P η 6 四极三相异步电动机的额定功率为30kw ,额定电压为380V ,三角形接法,频率为50HZ 。在额定负载下运动时,其转差率为,效率为90%,电流为,试求:(1)转子旋转磁场对转子的转速;(2)额定转矩;(3)电动机的功率因数。 解:(1)转子旋转磁场对转子的转速n 2=Sn 1=×1500=30 (r/min) (2)额定转矩T N =9550×30/1470= (3)电动机的功率因数88.09 .05.573803103033 =????==N L L N N I U P Cos η? 7 上题中电动机的T st /T N =,I st /I N =7,试求:(1)用Y-△降压启动时的启动电流和启动转矩;(2)当负载转矩为额定转矩的60%和25%时,电动机能否启动? 解:(1)用Y-△降压启动时的启动电流I ST =7×3=134(A) 用Y-△降压启动时的启动转矩T st=×3=(Nm) (2)因为 T st=, 当负载转矩为额定转矩的60%时, 由于T st 小于负载转矩,电动机不能启动。 当负载转矩为额定转矩的25%时,由于T st 大于负载转矩,电动机可以启动。

电机接线盒改造技术资料

电机接线盒改造技术资料 1、绝缘低,容易发生短路、放电现象,存在严重事故隐患。 2、由于先天设计的缺陷,电机检修时分不方便,浪费人力,需要进行全面全工况改造。 二、具体存在隐患与改造办法: 1、6KV、380V电机由于先天安装的原因未装与电缆管连接的蛇皮管;改造时电缆终端套上PC98-6型金属阻燃软管,金属阻燃软管与电缆保护管采用自固式接头。 2、6KV、380V电机由于先天制造的原因,电机接线盒侧与电缆防护管的连接不合理;改造时电机接线盒侧与电缆防护管应重新设计,确保严密、美观。 3、6KV、380V电机由于先天安装的原因,现场电缆保护管管径与电缆的外径相差较大;改造时应采用变径接头与软管连接。 4、6KV、380V电机由于先天安装的原因,几根电缆合用的电缆保护管不合理;改造时由我公司设计接头,确保严密、美观。 5、6KV、380V电机由于先天制造的原因,电缆与电动机接线端子不能有效隔离;改造时需加MPG(可拆卸式并分颜色)防护套。 6、电动机酚醛树脂接线柱,已被明令淘汰;改造时更换电机内接线板、柱为DMC材料件,有效的相间隔离,接线端子加MPG 防护套。

7、由于电机制造、安装原因检修时移位极其困难,电缆很难抽出,分麻烦;对电机接线外盒(加底盖)更换后,电缆很容易抽出,要求检修移位方便。 8、由于设备制造原因电机引线与电缆连接处未装绝缘子,不能有效相间隔离;改造时电机引线与电缆连接处需加装全工况DMC 绝缘子(穿心式),电机引线和绝缘子中心的导电杆连接,重新设计引线走向、接线盒安全空间。 9、大功率电机电缆接线头处,接触面积小,容易产生高温发热现像,我公司生产专用接头设备,使原接头处接触面积增大(见图)解除隐患。 10、电机引线和电缆引线接线处原来用绝缘胶布包缠,检修起来分麻烦,经我公司改造后,用特制绝缘护罩(可拆卸式并分颜色)代替绝缘胶布,检修时将绝缘护罩掳下即可,分方便。 总之我公司的改造方法为: A、将绝缘子更换为DMC绝缘子(穿心式)、将绝缘板更换为DMC绝缘板。 B、电缆终端加装MPG(可拆卸式并分颜色)防护套增加绝缘防护。 C、电缆与电缆管连接加强蛇皮管防护。 D、重新设计电机接线外壳、安装电缆接头、金属阻燃软管。以上现象有的电厂全部存在,有的电厂部份存在。经我公司改造后,电机接线盒密封效果可达到国际标准:IP65级。不仅拆装方

三相异步电机的转矩特性与机械特性(精)

三相异步电机的转矩特性与机械特性 1.电磁转矩(简称转矩) 异步电动机的转矩T 是由旋转磁场的每极磁通Φ与转子电流I 2相互作用而产生的。电磁转矩的大小与转子绕组中的电流I 及旋转磁场的强弱有关。 经理论证明,它们的关系是: 22cos T T K I ?=Φ (5-4) 其中 T 为电磁转矩 K T 为与电机结构有关的常数 Φ为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值 ?2为转子电流滞后于转子电势的相位角 若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为: 22122220()T sR U T K R sX '=+ (5-5) 其中 T K '为常数 U 1为定子绕组的相电压 S 为转差率 R 2为转子每相绕组的电阻 X 20为转子静止时每相绕组的感抗 由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。此外,转矩T 还受转子电阻R 2的影响。图4-15为异步电动机的转矩特性曲线。 2.机械特性曲线 图 5-5 三相异步电动机的机械特性曲线 在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的n n m (a) T =f (s )曲线

关系曲线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。 在机械特性曲线上我们要讨论三个转矩: 1).额定转矩T N 额定转矩T N 是异步电动机带额定负载时,转轴上的输出转矩。 29550N P T n = (5-6) 式中P 2是电动机轴上输出的机械功率,其单位是瓦特,n 的单位是转/分,T N 的单位是牛·米。 当忽略电动机本身机械摩擦转矩T 0时,阻转矩近似为负载转矩T L ,电动机作等速旋转时,电磁转矩T 必与阻转矩T L 相等,即T = T L 。额定负载时,则有T N = T L 。 2).最大转矩T m T m 又称为临界转矩,是电动机可能产生的最大电磁转矩。它反映了电动机的过载能力。 最大转矩的转差率为S m ,此时的S m 叫做临界转差率,见图5-5(a ) 最大转矩Tm 与额定转矩T N 之比称为电动机的过载系数λ,即 λ= Tm / T N 一般三相异步的过载系数在1.8~2.2之间。 在选用电动机时,必须考虑可能出现的最大负载转矩,而后根据所选电动机的过载系数算出电动机的最大转矩,它必须大于最大负载转矩。否则,就是重选电动机。 3).起动转矩T st , T st 为电动机起动初始瞬间的转矩,即n=0,s =1时的转矩。 为确保电动机能够带额定负载起动,必须满足:T st >T N ,一般的三相异步电动机有T st /T N =1~2.2。 3.电动机的负载能力自适应分析 电动机在工作时,它所产生的电磁转矩T 的大小能够在一定的范围内自动调整以适应负载的变化,这种特性称为自适应负载能力。 2 L T n S I T ↑?↓?↑?↑?↑直至新的平衡。此过程中,2I ↑时,1 I ↑? 电源提供的功率自动增加。

配管敷设工程明配线管标准施工做法!

配管敷设工程明配线管标准施工做法! 一、按照设计图加工好支架,吊架、抱箍、铁件、弯管及套丝(钢管)。 1、塑料管加工: A、管子切割--多用电工刀、手钢锯、专用截管器。 B、管子煨弯:弯曲角度不小于90度,不能裂、凹、扁。 热煨法--用喷灯、水煮、电炉子、热风机等均匀加热。冷煨法--插入弹簧弯制。C、管子连接: 插入法--加热插入,深度为管径的1.1-1.8倍。 套管法--套管长度为管径的1.5-3倍。 2、钢管加工: A、管子切割--多用手钢锯、砂轮切割机。 B、管子煨弯--弯曲角度不小于90度,不能裂、凹、扁。 热煨法:装满干沙后,用喷灯均匀加热,弯制。(镀锌管禁用) 冷煨法:20mm及以下时用手扳弯管器偎弯;管径为25mm及以上时使用电动和液压弯管器偎弯。 C、管子连接: 丝扣连接:管子绞板,适用于任何钢管。 套管焊接:壁厚不小于2mm的焊接钢管,套管长度为管径的1.5-3倍。 套管顶丝连接:明敷设时使用,用顶丝固定。 3、管子除锈:用钢刷内外除锈 4、管子防腐:内外刷樟丹油,埋土里管外表要刷沥青油两道,或用混凝土保护层;埋入焦砟层应用厚度大于50mm混凝土保护层;埋入砖墙内管内外刷樟丹油一道;

埋入混凝土柱、梁内管可只在内壁刷樟丹油一道。 二、测定盒、箱及管路固定点位置 1、按照设计图测出盒、箱、出线口的准确位置,弹线定位;把管路的垂直点水平线弹出,按少照要求标出支架、吊架固定点具体尺寸一位置。 2、固定点的距离应均匀,管卡距终端、转弯中点、电气器具或接线边缘的距离 150-500mm,中间直线段的管卡间距见下表。 3、管路固定应先固定两端的支架、吊架,然后拉直线固定中间的支架、吊架。扁铁支架30mm×3mm,角钢支架25mm×25mm×3mm,埋注支架应有燕尾,埋入深度应不小于120mm。 三、管路敷设 1、管与盒连接:一般同材质的管、盒才能连接,应一管一孔,管口露出盒、箱应小于5mm。塑料管与接线盒的连接有钢卡环、喇叭口、端接头等。金属管与接线盒的连接有焊接、锁紧螺母等。 2、管子的敷设:主要有管卡安装、支架安装、吊架安装、钢索吊管安装等。 明配管敷设其他要求: 1、管路敷设应尽量减少中间接线盒,在管路较长或转弯时可加装接线盒。 2、管路水平敷设时,高度不应低于2.5m:垂直敷设时,不低于1.8m(1.8m以下应加保护管保护)。 3、管路较长时,超过下列情况时应加接线盒: A、塑料管:1.管路无弯时,30m;2.管路有一个弯时,20m;3.管路有两个弯时,15m; 4.管路有三个弯时,8m; 5.如无法加装接线盒时,应将管径加大一号。

第二节 三相异步电动机的电磁转矩和机械特性

第二节三相异步电动机的电磁转矩和机械特性 三相异步电动机转轴上产生的电磁转矩是决定电动机输出的机械功率大小的一个重要因素,也是电动机的一个重要的性能指标。 一、三相异步电动机的转矩特性 1、电磁转矩的物理表达式 三相异步电动机的工作原理告诉我们,电磁转矩是旋转磁场与转子绕组中感应电流相互作用产生的,设旋转磁场每极的磁通量用Φ表示,它等于气隙中磁感应强度平均值与每极面积的乘积。Φ表示了旋转磁场的强度。设转子电流用I2表示。根据电磁力定律,电磁转矩T em应与Φ成正比、与I2也成正比,即T em∝Φ·I2。此外转子绕组是一个感性电路,转子电流I2滞后于感应电动势E2,它们之间的相位差角是。考虑到电动机的电磁转矩对外做机械功,与有功功率相对应。因此电磁转矩T em还与转子电路的功率因数cos有关,即与转子电流的有功分量I2cos(与E2同相位的电流分量)成正比。 总结以上分析,可列出异步电动机的电磁转矩方程 式中KT是一个与电动机本身结构有关的系数。该公式是分析异步电动机转矩特性的重要依据。 2、转矩特性 电磁转矩与转差率之间的关系T em=(S)称为电动机的转矩特性。可以推得 式中KT’、转子电阻R2、转子不动时的感抗X20都是常数,且X20远大于R2。由于上式用电机定、转子绕组中的电阻、电抗等参数反映电磁转矩T em和转差率S之间的关系,所以上式又称之为电磁转矩的参数表达式。 由转矩的表达式(4-5)可知,转差率一定时,电磁转矩与外加电压的平方成正比,即T em∝U12。因此,电源电压有效值的微小变动,将会引起转矩的很大变化。 当电源电压U1为定值时,电磁转矩T em是转差率S的单值函数。图4-13画出了异步电动机的转矩特性曲线。

电机接线盒里有六个接线头

电机接线盒里有六个接线头: 1. 上面三个接线头横的方向用连接片短接,下面三个接线头接三相电源(星形接法)。(U1 V1 W1 短接,W2 U2 V2接三相电源,正好是星形接法) 2. 拆下上面横的方向连接片,改为竖的方向上下连接,下面三个接线头接三相电源(三角形接法)。)。(U1和W2 短接,V1和U2 短接,W1和V2 短接。再分别接三相电源,正好是三角形接法) 所以电机接线盒里六个接线头按U1 V1 W1 ,W2 U2 V2排列,改变星/ 角接法,相当方便。 不能U1 V1 W1 , U2 V2 W2 排列,是因为改变星/角接法,相当不方便。 3*联接方式:Y/A接法: A B C Y接法:△接法: k ABC 1川I ABC △

丫/△启动电路LI L2 L3 Y/△降压启动控制线路

再止按钮 用星三角起动器也行, 75KW电动机用自耦变压器启动比较好 延长电机使用用变频器启动,可以做到对电网电压无冲击,软启动减少电流对电机的冲击, 寿命,操作方便。 照着图片接线就可以搞定

先用万用表欧姆档,表笔分别接触两个线端(即是接线盒里的接点),当指针摆动很大(即电阻很小)的两个线端为相同组,做记号。用这样的方法分出三相端。经过检测得出1和4, 2和5,3和6为相同相。如图1 然后分出每相线的线头和线尾,将万用表换直流毫安档,一相绕组例如1和4固定接万用表,另一相绕组例如2和5接电池,刚接通电池瞬间,若万用表指针正摆(右摆)时,接电池正极的一端与黑表笔一端都是线头,做记号。同样方法做其余一组。 丫接一将三相的线头(或线尾)相连,另一端作出线端接三相电源如图2(1, 2, 3为线头,全部接在一起,6,4,5为线尾接三相电源)

第四章三相异步电动机试题和答案解析

第四章 三相异步电动机 一、 填空(每空1分) 1. 如果感应电机运行时转差率为s ,则电磁功率,机械功率和转子铜耗之间的比例是 2:P :e Cu P p Ω= 。 答 s :s)(1:1- 2. ★当三相感应电动机定子绕组接于Hz 50的电源上作电动机运行时,定子电流的频率为 ,定子绕组感应电势的频率为 ,如转差率为s ,此时转子绕组感应电势的频率 ,转子电流的频率为 。 答 50Hz ,50Hz ,50sHz ,50sHz 3. 三相感应电动机,如使起动转矩到达最大,此时m s = ,转子总电阻值约为 。 答 1, σσ21X X '+ 4. ★感应电动机起动时,转差率=s ,此时转子电流2I 的值 , 2cos ? ,主磁通比,正常运行时要 ,因此起动转矩 。 答 1,很大,很小,小一些,不大 5. ★一台三相八极感应电动机的电网频率Hz 50,空载运行时转速为735转/分,此时转差率为 ,转子电势的频率为 。当转差率为时,转子的转速为 ,转子的电势频率为 。 答 ,1Hz , 720r/min ,2Hz 6. 三相感应电动机空载时运行时,电机内损耗包括 , , ,和 ,电动机空载输入功率0P 与这些损耗相平衡。 答 定子铜耗,定子铁耗,机械损耗,附加损耗 7. 三相感应电机转速为n ,定子旋转磁场的转速为1n ,当1n n <时为 运行状态;当1n n >时为 运行状态;当n 与1n 反向时为 运行状态。

答 电动机, 发电机,电磁制动 8. 增加绕线式异步电动机起动转矩方法有 , 。 答 转子串适当的电阻, 转子串频敏变阻器 9. ★从异步电机和同步电机的理论分析可知,同步电机的空隙应比异步电机的空气隙要 ,其原因是 。 答 大,同步电机为双边励磁 10. ★一台频率为 160Hz f =的三相感应电动机,用在频率为Hz 50的电源上(电压不变),电动机的最大转矩为原来的 ,起动转矩变为原来的 。 答 265??? ??,2 65?? ? ?? 二、 选择(每题1分) 1. 绕线式三相感应电动机,转子串电阻起动时( )。 A 起动转矩增大,起动电流增大; B 起动转矩增大,起动电流减小; C 起动转矩增大,起动电流不变; D 起动转矩减小,起动电流增大。 答 B 2. 一台50Hz 三相感应电动机的转速为min /720r n =,该电机的级数和同步转速为 ( )。 A 4极,min /1500r ; B 6极,min /1000r ; C 8极,min /750r ; D 10极,min /600r 。 答 C 3. ★笼型三相感应电动机的额定状态转速下降%10,该电机转子电流产生的旋转磁动势 相对于定子的转速( )。 A 上升 %10; B 下降%10; C 上升 %)101/(1+; D 不变。 答 D 4. 国产额定转速为min /1450r 的三相感应电动机为( )极电机。

三相异步电动机转速及力矩计算

三相异步电动机转速及力 矩计算 The Standardization Office was revised on the afternoon of December 13, 2020

三相异步电动机转速及力矩计算 电动机扭矩计算 扭矩是力对物体作用的一种形式,它使物体产生转动,其作用大小等于作用力和力臂(作用力到转动中心的距离)的乘积。所以扭矩的单位是力的单位和距离的单位的乘积,即牛顿*米,简称牛米 计算公式是 T=9550 * P / n P是额定(输出)功率单位是千瓦(KW) n 是额定转速单位是转每分 (r/min) P和 n可从电机铭牌中直接查到。 三相异步电动机转速公式为: n=60f/p(1-s) N0=60F/P (同步电动机) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。 在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很

电气镀锌钢管套丝连接技术交底

施表共页第页 编号 工程名称XXXX奥林匹克体育中心-体育场 交底日期2012年月日 施工单位分项工程名称电气配管暗敷 交底摘要套丝连接施工工艺标准页数共页,第页 型后丝扣不乱,不过长,管径20mm及以下时,分二板套成,管径在25mm及以上时,分三板套成。 (3)测定盒、箱位置:根据施工图纸要求确定盒、箱轴线的位置,以土建弹出的水平线为基准,严格按照设计标高,确定盒箱具体位置,线坠找平、找正。(注意:开关高度不包括开关面板与盒边的高度差,因此开关插座接线盒的底边标高应比所接器具的标高高约10mm。在有地板的房间内,以上开关、灯具等的安装高度要随地板高度相应上抬高) (4)由于本工程部分地方的预埋管数量较多,需要综合排管,依据“大管在下,小管在上”的原则布管,还要充分考虑现浇板的厚度。 (5)穿梁镀锌钢管接头尽量远离梁筋处,以方便手扳套丝机作业,如无法避免,需先将管穿梁后,根据要求尺寸切断,将管拉出底筋,套丝后再将管穿回原位置。管子在在穿进穿出梁筋时注意不要损坏丝口。 3.管路连接 (1)采用套丝连接,两管口分别插入直管接头中间,套管两端与管子丝接。管口挫光滑平整,以保证以后穿线工作顺利进行。管路跨直接用环形管卡固定4mm2铜导线做接地跨接,为保证可靠连接压接部位要求采用双股线。

施表共页第页 编号 工程名称XXXX奥林匹克体育中心-体育场 交底日期2012年月日 施工单位分项工程名称电气配管暗敷 交底摘要套丝连接施工工艺标准页数共页,第页 (2)管路宜沿最近的线路敷设并减少弯曲;埋入墙或混凝土的管子离表面净距不应小于15mm,消防管路不得小于30mm。管路超过下列长度,加装接线盒,以便于穿线。无弯时,每隔30m加一接线盒;有一个弯时,每隔20m加一接线盒;有二个弯时,每隔15m加一接线盒;有三个弯时,每隔8m加一接线盒。 (3)管进盒、箱:盒、箱开孔整齐并与管径相吻合,要求一管一孔,不得开长孔,开孔后刷防锈漆。管口入盒、箱时,管口不得与敲落孔焊接,管口露出盒、箱小于5mm。两根以上管入盒、箱要长短一致,间距均匀,排列整齐。然后按进出线方向尽量选择与管外径相近的接线盒,将对应的敲落孔板取下,在钢管套丝端上好根母,再把钢管插入接线盒,拧紧锁紧螺母,注意露出的丝扣约为2~4扣,然后安装接地跨接线,跨接地线采用专用接地线卡跨接,通过专用接地线卡将管与管、管与盒连成一体。最后将接线盒用湿锯末填满,用专用塑料塞堵和胶带封好管口。

异步电动机的电磁转矩和机械特性(精)

异步电动机的电磁转矩和机械特性 电磁转矩是异步电动机的驱动转矩,本节专题研究之。 一、电磁转矩 ?基本公式: ?与直流电机类似的公式: ? ?根据简化等效电路算出转子电流: ?电磁转矩的实用公式: 二、机械特性 ?电动机的机械特性是指电磁转矩与转速之间的关系曲线。 ?异步电动机的机械特性就是T-s曲线。 ?几个关键点: o起动点 o最大转矩点 o额定工作点 ?电动,发电,制动三种运行状态 三、最大转矩,过载能力 ?异步电动机的T-s曲线上有一个最高点;

?最大转矩可以根据高等数学中求极值的方法求得。 o令:,求得: o带入转矩公式,可得: ?过载能力:最大转矩与额定转矩之比:;(一般在1.6--2.2之间,起重,冶金电动机2-3) ?几个重要结论: o最大转矩与电网电压的平方成正比; o最大转矩近似于漏电抗反比 o最大转矩的位置可以由转子电阻的大小来调整; o最大转矩的值与转子电阻值没有关系。 ?异步电动机调节转子电阻时机械特性的变化。(看动画T-s) 四、异步电动机的起动转矩,起动转矩倍数 ?作出起动时(s=1)的等效电路,可以直接求得起动电流和起动转矩。 ?起动电流指起动瞬间电机从电网吸收的电 流, ?起动转矩则是起动瞬间电动机的电磁转矩: ?如果希望起动转矩等于最大转矩,则:令sm = 1,可得: ?对绕线式电动机:以上电阻指的是转子每相电阻与外串电阻之和。另,实际电阻应反折算。 ?几个重要结论: o异步电动机的起动转矩与电压的平方成正比; o总漏抗越大,起动转矩越小; o绕线式异步电动机可以在转子回路串入适当的电阻一增大起动转矩; o当时,起动转矩最大。 五、转矩的实用计算公式:

三相异步电动机的电磁转矩

三相异步电动机的电磁转矩 由三相异步电动机的转动原理可知,驱动电机旋转的电磁转矩是由转子导体中的电流与旋转磁场每极磁通相互作用而产生的,因此电磁转矩。 由于转子电路是一个交流电路,有电阻和感抗的存在,滞后(相位差),则转子电流中的有功分量与旋转磁场相互作用而产生电磁转矩,故 ,kr.是与电动机结构有关的常数类比:三相异步电动机的电磁关系与变压器相似。 定子电路和转子电路相当于变压器的原、副绕组,如下图示,其旋转磁场的主磁通将定子和转子交链在一起。 对电动机而言,一般副边是短接的,形成回路电流。 当定子绕组接上三相电源电压(相电压)时,则有三相电流(相电流)通过。定子三相电流产生旋转磁场,其磁通通过定子和转子铁芯闭合。这磁场不仅在转子每相绕组中感应出电动势(由此产生

电流),而且在定子每相绕组中也要感应出电动势(实际上三相异步电动机中的旋转磁场是由定子电流和转子电流共同产生的)。此外,还有漏磁通,在定子绕组和转子绕组中感应出漏磁电动势和。 1、定子电路 定子每相电路的电压方程和变压器原绕组电路的一样,即 。 相量式如下 和变压器一样,也可得出和 注:如果考虑电动机定子绕组按一定规律沿定子铁芯内圆周分布而引入的绕组系数,则公式可写为,一般。 定子部分产生的旋转磁场转速。 2、转子电路 转子每相电路的电压方程为 此式中转子电路的各个物理量对电动机的性能都有影响,分述如下: (1)转子频率 因为旋转磁场和转子间的相对转速为(),所以转子频率为 显然,与转差率s有关,也就是与n有关。 当,即时(电动机起动初始瞬间),转子与旋转磁场间

的相对转速最大,转子导条被旋转磁场切割的最快。所以这时最高,。 (2)转子电动势 转子电动势的有效值为: 当,即时,转子电动势为: 这时,转子电动势最大。则有,可见转子电动势 与转差率s有关。 (3)转子感抗 转子感抗与转子频率有关,即 当,即时,转子感抗为 这时,转子感抗最大。则有,可见转子感抗与转差率s有关。 (4)转子电流 转子每相电路的电流 可见转子电流也与转差率s有关。当s↑,即转速n↓时,转子与旋转磁场间的相对旋速增加↑,转子导体切割磁通的速度

三相异步电动机直接转矩控制系统仿真报告

三相异步电动机直接转 矩控制系统仿真报告 Document number:PBGCG-0857-BTDO-0089-PTT1998

三相异步电动机直接转矩控制系统仿真报告 摘要:利用直接转矩控制( DTC )理论,研究异步电动机直接转矩控制调速系统的基本组成 和工作原理,建立了异步电动机直接转矩控制系统的仿真模型。利用MATLAB /Simulink软件对异步电动机直接转矩控制系统进行建模和仿真。结果表明: DTC系统具有动态响应速度快、精度高、易于实现的优点。仿真结果验证了该模型的正确性和该控制系统的有效性。 关键词:异步电机;直接转矩控制; MATLAB仿真 1 引言 自从20世纪70年代矢量控制技术发展以来,交流拖动技术就从理论上解决了交流调速系统在静动态性能上与直流调速系统相媲美的问题。所谓矢量控制,就是将交流电动机模拟成直流电动机来控制,通过坐标变换实现电机定子电流的励磁分量和转矩分量的解耦,然后分别独立控制,从而获得高性能的转矩和转速响应特性。 直接转矩控制(Direct Torque Control DTC)是在矢量控制基础之上发展起来的,是继矢量控制以后提出的又一种异步电动机控制方法。其思路是把异步电动机和逆变器看成是一个整体,采用电压矢量分析方法直接在静止坐标系下分析和计算电动机的转矩和磁链,通过磁链跟踪得出PWM逆变器的开关状态切换的依据从而直接控制电动机转矩"与矢量控制相比,直接转矩控制的主要优点是:在定子坐标系下对电动机进行控制,摒弃了矢量控制中的解藕思想,直接控制电动机的磁链和转矩,并用定子磁链的定向代替转子磁链的定向,避开了电动机中不易确定的参数(转子电阻)"由于定子磁链的估算只与相对比较容易测量的定子电阻有关,所以使得磁链的估算更容易、更精确,受电动机参数变化的影响也更小"此外,直接转矩控制通过直接输出转矩和磁链的偏差来确定电压矢量,与以往的调速方法相比,它具有控制直接!计算过程简化的优点"因此,直接转矩控制一问世便受到广泛关注,目前国内外围绕直接转矩控制的研究十分活跃。 2 三相异步电机的直接转矩控制系统组成 三相异步电动机直接转矩控制系统模块图标如图1所示,其仿真模型如图2所示,模型由7个主要模块组成:三相不控整流器

相关文档
最新文档