5-2 偏心受拉构件正截面承载力计算.

合集下载

.正截面承载力计算

.正截面承载力计算

3.2 正截面承载力计算钢筋混凝土受弯构件通常承受弯矩和剪力共同作用,其破坏有两种可能:一种是由弯矩引起的,破坏截面与构件的纵轴线垂直,称为沿正截面破坏;另一种是由弯矩和剪力共同作用引起的,破坏截面是倾斜的,称为沿斜截面破坏。

所以,设计受弯构件时,需进行正截面承载力和斜截面承载力计算。

一、单筋矩形截面1.单筋截面受弯构件沿正截面的破坏特征钢筋混凝土受弯构件正截面的破坏形式与钢筋和混凝土的强度以及纵向受拉钢筋配筋率ρ有关。

ρ用纵向受拉钢筋的截面面积与正截面的有效面积的比值来表示,即ρ=As/(bh0),其中A s为受拉钢筋截面面积;b为梁的截面宽度;h0为梁的截面有效高度。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的具有不同破坏特征。

①适筋梁配置适量纵向受力钢筋的梁称为适筋梁。

适筋梁从开始加载到完全破坏,其应力变化经历了三个阶段,如图3.2.1。

第I阶段(弹性工作阶段):荷载很小时,混凝土的压应力及拉应力都很小,应力和应变几乎成直线关系,如图3.2.1a。

当弯矩增大时,受拉区混凝土表现出明显的塑性特征,应力和应变不再呈直线关系,应力分布呈曲线。

当受拉边缘纤维的应变达到混凝土的极限拉应变εtu时,截面处于将裂未裂的极限状态,即第Ⅰ阶段末,用Ⅰa表示,此时截面所能承担的弯矩称抗裂弯矩M cr,如图3.2.1b。

Ⅰa阶段的应力状态是抗裂验算的依据。

第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极限拉应变εtu,受拉区出现裂缝,截面即进入第Ⅱ阶段。

裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,拉力几乎全部由受拉钢筋承担。

随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.2.1c。

第Ⅱ阶段的应力状态是裂缝宽度和变形验算的依据。

当弯矩继续增加,钢筋应力达到屈服强度f y,这时截面所能承担的弯矩称为屈服弯矩M y。

矩形截面偏心受压构件正截面的承载力计算

矩形截面偏心受压构件正截面的承载力计算

矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。

(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。

2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。

(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。

第五章1 钢筋混凝土受压构件正截面承载力计算w

第五章1 钢筋混凝土受压构件正截面承载力计算w
柱的破坏形态
5-6弯曲变形
5-7轴心受压长柱的破坏形态
试验结果表明长柱的承载力低于相同条件短柱的承载 试验结果表明长柱的承载力低于相同条件短柱的承载 力,目前采用引入稳定系数Ψ的方法来考虑长柱纵向 挠曲的不利影响, 挠曲的不利影响,Ψ值小于1.0,且随着长细比的增大 而减小。 而减小。
表5-1 钢筋混凝土轴心受压构件的稳定系数面承载力计
5.2.1 受力过程及破坏特征 轴心受拉构件从开始加载到破坏, 轴心受拉构件从开始加载到破坏,其受力过程可 分为三个不同的阶段: 分为三个不同的阶段: 1.第I阶段 开始加载到混凝土开裂前, 属于第I 阶段。 从 开始加载到混凝土开裂前 , 属于第 I 阶段 。 此 纵向钢筋和混凝土共同承受拉力, 时 纵向钢筋和混凝土共同承受拉力,应力与应变大致 成正比,拉力 N与截面平均拉应变 ε 之间基本上是线 成正比, 性关系, 性关系,如图5-2a中的OA段。
当现浇钢筋混凝土轴心受压构件截面长边或直径 小于300㎜时 ,式中混凝土强度设计值应乘以系数0.8 (构件质量确有保障时不受此限)。 4. 构造要求 (1)材料 混凝土强度对受压构件的承载力影响较大, 混凝土强度对受压构件的承载力影响较大,故宜 采用强度等级较高的混凝土 强度等级较高的混凝土, 采用强度等级较高的混凝土,如C25,C30,C40等。 在高层建筑和重要结构中, 在高层建筑和重要结构中,尚应选择强度等级更高的 混凝土。 混凝土。 钢筋与混凝土共同受压时, 钢筋与混凝土共同受压时 , 若钢筋强度过高 ( 如 则不能充分发挥其作用, 高于 0.002Es) , 则不能充分发挥其作用 , 故 不宜用高 强度钢筋作为受压钢筋。同时, 强度钢筋作为受压钢筋。同时,也不得用冷拉钢筋作 为受压钢筋。 为受压钢筋。

钢筋混凝土受弯构件正截面承载力计算

钢筋混凝土受弯构件正截面承载力计算
h0 —— 截 面 有 效 高 度 , h0=h–as 单 排 布 置 钢 筋 时 : as=35mm 双排布筋时:as=50~60mm 对于板 : as=20mm
由相对界限受压区高度b可推出最大配筋率 b及单筋矩形截面的最大受弯承载力Mumax。

As bh0

b
1
f
fc
y
4.3.5 适筋和少筋破坏的界限条件
min.h/h0 b min —— 最小配筋率, 根据钢筋混凝土梁的破坏弯
矩等于同样截面尺寸素砼梁的开裂弯矩 确定的。
确定的理论依据为:
Mu = Mcr
《规范》对min作出如下规定:
(1)受弯构件、偏心受拉、轴心受拉构件其 一侧纵向受拉钢筋的配筋百分率不 应小于0.2%和0.45ft/fy中的较大值 ;
梁的宽度和高度
宽度 :b = 120、150、(180)、200、(220)、 250、300、350、…(mm)
高度:h=250、300、350、400、……、750、800、 900、…(mm)。
二、 截面尺寸和配筋构造
2. 板
c15mm d
分布钢筋
h0
h
d 6 ~ 12mm
h0 h 20
(2)卧置于地基上的混凝土板,板的受拉钢 筋的最小配筋百分率可适当降低, 但不应小于0.15%。
4.4 单筋矩形截面的承载力计算
4.4.1 基本计算公式及适用条件
1fc
x
Mu
C=1fc bx
Ts = fyAs
1. 基本计算公式
N 0
M 0
1 fcbx fyAs (3 - 20)
架立
箍筋
弯矩引起的 垂直裂缝

第六章 受压构件

第六章 受压构件

2.正截面承载力计算公式
N 0.9 fc A f A
' y

' s

A
几点说明:A.公式(6-2)适用于普通箍筋短柱和长柱;
' --当纵向钢筋配筋率大于3%时,A应改为An。 s
B.纵筋配筋率不超过5%,以防止卸载时,混凝土拉裂;
C.注意柱计算长度的选用。
3.截面设计和截面复核 例题6.1,6-2。
1.受力特点:轴向压力较小时,混凝土和纵筋分别受压, 螺旋箍筋受拉但对混凝土的横向作用不明显;接近极 限状态时,螺旋箍筋对核芯混凝土产生较大的横向约 束,提高混凝土强度,从而间接提高柱的承载能力。
螺旋箍筋又称为“间接钢筋”,产生“套箍作用”。
2 .正截面承载力计算公式为式(6-10Байду номын сангаас; 3.使用螺旋式箍筋柱的条件:见P.102(1)~(3)。
' s 2 0
例题6.9。
工字形截面偏心受压构件正截面承载力计算
一、大偏心受压构件
1、中和轴在翼缘上,即
xh
' f
2、中和轴在腹板上,即
xh
' f
二、小偏心受压构件
1、中和轴在腹板上,即
h x h hf
' f
2、中和轴在翼缘上,即
h hf x h
二、偏心受压构件的纵向弯曲影响
偏心距增大系数的计算公式:
l0 2 1 ( ) 1 2 ei h 1400 h0 1
三、偏心受压构件正截面承载力计算的基本假定
偏心受压构件正截面承载力计算的基本假定与受弯构件的基本假定 相同。
四、附加偏心距
M e0 N ea h / 30 20m m ei e0 ea

正截面承载力—受弯、受压、受拉

正截面承载力—受弯、受压、受拉

➢ 我国GBJ10-89规范取0=fcm=1.1fc;
➢ 我国DL/T5057-1996、JTJ267-98、GB50010-2002规范
取0=fc。
美国ACI 318—95、欧洲混凝土委员会模式规范
CEB —FIP 1990以及欧洲共同体委员会规范则以标
准圆柱体(150mm300mm)试件的抗压强度标准值
二、基本公式——对任意截面
1、截面的曲率 :
(a)
2、截面上的混凝土应变: 3、截面上的混凝土应力:
4、截面上的钢筋应力:
2
3
5、微元面积上混凝土压应力的合力:
dNi=ci.dAi=b(y).dy.ci(ci) 即:dNi = b(y).ci(ci).dy 6、平衡方程(b)、(c):
N 0 :
28
2、截面M-关系的计算
(a)

力钢理 、筋论 内,上 力的
(b)
的 分 布
混 凝 土 ,

弯 矩 曲 率
(c)
截 面 及 其 应
关 系 的 确 定
变 29
由上图,静力平衡条件得 :
(a) (b)
用数值计算时,沿高度把截面划分成若干条带,假 定条带上的应力是个常值,上式可近似写为:
力的影响不明显 ; 对0 大的超筋梁和小偏压柱,基本不变。
因此,有些规范把取为常数。 我国: 0=fc=0.67fcu; 美国ACI:0=/(2)=0.72/(2×0.425)fc=0.85 fc
11
❖1 关于混凝土抗压强度:
我国规范GBJl0—89、GB 50010-2002、水工混凝 土结构设计规范DL/T5057—1996、港工规范JTJ 267-98以及英国混凝土结构设计规范BS8110以标 准立方体试块(150mm×l50mm×l50mm)的抗压强 度标准值作为混凝土强度等级。

偏心受压构件

偏心受压构件

1 0.2 2.7
e0 1.0 h0 l0 2 1.15 0.01 1.0 h
第5章 偏心受压构件的正截面承载力
《公路桥规》规定:
计算偏心受压构件时:
对矩形截面:当
l0 / h 5
对圆形截面:当 l0 / d1 4.4
对其它截面:当 l0 / r 17.5 应考虑构件纵向弯矩对构件轴向力偏心距的 影响。此时应将轴向力对截面重心位置的偏心距 e0 剩以偏心距增大系数 。
即:
e0
第5章 偏心受压构件的正截面承载力
矩形截面偏心 受压构件的弯矩 作用平面示意图
第5章 偏心受压构件的正截面承载力
四、偏心受压构件正截面承载力计算的基本假设 1、截面应变分布符合平截面假定;
2、不考虑混凝土的抗拉强度;
3、 受压区混凝土的极限压应变:
C50及以下 : cu 0.0033
x ' f cd bx (es h0 ) s s As es f sd As' es' (5—3—4) 2
B(Nb¬ Mb) £
C(0£ M0) ¬
Mu
第5章 偏心受压构件的正截面承载力
N -M 相关曲线反映了在压力和弯矩共同作用下
正截面承载力的规律,具有以下一些特点: ⑴相关曲线上的任一点代表截面处于正截面承载力 极限状态时的一种内力组合。 ● 如一组内力(N,M )在曲线内侧说明截面未达 到极限状态,是安全的;
第5章 偏心受压构件的正截面承载力
´ Ó × æ Ä ¿ î Î ½ · Ô ½ Ã µ ¸ ½ Ð Ê
第5章 偏心受压构件的正截面承载力
第5章 偏心受压构件的正截面承载力
N M=N e0

第八章 偏心受力构件

第八章 偏心受力构件
构造给筋2φ12 构造给筋4φ16
h<600 (a)
600≤h≤1000 (b)
1000<h≤1500 (c)
600≤h≤1000 (d)
600≤h≤1000 (e)
1000<h≤1500 (f)
分离式箍筋 (g)
内折角 (h)
图7-2
当 h ≥ 600mm时,在侧面设φ10~16的构造筋 ′ As As ρ′ = ρ= ′ bh0 bh0 0.2% = ρmin ≤ ρ 0.2% = ρ′min ≤ ρ′
8.2.2 截面形式 截面形式应考虑到受力合理和模板制作方便。 矩形 b ≥250mm
( ) 工字型(截面尺寸较大时) h′f ≥ 100mm d ≥ 80mm 且 为避免长细比过大降低构件承载力 l0/h≤25, l0/d≤25。

l0/b ≤ 30
八 章
钢筋混凝土结构设计原理
8.2.3 配筋形式 • 纵筋布置于弯矩作用方向两侧面 d≥12mm 纵筋间距>50mm 中距≤ 350mm
混凝土结构设计原理
第八章 偏心受力构件承载力计算
§8.1 概 述 8.1.1 定义 偏心受力构件是指轴向力偏离截面形心或构件 同时受到弯矩和轴向力的共同作用。
N NM N
(a)
N N M
(b)
N
(c)
(d)
(e)
(f)
虽然承受的荷载形式多种多样,但其受力本质是 相同的,它们之间也是可以相互转化的 如下图所示
第 八 章
钢筋混凝土结构设计原理
复合箍筋要点: 1、适用情况;b>400mm且截面各边纵筋多于3根 b≤400mm但截面各边纵筋多于4根 2、截面形状复杂的柱,不可采用具有内折角的箍 筋,避免产生向外的拉力,致使折角处的混凝 土破损,而应采用分离式箍筋
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档