【精品】2017年山西省太原市八年级上学期期中数学试卷带解析答案

合集下载

2016-2017年山西省大同一中八年级(上)期中数学试卷(解析版)

2016-2017年山西省大同一中八年级(上)期中数学试卷(解析版)

2016-2017学年山西省大同一中八年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3.00分)工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角3.(3.00分)已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.134.(3.00分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形5.(3.00分)在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定6.(3.00分)如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB 7.(3.00分)如图,△ABC≌△EFD,AB=EF,AE=15,CD=3,则AC=()A.5 B.6 C.9 D.128.(3.00分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.(3.00分)如果A(1﹣a,b+1)关于y轴的对称点在第三象限,那么点B(1﹣a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限10.(3.00分)如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P 点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.5二、填空题(每题3分,共24分)11.(3.00分)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.12.(3.00分)已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B=,∠C=.13.(3.00分)如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有条对角线.14.(3.00分)如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠BDC等于°.15.(3.00分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=.16.(3.00分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.17.(3.00分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为.(点C不与点A重合)18.(3.00分)如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC 于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是.三、作图题(19题6分,20题8分)19.(6.00分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).20.(8.00分)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.四、简答题(共32分)21.(8.00分)等腰三角形的周长是18,若一边长为4,求其它两边长?22.(8.00分)已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E 是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.23.(8.00分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.24.(8.00分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.2016-2017学年山西省大同一中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3.00分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3.00分)工人师傅砌门时,常用一根木条固定长方形门框,使其不变形,这样做的根据是()A.两点之间的线段最短B.三角形具有稳定性C.长方形是轴对称图形D.长方形的四个角都是直角【解答】解:盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,这样就构成了三角形,故这样做的数学道理是三角形的稳定性.故选:B.3.(3.00分)已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为()A.2 B.3 C.5 D.13【解答】解:由题意,得解得11<2x<15,解得x=6,x=7,故选:A.4.(3.00分)下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形【解答】解:A、两个全等三角形一定关于某直线对称错误,故本选项错误;B、应为等边三角形的高、中线、角平分线所在的直线都是它的对称轴,故本选项错误;C、应为两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧或直线与两图形相交,故本选项错误;D、关于某直线对称的两个图形是全等形正确,故本选项正确.故选:D.5.(3.00分)在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,1<AD<7.故选:C.6.(3.00分)如图,已知AC=DB,要使△ABC≌△DCB,只需增加的一个条件是()A.∠A=∠D B.∠ABD=∠DCA C.∠ACB=∠DBC D.∠ABC=∠DCB【解答】解:由已知AC=DB,且AC=CA,故可增加一组边相等,即AB=DC,也可增加一组角相等,但这组角必须是AC和BC、DB和CB的夹角,即∠ACB=∠DBC,故选:C.7.(3.00分)如图,△ABC≌△EFD,AB=EF,AE=15,CD=3,则AC=()A.5 B.6 C.9 D.12【解答】解:∵△ABC≌△EFD,∴AC=DE,∴AC﹣CD=DE﹣CD,∴AD=CE,∵AD+CD+CE=AE,AE=15,CD=3,∴AD=CE=6,∴AC=6+3=9,故选:C.8.(3.00分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【解答】解:A、锐角三角形,三条高线交点在三角形内,故错误;B、钝角三角形,三条高线不会交于一个顶点,故错误;C、直角三角形的直角所在的顶点正好是三条高线的交点,可以得出这个三角形是直角三角形,故正确;D、能确定C正确,故错误.故选:C.9.(3.00分)如果A(1﹣a,b+1)关于y轴的对称点在第三象限,那么点B(1﹣a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:A(1﹣a,b+1)关于y轴的对称点在第三象限,得(1﹣a,b+1)在第四象限,1﹣a>0,b+1<0,1﹣a>0,b<﹣1,(1﹣a,b)在第四象限,故选:D.10.(3.00分)如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P 点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.5【解答】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选:A.二、填空题(每题3分,共24分)11.(3.00分)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)12.(3.00分)已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B=90°,∠C=50°.【解答】解:∵∠A=40°,∴∠B+∠C=180°﹣∠A=140°①,∵∠B﹣∠C=40°②,①+②得:2∠B=180°,∴∠B=90°,①﹣②得:2∠C=100°,∴∠C=50°,故答案为:90°;50°.13.(3.00分)如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.14.(3.00分)如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠BDC等于67°.【解答】解:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°﹣∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°,∴∠BDC==67°.故答案为:67°15.(3.00分)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分别为E,D,AD=25,DE=17,则BE=8.【解答】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=25,∵DE=17,∴CD=CE﹣DE=AD﹣DE=25﹣17=8,∴BE=CD=8;故答案为:8.16.(3.00分)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70°.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.17.(3.00分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为(2,4)或(﹣2,0)或(﹣2,4).(点C不与点A重合)【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).18.(3.00分)如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC 于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是5.【解答】解:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S=25,△ABC∴×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故答案为:5.三、作图题(19题6分,20题8分)19.(6.00分)尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【解答】解:如图所示:点P即为所求.20.(8.00分)如图,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),(1)作出△ABC关于y轴对称的△A′B′C′,并写出A′,B′,C′的坐标.(2)求△ABC的面积.【解答】解:(1)所作图形如图所示:A′(﹣4,6),B′(﹣5,2),C′(﹣2,1);=3×5﹣×1×3﹣×1×4﹣×2×5(2)S△ABC=6.5.四、简答题(共32分)21.(8.00分)等腰三角形的周长是18,若一边长为4,求其它两边长?【解答】解:若底边长为4,设腰长为x,则x+x+4=18,解得:x=7若腰长为4,设底边为y,则y+4+4=18,解得:y=10而4+4<10,不能构成三角形,舍去,所以这个等腰三角形的另外两边长为7,7.22.(8.00分)已知:如图,在四边形ABCD中,AD∥BC,∠BDC=∠BCD,点E 是线段BD上一点,且BE=AD.证明:△ADB≌△EBC.【解答】证明:∵AD∥BC,∴∠ADB=∠CBE,∵∠BDC=∠BCD,∴BD=BC,在△ABD和△ECB中,,∴△ABD≌△ECB(SAS).23.(8.00分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(8.00分)如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.。

山西省太原市八年级上学期数学开学考试试卷

山西省太原市八年级上学期数学开学考试试卷

山西省太原市八年级上学期数学开学考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·大连模拟) 在下列实数中,是无理数的为()A . 0B . ﹣3.5C .D .2. (2分) (2016九上·盐城开学考) 如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是()A . 1B . 2C . 3D . 43. (2分)为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是()A . 2000名学生的体重是总体B . 2000名学生是总体C . 每个学生是个体D . 150名学生是所抽取的一个样本4. (2分) (2019七上·涡阳期中) 已知a<0, -1<b<0.则a,ab,ab2 由小到大的排列顺序是().A . a<ab<ab2B . ab2<ab<aC . a<ab2<abD . ab<a<ab25. (2分)二元一次方程x+2y=7的正整数解有()A . 一组B . 二组C . 三组D . 四组6. (2分)如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是()A . 7B . 8C . 9D . 107. (2分) (2020八下·泗辖月考) 不等式2x-2<3x-3的解集在数轴上表示正确的是()A .B .C .D .8. (2分) (2019八下·赵县期末) 把直线y=-x+3向上平移m个单位长度后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A . 1<m<7B . 3<m<4C . m>1D . m<49. (2分)如图,∠1=∠2,∠E=∠A,EC=DA,则△ABD≌△EBC时,运用的判定定理是()A . SSSB . ASAC . AASD . SAS10. (2分) (2016八上·中堂期中) 将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A . 60°B . 75°C . 90°D . 95°11. (2分) (2017七下·南江期末) 小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A .B .C .D .12. (2分) (2020八下·常熟期中) 如图,将△ABC绕着点A顺时针旋转120°得到△ADE.若点C、D、E 在同一条直线上.∠BAC=20°. 则∠ADC 的度数为()A . 20°B . 30°C . 50°D . 60°二、填空题 (共6题;共6分)13. (1分) (2016八上·无锡期末) 25的平方根是________;64的立方根是________.14. (1分) (2020七下·原州期末) 在平面直角坐标系中,第二象限内的点到横轴的距离为2,到纵轴的距离为3,则点的坐标是________.15. (1分) a是实数,且 +|a2﹣2a﹣8|=0,则a的值是________.16. (1分)不等式组的解集为________17. (1分)正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:(1)________;(2)________.18. (1分)(2020·新泰模拟) 在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2……,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn ,则S2020的值为________。

山西省晋中市八年级上学期期中数学试卷

山西省晋中市八年级上学期期中数学试卷

山西省晋中市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016九上·仙游期末) 下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)下列计算正确的是()A .B .C .D .3. (2分) (2017八下·鹤壁期中) 下列代数式中,是分式的是()A .B .C .D .4. (2分)如图,在△ABC中,D为BC上一点,且AB=AD=DC,∠B=80°,则∠C等于()A . 20°C . 40°D . 50°5. (2分)分式的值为0,则()A . x=2B . x=﹣2C . x=±2D . x=06. (2分)已知a、b、c满足∣2a-4∣+∣b+2∣++a2+c2=2+2ac,则a-b+c的值为().A . 4B . 6C . 8D . 4或87. (2分)若a+b=4,则a2+2ab+b2的值是()A . 8B . 16C . 2D . 48. (2分)在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪成两个直角梯形后,再拼成一个等腰梯形(如图),通过计算阴影部分的面积,验证了一个等式,这个等式是()A . a2﹣b2=(a+b)(a﹣b)B . (a+b)2=a2+2ab+b2C . (a﹣b)2=a2﹣2ab﹣b2D . a2﹣ab=a(a﹣b)9. (2分) (2017八上·崆峒期末) 若把分式中的x和y都扩大3倍,那么分式的值()A . 扩大3倍C . 缩小3倍D . 缩小6倍10. (2分)若k为正整数,则2•(﹣2)2k+(﹣2)2k+1等于()A . 0B . 22k+1C . ﹣22k+1D . 22k+211. (2分)已知方程可以配方成的形式,那么的值是()A . -2B . -1C . 1D . 212. (2分)2011•沈阳)如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A . 2个B . 4个C . 6个D . 8个二、填空题 (共4题;共4分)13. (1分) (2019九上·淮阴期末) 如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点B'重合.若AB=2,BC=3,则△FCB'与△B'DG的面积比为________.14. (1分) (2016八上·江东期中) 等腰三角形有一个角为30°,则它的底角度数是________15. (1分)若x2-4y2=-32,x+2y=4,则yx=________.16. (1分)如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则⊙O的半径长为________.三、解答题 (共6题;共66分)17. (10分)综合题。

2014-2015年山西省太原市八年级上学期期中数学试卷和答案

2014-2015年山西省太原市八年级上学期期中数学试卷和答案

2014-2015学年山西省太原市八年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题2分,共20分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.(2.00分)下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.2.(2.00分)下列四组数中,能作为直角三角形三边长的是()A.8,15,17 B.4,5,6 C.2,3,4 D.1,3.(2.00分)下列计算结果错误的是()A.B.|﹣|=C. D.4.(2.00分)一次函数y=﹣x+3的图象经过坐标系的()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.(2.00分)一种正方形瓷砖的面积是15平方分米,估计它的边长(单位:分米)在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.(2.00分)如图,已知点P的坐标为(12,5),则点P到原点O的距离为()A.5 B.12 C.13 D.177.(2.00分)计算的结果是()A.±3B.3 C.±3 D.38.(2.00分)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.y1与y2的大小关系不能确定9.(2.00分)如图,数轴上点C表示实数是﹣2,O为原点,BC⊥OC,且BC=1,以点O为圆心,OB长为半径作弧,交数轴负半轴于点A,则点A表示的实数是()A.﹣2.2 B.C.﹣D.﹣2.510.(2.00分)下列图象不能表示变量y是变量x的函数的是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,把答案直接填在答题纸对应的位置上)11.(3.00分)9的算术平方根是.12.(3.00分)若等边△ABC的边长为4,顶点A在y轴正半轴上,边BC在x轴上,则点A的坐标为.13.(3.00分)计算的结果为.14.(3.00分)如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=时∠ACB=90°.15.(3.00分)一次函数y=2x﹣1的图象经过点P(m,m+1),则m=.16.(3.00分)如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=6cm,BC=8cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题,本大题共8小题,共62分,解答时应写出文字说明、证明过程或演算步骤)17.(16.00分)计算:(1)3;(2);(3)()2;(4).18.(7.00分)如图,已知Rt△ABC中,∠C=90°,AC=3,BC=4,在如图的坐标系中,点A的坐标为(0,1),点B的坐标为(﹣3,5),AC与x轴平行.(1)点C的坐标为;(2)在如图的坐标系中作出△ABC关于y轴对称的△A1B1C1,并在图中标出B1,C1两点的坐标;(3)若△A2B2C2与△ABC关于x轴对称,则△A2B2C2的各顶点的坐标分别为.19.(5.00分)当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响I”来衡量,某类型汽车的撞击影响I可以用公式I=2v2来表示,其中v(单位:千米/分)表示汽车的速度,在一次撞车试验中测得撞击影响I=72(千米/分)2,求此次撞击时的车速.20.(6.00分)已知一次函数的表达式为y=2x+4.(1)填表,用表格表示变量y与x的一次函数关系.(2)在如图的平面直角坐标系中画出该函数的图象.21.(5.00分)一个长方形门框内框的尺寸(单位:米)如图所示,一块长4米,宽3米的玻璃板(厚度不计),能否从门框内通过?为什么?22.(7.00分)获取信息:某市体育馆将举办明星篮球赛,为此体育馆推出两种团体购票方案(设购票张数为x张,购票总价为y元):方案一:购票总价由图中的折线OAB所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.(1)根据方案一的函数图象解答下列问题:购买120张门票的总价为元,购买门票超过100张,每张门票的价格为元;购买门票100张以内,购票总价y(元)与购票张数x(张)之间的函数关系式为;(2)方案二中的购票总价y(元)与购票张数x(张)之间的函数关系式为;问题解决:(3)若购买90张门票,通过计算比较以上哪种方案更合算?23.(6.00分)勾股定理神秘而美妙,它的验证方法多样,其巧妙各有不同,其中“面积法”最为常见,将四个全等的直角三角形如图1摆放时,可以用“面积法”来验证勾股定理;将两个全等的直角三角形按图2摆放时,其中∠DAB=90°,得到梯形DECB,也能验证勾股定理.下面是小聪利用图2验证勾股定理的过程,请将其补充完整:解:连接DB,由条件可得,四边形DECB是梯形.∴S==四边形DECB24.(10.00分)如图,已知一次函数y=﹣x+1的图象与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标及线段的AB的长度;(2)在如图的坐标系中给△AOB拼接一个直角三角形(不重叠且无缝隙的拼接),使得拼成的图形是以AB为边的等腰△ABP的顶点P的坐标.2014-2015学年山西省太原市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.(2.00分)下列实数中,属于无理数的是()A.﹣3 B.3.14 C.D.【解答】解:A、﹣3是整数,是有理数,故A选项错误;B、3.14是小数,是有理数,故B选项错误;C、是有限小数,是有理数,故C选项错误.D、是无理数,故D选项正确故选:D.2.(2.00分)下列四组数中,能作为直角三角形三边长的是()A.8,15,17 B.4,5,6 C.2,3,4 D.1,【解答】解:A、82+152=172,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、22+32≠42,故不是直角三角形,故错误;D、12+()2≠32,故不是直角三角形,故错误.故选:A.3.(2.00分)下列计算结果错误的是()A.B.|﹣|=C. D.【解答】解:A、原式==,正确;B、原式=,正确;C、原式===2,正确;D、原式==,错误.故选:D.4.(2.00分)一次函数y=﹣x+3的图象经过坐标系的()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【解答】解:∵y=﹣x+3,∴k<0,b>0,故直线经过第一、二、四象限.故选:B.5.(2.00分)一种正方形瓷砖的面积是15平方分米,估计它的边长(单位:分米)在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:由算术平方根的定义可知:正方形的边长=.∵9<15<16,∴.∴3<<4.故选:B.6.(2.00分)如图,已知点P的坐标为(12,5),则点P到原点O的距离为()A.5 B.12 C.13 D.17【解答】解:连接OP,如图所示:∵点P的坐标为(12,5),∴OA=12,PA=5,根据题意得:∠OAP=90°,∴OP===13.故选:C.7.(2.00分)计算的结果是()A.±3B.3 C.±3 D.3【解答】解:∵33=27,∴=3.故选:D.8.(2.00分)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1<x2,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.y1与y2的大小关系不能确定【解答】解:∵一次函数y=2x+1的图象经过P1(x1,y1),P2(x2,y2)两点,∴y1=2x1+1,y2=2x2+1,而x1<x2,∴y1<y2.故选:C.9.(2.00分)如图,数轴上点C表示实数是﹣2,O为原点,BC⊥OC,且BC=1,以点O为圆心,OB长为半径作弧,交数轴负半轴于点A,则点A表示的实数是()A.﹣2.2 B.C.﹣D.﹣2.5【解答】解:由勾股定理得:OB===.∵OA=OB,∴点A表示的数为﹣.故选:C.10.(2.00分)下列图象不能表示变量y是变量x的函数的是()A.B.C.D.【解答】解:A、对于x的每一个取值,y都有唯一确定的值,故A正确;B、对于x的每一个取值,y有不唯一确定的值,故B错误;C、对于x的每一个取值,y都有唯一确定的值,故C正确;D、对于x的每一个取值,y都有唯一确定的值,故D正确;故选:B.二、填空题(本大题共6个小题,每小题3分,共18分,把答案直接填在答题纸对应的位置上)11.(3.00分)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.12.(3.00分)若等边△ABC的边长为4,顶点A在y轴正半轴上,边BC在x轴上,则点A的坐标为(0,2).【解答】解:如图,因为顶点A在y轴正半轴上,边BC在x轴上,∵AO⊥BC,∴BO=BC=2,在Rt△AOB中,AB=4,BO=2,由勾股定理可求得AO=2,∴A点坐标为(0,2),故答案为:(0,2).13.(3.00分)计算的结果为1.【解答】解:原式=()2﹣1=2﹣1=1.故答案为1.14.(3.00分)如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=16时∠ACB=90°.【解答】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.15.(3.00分)一次函数y=2x﹣1的图象经过点P(m,m+1),则m=2.【解答】解:把P(m,m+1)代入y=2x﹣1得2m﹣1=m+1,解得m=2.故答案为2.16.(3.00分)如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=6cm,BC=8cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为3cm.【解答】解:在Rt△ABC中,∵AC=6,BC=8,∴AB==10,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=6,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=10﹣6=4,设CD=x,则BD=8﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴42+x2=(8﹣x)2,解得x=3,即CD的长为3cm.故答案为:3.三、解答题,本大题共8小题,共62分,解答时应写出文字说明、证明过程或演算步骤)17.(16.00分)计算:(1)3;(2);(3)()2;(4).【解答】解:(1)原式=3+2=5;(2)原式=+=2+2=4;(3)原式=5+2+2=7+2;(4)原式=2﹣+=.18.(7.00分)如图,已知Rt△ABC中,∠C=90°,AC=3,BC=4,在如图的坐标系中,点A的坐标为(0,1),点B的坐标为(﹣3,5),AC与x轴平行.(1)点C的坐标为(﹣3,1);(2)在如图的坐标系中作出△ABC关于y轴对称的△A1B1C1,并在图中标出B1,C1两点的坐标;(3)若△A2B2C2与△ABC关于x轴对称,则△A2B2C2的各顶点的坐标分别为A2(0,﹣1),B2(﹣3,﹣5),C2(﹣3,﹣1).【解答】解:(1)由图可知,C(﹣3,1).故答案为:(﹣3,1);(2)如图所示;(3)由图可知A2(0,﹣1),B2(﹣3,﹣5),C2(﹣3,﹣1).故答案为:A2(0,﹣1),B2(﹣3,﹣5),C2(﹣3,﹣1).19.(5.00分)当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响I”来衡量,某类型汽车的撞击影响I可以用公式I=2v2来表示,其中v(单位:千米/分)表示汽车的速度,在一次撞车试验中测得撞击影响I=72(千米/分)2,求此次撞击时的车速.【解答】解:∵I=2ν2,∴当I=72时,72=2ν2,∴ν2==36(千米/分)2,∴v==6千米/分.答:撞击时的车速是6千米/分.20.(6.00分)已知一次函数的表达式为y=2x+4.(1)填表,用表格表示变量y与x的一次函数关系.(2)在如图的平面直角坐标系中画出该函数的图象.【解答】解:(1)把x=﹣2,﹣1,0,1,代入解析式,可得:y=0,2,4,6,填表如下:(2)画出图象如下:21.(5.00分)一个长方形门框内框的尺寸(单位:米)如图所示,一块长4米,宽3米的玻璃板(厚度不计),能否从门框内通过?为什么?【解答】解:连接AC,则AC与AB、BC构成直角三角形,根据勾股定理得AC===<3.故薄木板不能从门框内通过.22.(7.00分)获取信息:某市体育馆将举办明星篮球赛,为此体育馆推出两种团体购票方案(设购票张数为x张,购票总价为y元):方案一:购票总价由图中的折线OAB所表示的函数关系确定;方案二:提供8000元赞助后,每张票的票价为50元.(1)根据方案一的函数图象解答下列问题:购买120张门票的总价为13200元,购买门票超过100张,每张门票的价格为60元;购买门票100张以内,购票总价y(元)与购票张数x(张)之间的函数关系式为y=120x;(2)方案二中的购票总价y(元)与购票张数x(张)之间的函数关系式为y=50x+8000;问题解决:(3)若购买90张门票,通过计算比较以上哪种方案更合算?【解答】解:(1)由信息可得:购买120张门票的总价为13200元,购买门票超过100张,每张门票的价格为(13200﹣12000)÷20=60元;购买门票100张以内,购票总价y(元)与购票张数x(张)之间的函数关系式为y=120x;(2)方案二的解析式为:y=50x+8000;(3)把x=90代入y=120x=10800元,把x=90代入y=50x+8000=12500元,所以选择方案一合适.故答案为:13200;60;y=120x;y=50x+8000.23.(6.00分)勾股定理神秘而美妙,它的验证方法多样,其巧妙各有不同,其中“面积法”最为常见,将四个全等的直角三角形如图1摆放时,可以用“面积法”来验证勾股定理;将两个全等的直角三角形按图2摆放时,其中∠DAB=90°,得到梯形DECB,也能验证勾股定理.下面是小聪利用图2验证勾股定理的过程,请将其补充完整:解:连接DB,由条件可得,四边形DECB是梯形.∴S==四边形DECB==(a+b)2=ab+(a2+b2);【解答】证明:S四边形DECB由△AED和△ABC全等得到:∠BAD=90°,所以S=S△AED+S△ABC+S△ABD=ab+ab+c2=ab+c2,四边形DECB即ab+(a2+b2)=ab+c2,所以a2+b2=c2.24.(10.00分)如图,已知一次函数y=﹣x+1的图象与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标及线段的AB的长度;(2)在如图的坐标系中给△AOB拼接一个直角三角形(不重叠且无缝隙的拼接),使得拼成的图形是以AB为边的等腰△ABP的顶点P的坐标.【解答】解:(1)直线AB解析式为y=﹣x+1,∵x=0时,y=1,∴点B坐标为(0,1),∵y=0时,x=3,∴点A坐标为(3,0),AB==.(2)如图,①当BA=BP1,满足条件,此时P1(﹣3,0);②当AB=AP2时,满足条件,此时P2(3﹣,0);③当AB=AP3时,满足条件,此时P3(0,﹣1);④当BA=BP5时,满足条件,此时P5(0,1﹣);⑤当P4A=P4B时,满足条件,设P4A=P4B=m,在Rt△AOP4中,OA=3,OP4=m﹣1,AB=m,∴m2=32+(m﹣1)2,解得m=5,∴P4(0,﹣4).综上所述,满足条件的点P坐标为(﹣3,0),(3﹣,0),(0,﹣1),(0,1﹣),(0,﹣4).赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2019-2020学年山西省太原市八年级(上)期中数学试卷(含答案)

2019-2020学年山西省太原市八年级(上)期中数学试卷(含答案)

2019-2020学年山西省太原市八年级(上)期中数学试卷一、选择题(本愿共10小题,商小题3分,共30分)在每题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.(3分)下列实数中的无理数是()A.B.C.D.2.(3分)有理数4的平方根是()A.B.C.2D.±23.(3分)下列各组数中,能作为直角三角形三边长的是()A.2,3,5B.C.8,15,17D.4.(3分)下列计算结果正确的是()A.B.C.D.5.(3分)已知一次函数y=kx+b(k,b为常数)的图象经过平面直角坐标系的第一、二、三象限,则下列结论一定正确的是()A.kb>0B.kb<0C.k﹣b>0D.k+b<06.(3分)在平面直角坐标系中,已知一次函数y=﹣x+5的图象经过A(﹣3,y1),B(2,y2)两点,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定7.(3分)如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC的三边为边分别向外作等边三角形△A'BC,△AB'C,△ABC',若△A'BC,△AB'C的面积分别是10和4,则△ABC'的面积是()A.4B.6C.8D.98.(3分)对于一次函数y=kx+b(k,b为常数),表中给出5组自变量及其对应的函数值,其中只有1个函数值计算有误,则这个错误的函数值是()A.1B.4C.8D.109.(3分)为比较与的大小,小亮进行了如下分析后作一个直角三角形,使其两直角边的长分别为与,则由勾股定理可求得其斜边长为.根据“三角形三边关系”,可得.小亮的这一做法体现的数学思想是()A.分类讨论思想B.方程思想C.类此思想D.数形结合思想10.(3分)棱长分别为8cm,6cm的两个正方体如图放置,点A,B,E在同一直线上,顶点G在棱BC上,点P是棱E1F1的中点.一只蚂蚁要沿着正方体的表面从点A爬到点P,它爬行的最短距离是()A.B.C.D.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.(2分)把化成最简二次根式为.12.(2分)已知点P(6,m)在一次函数y=﹣x+5的图象上,则点P的坐标为.13.(2分)在平整的路面上,某型号汽车紧急刹车后仍将滑行sm,一般地有经验公式,其中v表示刹车前汽车的速度(单位:km/h).一次行驶中汽车紧急刹车后滑行的距离s =12m,则这辆汽车刹车前的速度v=km/h.14.(2分)《算法统宗》中有一道“荡秋千”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A离地1尺,将它往前推送10尺(水平距离)时,点A对应的点B就和某人一样高,若此人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据上述条件,秋千绳索长为尺.15.(2分)如图,在△ABC中,AB=AC=8,BC=4,AD⊥BC于点D,点P是线段AD上一个动点,过点P作PE⊥AB于点E,连接PB,则PB+PE的最小值为.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(12分)计算:(1);(2);(3);(4).17.(5分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(3,﹣1),B (4,2),C(2,4).(1)请在如图的坐标系中画出△ABC;(2)在如图的坐标系中,画出△ABC关于y轴对称的△A′B'C',并直接写出△A′B'C'三个顶点的坐标.18.(6分)在一次综合实践活动中,老师让同学们测量公园里凉亭A,B之间的距离(A,B之间有水池,无法直接测量).智慧小组的同学们在公园里选了凉亭C,D,测得AD=CD=10m,∠D=90°,BC=40m,∠DCB=135°.请你根据上述数据求出A,B之间的距离.19.(5分)如图,已知一次函数y=x﹣3的图象与x轴,y轴分别交于A,B两点.点C (﹣4,n)在该函数的图象上,连接OC.求点A,B的坐标和△OAC的面积.20.(5分)如图,在△ABC中,AC=6.BC=8,AB=10.点C在y轴的正半轴上,边AB 在x轴上(点A在点B的左侧).(1)求点C的坐标;(2)点D是BC边上一点,点E是AB边上一点,且点E和点C关于AD所在直线对称,直接写出点D的坐标.21.(5分)2019年10月1日是中华人民共和国成立70周年纪念日,红色旅游成为旅游热点.小王要和朋友们去某红色景点旅游,其门票零售价为80元/张.国庆节期间,景点推出优惠活动,方案1:门票一律九折优惠;方案2:对10人以内(含10人)购门票不优惠,超过10人超出部分八折优惠.设小王一行参加旅游的人数为x(人),购买门票费用为y(元).(1)小王分别写出方案1和方案2购买门票的费用y(元)与旅游人数x(人)之间的函数表达式如下,请你将空缺部分补充完整:y1=(x>0);y2=(2)小王一行共有40人一起去该景点旅游,通过计算,判断选择哪种方案更省钱?22.(9分)阅读材料:材料一:两个含有二次根式而非零代数式和乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式例如:,我们称的一个有理化因式是的一个有理化因式是.材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如:,请你仿照材料中的方法探索并解决下列问题:(1)的有理化因式为,的有理化因式为;(均写出一个即可)(2)将下列各式分母有理化:;②;(要求;写出变形过程)(3)请从下列A,B两题中任选一题作答,我选择题.A计算:的结果为.B计算:的结果为.23.(13分)如图1,已知直线y=3x+3与y轴,x轴分别交于A,B两点,过点B在第二象限内作BC⊥AB且BC=AB,连接AC.(1)求点C的坐标;(2)如图2,过点C作直线CD∥x轴交AB于点D,交y轴于点E请从下列A,B两题中任选一题作答,我选择题A.①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),使得以点M,C,D为顶点的三角形与△BCD全等?若存在,请直接写出所有符合条件的点M的坐标:若不存在,请说明理由.B.①如图3,在图2的基础上,过点D作DF⊥AC于点F,求线段DF的长;②在坐标平面内,是否存在点M(除点F外),使得以点M,C,D为顶点的三角形与△FCD全等?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2019-2020学年山西省太原市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本愿共10小题,商小题3分,共30分)在每题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置.1.(3分)下列实数中的无理数是()A.B.C.D.【分析】根据无理数的概念判断即可.【解答】解:A、=2是无理数;B、=3,不是无理数;C、﹣不是无理数;D、=3,不是无理数;故选:A.【点评】本题考查的是无理数的概念,掌握无限不循环小数叫做无理数是解题的关键.2.(3分)有理数4的平方根是()A.B.C.2D.±2【分析】依据平方根的定义求解即可.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:D.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.3.(3分)下列各组数中,能作为直角三角形三边长的是()A.2,3,5B.C.8,15,17D.【分析】欲判断能否构成直角三角形,只需验证两小边的平方和是否等于最长边的平方.【解答】解:A、22+32≠52,不能构成直角三角形;B、()2+()2≠()2,不能构成直角三角形;C、82+152=172,能构成直角三角形;D、12+()2≠32,不能构成直角三角形.故选:C.【点评】此题主要考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.4.(3分)下列计算结果正确的是()A.B.C.D.【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的性质对C、D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)已知一次函数y=kx+b(k,b为常数)的图象经过平面直角坐标系的第一、二、三象限,则下列结论一定正确的是()A.kb>0B.kb<0C.k﹣b>0D.k+b<0【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象经过一、二、三象限,∴k>0,b>0.∴kb>0,故选:A.【点评】本题考查的是一次函数的图象上与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过第二、三、四象限是解答此题的关键.6.(3分)在平面直角坐标系中,已知一次函数y=﹣x+5的图象经过A(﹣3,y1),B(2,y2)两点,则y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法确定【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣1<0,∴y随x的增大而减小,∵﹣3<2,∴y1>y2.故选:B.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.7.(3分)如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC的三边为边分别向外作等边三角形△A'BC,△AB'C,△ABC',若△A'BC,△AB'C的面积分别是10和4,则△ABC'的面积是()A.4B.6C.8D.9【分析】先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质和等边三角形的性质解答即可.【解答】解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,设AC=b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2.又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,∴S1+S2=S3,∵S3=10,S2=4,∴S1=S3﹣S2=10﹣4=6,故选:B.【点评】本题考查了勾股定理,注意等边三角形的性质、特殊三角函数值的利用.解题关键是根据等边三角形的性质求出每一个三角形的面积.8.(3分)对于一次函数y=kx+b(k,b为常数),表中给出5组自变量及其对应的函数值,其中只有1个函数值计算有误,则这个错误的函数值是()A.1B.4C.8D.10【分析】经过观察5组自变量和相应的函数值得(﹣1,﹣2),(0,1),(1,4),(3,10)符合解析式y=3x+1,(2,8)不符合,即可判定.【解答】解:∵(﹣1,﹣2),(0,1),(1,4),(3,10)符合解析式y=3x+1,当x=2时,y=7≠8∴这个计算有误的函数值是8,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.9.(3分)为比较与的大小,小亮进行了如下分析后作一个直角三角形,使其两直角边的长分别为与,则由勾股定理可求得其斜边长为.根据“三角形三边关系”,可得.小亮的这一做法体现的数学思想是()A.分类讨论思想B.方程思想C.类此思想D.数形结合思想【分析】比较与的大小,属于实数大小的比较,而根据“三角形三边关系”,可得,属于图形的性质,体现了数形结合思想.【解答】解:比较与的大小,根据“三角形三边关系”,可得,小亮的这一做法体现的数学思想是数形结合思想,故选:D.【点评】本题主要考查了勾股定理以及三角形三边关系的运用,解题时注意三角形三边关系定理:三角形两边之和大于第三边.10.(3分)棱长分别为8cm,6cm的两个正方体如图放置,点A,B,E在同一直线上,顶点G在棱BC上,点P是棱E1F1的中点.一只蚂蚁要沿着正方体的表面从点A爬到点P,它爬行的最短距离是()A.B.C.D.【分析】求出两种展开图P A的值,比较即可判断.【解答】解:如图,有两种展开方法:方法一:P A==cm,方法二:P A==cm.故需要爬行的最短距离是cm.故选:C.【点评】本题考查平面展开﹣最短问题,解题的关键是学会用转化的思想思考问题,属于中考常考题型.二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.(2分)把化成最简二次根式为3.【分析】根据二次根式的性质进行化简即可.【解答】解:==3.故答案为:3.【点评】本题考查最简二次根式的定义,解题的关键是明确最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.12.(2分)已知点P(6,m)在一次函数y=﹣x+5的图象上,则点P的坐标为(6,3).【分析】把点P(6,m)代入y=﹣x+5即可求得.【解答】解:∵点P(6,m)在一次函数y=﹣x+5的图象上,∴m=﹣+5=3,∴P(6,3),故答案为(6,3).【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标适合解析式.13.(2分)在平整的路面上,某型号汽车紧急刹车后仍将滑行sm,一般地有经验公式,其中v表示刹车前汽车的速度(单位:km/h).一次行驶中汽车紧急刹车后滑行的距离s =12m,则这辆汽车刹车前的速度v=60km/h.【分析】求出V的算术平方根即可.【解答】解:把s=12m代入s=,得=12,所以v2=3600,所以v=60(负值舍去),故答案为:60.【点评】本题考查的是算术平方根.掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.14.(2分)《算法统宗》中有一道“荡秋千”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A离地1尺,将它往前推送10尺(水平距离)时,点A对应的点B就和某人一样高,若此人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据上述条件,秋千绳索长为14.5尺.【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理可求解.【解答】解:设绳索有x尺长,则102+(x﹣4)2=x2,解得:x=14.5.故绳索长14.5尺.故答案为:14.5.【点评】本题考查勾股定理的应用,理解题意能力,关键是能构造出直角三角形,用勾股定理来解.15.(2分)如图,在△ABC中,AB=AC=8,BC=4,AD⊥BC于点D,点P是线段AD上一个动点,过点P作PE⊥AB于点E,连接PB,则PB+PE的最小值为.【分析】根据等腰三角形的性质得到BD=CD=2,由勾股定理得到AD===2,过C作CE⊥AB于E,交AD于P,则此时,PB+PE的值最小,且PB+PE的最小值=CE,根据三角形的面积公式即可得到结论.【解答】解:∵AB=AC=8,BC=4,AD⊥BC于点D,∴BD=CD=2,∴AD===2,∴点B与点C关于直线AD对称,过C作CE⊥AB于E,交AD于P,则此时,PB+PE的值最小,且PB+PE的最小值=CE,∵S△ABC=AB•CE=BC•AD,∴CE==,故答案为:.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,勾股定理,三角形的面积的计算,正确的理解题意是解题的关键.三、解答题(本大题含8个小题,共60分)解答应写出必要的文字说明、演算步骤或推理过程.16.(12分)计算:(1);(2);(3);(4).【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式计算;(3)利用二次根式的除法法则运算;(4)先把二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式==(2)原式===(3)原式===(4)原式==【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(5分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(3,﹣1),B(4,2),C(2,4).(1)请在如图的坐标系中画出△ABC;(2)在如图的坐标系中,画出△ABC关于y轴对称的△A′B'C',并直接写出△A′B'C'三个顶点的坐标.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)根据A′B′,C′的位置写出坐标即可.【解答】解:(1)如图△ABC即为所求.(2)如图△A′B′C′即为所求△A'B'C'的顶点坐标分别为A'(﹣3,﹣1),B'(﹣4,2),C'(﹣2,4).【点评】本题考查作图轴对称变换,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(6分)在一次综合实践活动中,老师让同学们测量公园里凉亭A,B之间的距离(A,B之间有水池,无法直接测量).智慧小组的同学们在公园里选了凉亭C,D,测得AD=CD=10m,∠D=90°,BC=40m,∠DCB=135°.请你根据上述数据求出A,B之间的距离.【分析】连接AC,构造直角三角形,利用勾股定理求得答案即可.<【解答】解:连接AC在△ADC中,∠D=90°,DC=AD=10m,∴,由勾股定理得,∵∠BCD=135°,∴∠ACB=∠BCD﹣∠ACD=135°﹣45°=90°,在Rt△ACB中,BC=40m,由勾股定理得,答:A,B之间的距离为.【点评】考查了勾股定理的应用,解题的关键是了解如何构造直角三角形,难度不大.19.(5分)如图,已知一次函数y=x﹣3的图象与x轴,y轴分别交于A,B两点.点C (﹣4,n)在该函数的图象上,连接OC.求点A,B的坐标和△OAC的面积.【分析】对于一次函数解析式,分别令x与y为0求出对应y与x的值,确定出OA与OB的值,得到A、B两点的坐标,然后根据三角形的面积公式即可得到结论.【解答】解:在中,当y=0时,,∴x=6,∴点A的坐标为(6,0),∴OA=6,当x=0时,y=﹣3,∴点B的坐标为(0,﹣3),把点C(﹣4,n)代入得,∴点C的坐标为(﹣4,﹣5),过点C作CD⊥x轴于点D,则CD=5,∴.【点评】本题考查了一次函数图象上点的坐标特征,三角形的面积的计算,正确的识别图形是解题的关键.20.(5分)如图,在△ABC中,AC=6.BC=8,AB=10.点C在y轴的正半轴上,边AB 在x轴上(点A在点B的左侧).(1)求点C的坐标;(2)点D是BC边上一点,点E是AB边上一点,且点E和点C关于AD所在直线对称,直接写出点D的坐标.【分析】(1)根据勾股定理的逆定理解答即可;(2)根据轴对称解答即可.【解答】解:(1)在△ABC中,AC=6,BC=8,AB=10,∴AC2+BC2=62+82=100=AB2,∴∠ACB=90°,△ACB是直角三角形,由题意可知CO⊥AB,∴,∴,∴,∴点C的坐标为;(2)AO===,OE=6﹣=,BE:BO=DE:CO,(10﹣﹣):(10﹣)=DE:,解得DE=3.则点D的坐标为.【点评】此题考查勾股定理的逆定理,关键是根据勾股定理的逆定理得出△ACB是直角三角形解答.21.(5分)2019年10月1日是中华人民共和国成立70周年纪念日,红色旅游成为旅游热点.小王要和朋友们去某红色景点旅游,其门票零售价为80元/张.国庆节期间,景点推出优惠活动,方案1:门票一律九折优惠;方案2:对10人以内(含10人)购门票不优惠,超过10人超出部分八折优惠.设小王一行参加旅游的人数为x(人),购买门票费用为y(元).(1)小王分别写出方案1和方案2购买门票的费用y(元)与旅游人数x(人)之间的函数表达式如下,请你将空缺部分补充完整:y1=72x(x>0);y2=(2)小王一行共有40人一起去该景点旅游,通过计算,判断选择哪种方案更省钱?【分析】(1)由费用=具体的单价×人数,分别求出y1,y2与x的关系式;(2)代入计算即可求解.【解答】解:(1)方案1:y与x的函数关系式是y=72x(x为自然数);方案2:y与x的函数关系式为故答案为:72x,64x+160(2)将x=40代入y1=72x得y1=72×40=2880(元),将x=40代入y2=64x+160得y2=64×40+160=2720(元),∵2880>2720,∴y1>y2,∴选择方案2更省钱.【点评】此题考查一次函数的实际运用,根据数字特点找出临界点是解决问题的关键.22.(9分)阅读材料:材料一:两个含有二次根式而非零代数式和乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式例如:,我们称的一个有理化因式是的一个有理化因式是.材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如:,请你仿照材料中的方法探索并解决下列问题:(1)的有理化因式为,的有理化因式为﹣;(均写出一个即可)(2)将下列各式分母有理化:;②;(要求;写出变形过程)(3)请从下列A,B两题中任选一题作答,我选择A、B题.A计算:的结果为﹣1.B计算:的结果为.【分析】(1)根据分母有理化因式的定义求解;(2)①中分子分母都乘以;②中分子分母都乘以2+3;(3)①先分母有理化,然后合并即可;②先利用因式分解中提公因式的方法变形得到原式=++…+,然后分母有理化后合并即可.【解答】解:(1)的有理化因式为,的有理化因式为﹣;(2)①.=②==;(3)A题:原式=﹣1+﹣+…+﹣=﹣1;B题:原式=++…+=++…+=1﹣+﹣+…+﹣=1﹣=.故答案为;﹣;A、B;﹣1;.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.(13分)如图1,已知直线y=3x+3与y轴,x轴分别交于A,B两点,过点B在第二象限内作BC⊥AB且BC=AB,连接AC.(1)求点C的坐标;(2)如图2,过点C作直线CD∥x轴交AB于点D,交y轴于点E请从下列A,B两题中任选一题作答,我选择A(B)题A.①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),使得以点M,C,D为顶点的三角形与△BCD全等?若存在,请直接写出所有符合条件的点M的坐标:若不存在,请说明理由.B.①如图3,在图2的基础上,过点D作DF⊥AC于点F,求线段DF的长;②在坐标平面内,是否存在点M(除点F外),使得以点M,C,D为顶点的三角形与△FCD全等?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.【分析】(1)证明△BCH≌△ABO(AAS),则CH=BO=1,BH=AO=3,OH=BH+BO =4,即可求解;(2)A.①由(1)知点C的坐标为(﹣4,1),CD∥x轴交AB于点D,则点D的纵坐标为1,将y=1代入y=3x+3得1=3x+3,即可求解;②存在,理由:以点M,C,D 为顶点的三角形与△BCD全等,点M与点B对应,有如图2的三种情况,即可求解;B.①由(1)知点C的坐标为(﹣4,1),CD∥x轴交AB于点D,交y轴于点E,点D 的纵坐标为1,AE=3﹣1=2将y=1代入y=3x+3得1=3x+3,即可求解;②如图3,作点A关于x轴的对称轴A′,连接A′C,以点M,C,D为顶点的三角形与△FCD全等,则点D与点B为对应点,此时图3和图2情况相同,即可求解.【解答】解:(1)在y=3x+3中,当x=0时,y=3,∴点A的坐标为((0,3),∴AO=3,在y=3x+3中,当y=0时,0=3x+3,x=﹣1,∵点B的坐标为(﹣1,0),∴BO=1,过点C作CH⊥x轴于点H,则∠BHC=90°,∵BC⊥AB,∴∠ABC=90°,∴∠CBH+∠ABO=180°﹣∠ABC=90°,∵∠AOB=90°,∴∠BAO+∠ABO=90°,∴∠CBH=∠BAO,∵∠BHC=∠ABO=90°,BC=AB,∴△BCH≌△ABO(AAS),∴CH=BO=1,BH=AO=3,∴OH=BH+BO=4∵点C在第二象限,∴点C的坐标为(﹣4,1)(2)A.①由(1)知点C的坐标为(﹣4,1),∵CD∥x轴交AB于点D,∴点D的纵坐标为1,将y=1代入y=3x+3得1=3x+3,∴∴点D的坐标为,∴;②存在,理由:以点M,C,D为顶点的三角形与△BCD全等,点M与点B对应,有如图2的三种情况:当△M1DC≌△BDC时,则点M1和点B关于直线CE对称,则点M1的坐标为:(﹣1,2);当△M2CD≌△BDC时,则点M2和点B关于CD的中垂线对称,故点M2(﹣,0);当△M3CD≌△BDC时,同理可得:点M3(﹣,2);综上:;B.①由(1)知点C的坐标为(﹣4,1),∵CD∥x轴交AB于点D,交y轴于点E,∴点D的纵坐标为1,AE=3﹣1=2将y=1代入y=3x+3得1=3x+3,∴,∴点D的坐标为,∴在Rt△AOB中,AO=3,BO=1,由勾股定理得,∵BC=AB,∴,∴,∴,∴;②存在,理由:如图3,作点A关于x轴的对称轴A′,连接A′C,以点M,C,D为顶点的三角形与△FCD全等,则点D与点B为对应点,此时图3和图2情况相同,同理可得,点M的坐标为:.【点评】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、图形的面积计算等,其中(2),要注意分类求解,避免遗漏.。

山西省太原市度八年级数学上学期期中试题(含解析) 新人教版

山西省太原市度八年级数学上学期期中试题(含解析) 新人教版

山西省太原市2015-2016学年度八年级数学上学期期中试题一、选择题(本大题含10个小题,每小题3分,共30分)1.实数9的平方根是()A.±3B.3 C.±D.2.正比例函数y=﹣3x的图象经过坐标系的()A.第一、二象限 B.第一、三象限 C.第一、四象限 D.第二、四象限3.下列实数中的有理数是()A.B.πC.D.4.如图的直角三角形中未知边的长x等于()A.5 B.C.13 D.5.在平面直角坐标系中,点(﹣3,4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.下列各点中,不在函数y=x﹣1的图象上的是()A.(﹣1,﹣2)B.(0,﹣1)C.(1,0)D.(2,﹣3)7.下列计算结果正确是()A.+=B.﹣=C.×= D.(﹣)2=﹣58.数轴上点A,B,C,D表示的数如图所示,其中离表示的点最近的是()A.点A B.点B C.点C D.点D9.2015年是国际“光”年,某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为()A.8cm B.10cm C.12cm D.15cm10.已知,如图是由八个全等的直角三角形拼接而成的图形.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1,S2,S3,若正方形EFGH的边长为2,则S1+S2+S3的值为()A.16 B.14 C.12 D.10二、填空题(本大题含6个小题,每小题3分,共18分)11.实数﹣8的立方根是.12.将化成最简二次根式为.13.如图,平面直角坐标系中,△OAB的顶点A的坐标为(3,﹣2),点B在y轴负半轴上,若OA=AB,则点B的坐标为.14.如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,AC为一条对角线,若∠ABC=90°,则四边形ABCD 的面积为.(填“>”“<”15.一次函数y=2x+5的图象经过点(x1,y1)和(x2,y2),若y1<y2,则x1x2.或“=”)16.如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为.三、解答题(本大题含8个小题,共52分)17.计算:(1)+(2)﹣(3)(+2)(﹣2)(4)(+)×+.18.下面的方格图是由边长为1的若干个小正方形拼成的,ABC的顶点A,B,C均在小正方形的顶点上.(1)在图中建立恰当的平面直角坐标系,取小正方形的边长为一个单位长度,且使点A的坐标为(﹣4,2);(2)在(1)中建立的平面直角坐标系内画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标.19.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术,即已知三角形的三边长,求它的面积.用符号表示即为:S=(其中a,b,c为三角形的三边长,S为面积).请利用这个公式求a=,b=3,c=2时的三角形的面积.20.已知一次函数y=﹣x+4的图象与x轴交于A,与y轴交于点B.(1)求点A,B的坐标并在如图的坐标系中画出函数y=﹣x+4的图象;(2)若一次函数y=kx﹣2的图象经过点A,求它的表达式.21.根据道路交通管理条例的规定,在某段笔直的公路l上行驶的车辆,限速60千米/时.已知测速点M到测速区间的端点A,B的距离分别为50米、34米,M距公路l的距离(即MN的长)为30米.现测得一辆汽车从A到B所用的时间为5秒,通过计算判断此车是否超速.22.“黄金1号”玉米种子的价格为5元/千克,如果一次性购买2千克以上的种子,超过2千克的部分其价格打8折.设一次性购买此品种玉米种子x(千克),付款金额为y(元).(1)请写出y(元)与x(千克)之间的函数关系式:①当0≤x≤2时,其关系式为;②x>2时,其关系式为;(2)王大伯一次性购买了1.5千克此品种玉米种子,需付款多少元?(3)王大伯一次性购买此品种玉米种子共付款24元,试求他购买种子的数量.23.如图,平面直角坐标系中有一张三角形纸片AOB,其顶点A,B的坐标分别为A(﹣6,0),B(0,8),点O为坐标原点.(1)求边AB的长;(2)点C是线段OB上一点,沿线段AC所在直线折叠△AOB,使得点O落在边AB上的点D处,求点C的坐标.24.已知图1、图2、图3都是4×5的方格纸,其中每个小正方形的边长均为1cm,每个小正方形的顶点称为格点.(1)在图1的方格纸中画出一个三边均为无理数的直角三角形,使它的顶点都在格点上;(2)在图2的方格纸中画出一个面积为10cm2的正方形,使它的顶点都在格点上;(3)将图3的长方形方格纸剪拼成一个与它面积相等的正方形,在图3中画出裁剪线(线段),在备用图中画出拼接好的正方形示意图及拼接线,并且使正方形的顶点都在格点上.说明:备用图是一张8×8的方格纸,其中小正方形的边长也为1cm,每个小正方形的顶点也称为格点.只设计一种剪拼方案即可.山西省太原市2015~2016学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题含10个小题,每小题3分,共30分)1.实数9的平方根是()A.±3B.3 C.±D.【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:∵(±3)2=9,∴实数9的平方根是±3,故选:A.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.2.正比例函数y=﹣3x的图象经过坐标系的()A.第一、二象限 B.第一、三象限 C.第一、四象限 D.第二、四象限【考点】正比例函数的性质.【分析】根据正比例函数图象的性质可求直线所经过的象限.【解答】解:根据k=﹣3<0,所以正比例函数y=﹣3x的图象经过第二、四象限.故选D.【点评】本题考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.3.下列实数中的有理数是()A.B.πC.D.【考点】实数.【分析】根据有理数是有限小数或无限循环小数,可得答案.【解答】解:A、是无理数,故A错误;B、π是无理数,故B错误;C、是有理数,故C正确;D、是无理数,故D错误;故选:C.【点评】本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.4.如图的直角三角形中未知边的长x等于()A.5 B.C.13 D.【考点】勾股定理.【分析】在直角三角形中,由勾股定理求出斜边x即可.【解答】解:由勾股定理得:x==;故选:D.【点评】本题考查了勾股定理;熟练掌握勾股定理,在直角三角形中,已知两条直角边长,由勾股定理即可求出斜边的长.5.在平面直角坐标系中,点(﹣3,4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣3,4)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.下列各点中,不在函数y=x﹣1的图象上的是()A.(﹣1,﹣2)B.(0,﹣1)C.(1,0)D.(2,﹣3)【考点】一次函数图象上点的坐标特征.【分析】直接把各点坐标代入函数y=x﹣1进行检验即可.【解答】解:A、∵当x=﹣1时,y=﹣1﹣1=﹣2,∴此点在函数图象上,故本选项错误;B、∵当x=0时,y=0﹣1=﹣1,∴此点在函数图象上,故本选项错误;C、∵当x=1时,y=1﹣1=0,∴此点在函数图象上,故本选项错误;D、∵当x=2时,y=2﹣1=1≠﹣3,∴此点不在函数图象上,故本选项正确.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.下列计算结果正确是()A.+=B.﹣=C.×= D.(﹣)2=﹣5【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、与不能合并,所以B选项错误;C、原式==,所以C选项正确;D、原式=|﹣5|=5,所以D选项错误.故选C.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.数轴上点A,B,C,D表示的数如图所示,其中离表示的点最近的是()A.点A B.点B C.点C D.点D【考点】实数与数轴;估算无理数的大小.【分析】根据﹣≈﹣2.236,即可解答.【解答】解:数轴上点A,B,C,D表示的数分别是﹣3,﹣2,﹣1,2,∵﹣≈﹣2.236,∴点B离表示的点最近,故选:B.【点评】本题考查了实数与数轴,解决本题的关键是估算的大小.9.2015年是国际“光”年,某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为()A.8cm B.10cm C.12cm D.15cm【考点】平面展开-最短路径问题.【分析】画出三棱柱的侧面展开图,利用勾股定理求解即可.【解答】解:将三棱柱沿AA′展开,其展开图如图,则AA′==10(cm).故选B.【点评】本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.10.已知,如图是由八个全等的直角三角形拼接而成的图形.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1,S2,S3,若正方形EFGH的边长为2,则S1+S2+S3的值为()A.16 B.14 C.12 D.10【考点】勾股定理的证明;正方形的性质.【分析】结合图形,借用直角三角形面积,设而不求,寻找出三个正方形面积之间的关系即可解决问题.【解答】解:设八个全等的直角三角形每个的面积为S,由图形可得知S1=8S+S3,S2=4S+S3,S1+S2+S3=8S+S3+4S+S3+S3=3(4S+S3)=3S2,∵正方形EFGH的边长为2,∴S2=2×2=4,∴S1+S2+S3=3S2=3×4=12.故选C.【点评】本题考查了正方形的面积,解题的关键是对三角形的面积舍而不求,借用三角形的面积寻找三个正方形面积的关系.二、填空题(本大题含6个小题,每小题3分,共18分)11.实数﹣8的立方根是﹣2 .【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案﹣2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.12.将化成最简二次根式为4.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出答案.【解答】解:==4.故答案为:4.【点评】此题主要考查了二次根式的性质与化简,正确开平方是解题关键.13.如图,平面直角坐标系中,△OAB的顶点A的坐标为(3,﹣2),点B在y轴负半轴上,若OA=AB,则点B的坐标为(0,﹣4).【考点】等腰三角形的性质;坐标与图形性质.【分析】过A作AC⊥OB交OB于C,根据等腰三角形的性质得到OB=2OC,由于A的坐标为(3,﹣2),于是得到OC=2,求得OB=4,即可得到结论.【解答】解:过A作AC⊥OB交OB于C,∵OA=AB,∴OB=2OC,∵A的坐标为(3,﹣2),∴OC=2,∴OB=4,∴B(0,﹣4).故答案为:(0,﹣4).【点评】本题考查了等腰三角形的性质,坐标与图形的性质,熟练掌握等腰三角形的性质是解题的关键.14.如图,四边形ABCD中,AB=BC=2,CD=1,DA=3,AC为一条对角线,若∠ABC=90°,则四边形ABCD的面积为2+.【考点】勾股定理的逆定理;勾股定理.【分析】根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACD=90°,根据三角形的面积公式分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:在Rt△ABC中,由勾股定理得:AC===2,∵CD=1,AD=3,AC=2,∴AC2+CD2=AD2,∴∠ACD=90°,∴四边形ABCD的面积:S=S△ABC+S△ACD=AB×B C+×AC×CD=×2×2+×1×2=2+故答案为:2+【点评】本题考查了勾股定理,勾股定理的逆定理的应用,能求出△ACD是直角三角形是解此题的关键.15.一次函数y=2x+5的图象经过点(x1,y1)和(x2,y2),若y1<y2,则x1<x2.(填“>”“<”或“=”)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的性质判断出函数的增减性,进而可得出结论.【解答】解:∵一次函数y=2x+5中,k=2>0,∴y随x的增大而增大.∵y1<y2,∴x1<x2.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.16.如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=8,AB=CD=17.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,DE的长为2或32 .【考点】翻折变换(折叠问题).【分析】分两种情况:点E在DC线段上,点E为DC延长线上的一点,进一步分析探讨得出答案即可.【解答】解:如图1,∵折叠,∴△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三点共线,又∵ABD′∽△BEC,AD′=BC,∴ABD′≌△BEC,∴BE=AB=17,∵BD′===15,∴DE=D′E=17﹣15=2;如图2,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,,∴△ABD″≌△BEC,∴BE=AB=17,∴DE=D″E=17+15=32.综上所知,DE=2或32.故答案为:2或32.【点评】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.三、解答题(本大题含8个小题,共52分)17.计算:(1)+(2)﹣(3)(+2)(﹣2)(4)(+)×+.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先进行二次根式的除法运算,然后合并即可;(3)利用平方差公式计算;(4)先把各二次根式化为最简二次根式,再进行二次根式的乘法运算,然后合并即可.【解答】解:(1)原式=2+=3;(2)原式=+﹣=2+﹣=2;(3)原式=()2﹣(2)2=11﹣12=﹣1;(4)原式=×2+×2+=+2+=4+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.下面的方格图是由边长为1的若干个小正方形拼成的,ABC的顶点A,B,C均在小正方形的顶点上.(1)在图中建立恰当的平面直角坐标系,取小正方形的边长为一个单位长度,且使点A的坐标为(﹣4,2);(2)在(1)中建立的平面直角坐标系内画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标.【考点】作图-轴对称变换.【分析】(1)根据点A的坐标为(﹣4,2)建立坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接,写出三角形各顶点的坐标即可.【解答】解:(1)如图所示;(2)如图所示,A1(4,2),B1(1,2),C1(2,5).【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.19.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术,即已知三角形的三边长,求它的面积.用符号表示即为:S=(其中a,b,c为三角形的三边长,S为面积).请利用这个公式求a=,b=3,c=2时的三角形的面积.【考点】二次根式的应用.【分析】由a=,b=3,c=2得出a2=5,b2=9,c2=20,进一步代入计算公式化简得出答案即可.【解答】解:∵a=,b=3,c=2,∴a2=5,b2=9,c2=20,∴三角形的面积S====3.【点评】此题考查二次根式的实际运用,掌握二次根式的混合运算的方法以及化简的方法是解决问题的关键.20.已知一次函数y=﹣x+4的图象与x轴交于A,与y轴交于点B.(1)求点A,B的坐标并在如图的坐标系中画出函数y=﹣x+4的图象;(2)若一次函数y=kx﹣2的图象经过点A,求它的表达式.【考点】一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合.【分析】(1)计算函数值为0所对应的自变量的值即可得到A点坐标,计算自变量为0时的函数值即可得到B点坐标,然后利用描点点画函数图象;(2)把A点坐标代入y=kx﹣2得到关于k的方程,然后解此方程即可.【解答】解:(1)当y=0时,﹣x+4=0,解得x=3,则A(3,0),当x=0时,y=﹣x+4=4,则B(0,4),如图,(2)把A(3,0)代入y=kx﹣2得3k﹣2=0,解得k=,所以所求一次函数的解析式为y=x﹣2.【点评】本题考查了一次函数的图象:一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b;使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确.也考查了一次函数的性质.21.根据道路交通管理条例的规定,在某段笔直的公路l上行驶的车辆,限速60千米/时.已知测速点M到测速区间的端点A,B的距离分别为50米、34米,M距公路l的距离(即MN的长)为30米.现测得一辆汽车从A到B所用的时间为5秒,通过计算判断此车是否超速.【考点】勾股定理的应用.【分析】在Rt△AMN中根据勾股定理求出AN,在Rt△BMN中根据勾股定理求出BN,由AN+NB求出AB的长,根据路程除以时间得到速度,即可做出判断.【解答】解:∵在Rt△AMN中,AM=50,MN=30,∴AN==40米,∵在Rt△MNB中,BM=34,MN=30,∴BN==16米,∴AB=AN+NB=40+16=56(米),∴汽车从A到B的平均速度为56÷5=11.2(米/秒),∵11.2米/秒=40.32千米/时<60千米/时,∴此车没有超速.【点评】此题考查了勾股定理的应用,熟练掌握勾股定理,正确求出AN与BN的长是解本题的关键.22.“黄金1号”玉米种子的价格为5元/千克,如果一次性购买2千克以上的种子,超过2千克的部分其价格打8折.设一次性购买此品种玉米种子x(千克),付款金额为y(元).(1)请写出y(元)与x(千克)之间的函数关系式:①当0≤x≤2时,其关系式为y=5x ;②x>2时,其关系式为y=4x+2 ;(2)王大伯一次性购买了1.5千克此品种玉米种子,需付款多少元?(3)王大伯一次性购买此品种玉米种子共付款24元,试求他购买种子的数量.【考点】一次函数的应用.【分析】(1)根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打8折,分别得出即可;(2)根据x=1.5,求出y即可得出答案;(3)根据y=24,求出x即可得出答案.【解答】解:(1)根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打8折,①当0≤x≤2时,其关系式为y=5x;②x>2时,其关系式为y=4x+2;故答案为:y=5x;y=4x+2;(2)∵1.5<2,∴y=5x=5×1.5=7.5,答:王大伯需付款7.5元;(3)∵24>10,∴王大伯购买的玉米种子大于2千克,则4x+2=24,解得:x=5.5,答:王大伯需购买5.5千克.【点评】此题主要考查了一次函数的应用,根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打8折得出解析式是解题关键.23.如图,平面直角坐标系中有一张三角形纸片AOB,其顶点A,B的坐标分别为A(﹣6,0),B(0,8),点O为坐标原点.(1)求边AB的长;(2)点C是线段OB上一点,沿线段AC所在直线折叠△AOB,使得点O落在边AB上的点D处,求点C的坐标.【考点】一次函数综合题.【专题】综合题;一次函数及其应用.【分析】(1)根据A与B的坐标确定出OA与OB的长,在直角三角形AOB中,利用勾股定理求出AB 的长即可;(2)由折叠的性质得到三角形ADC与三角形AOC全等,利用全等三角形对应边相等得到AD=AO,CD=CO,设OC=x,根据勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出C坐标.【解答】解:(1)∵A(﹣6,0),B(0,8),∴OA=6,OB=8,根据勾股定理得:AB==10;(2)设OC=x,由折叠的性质得:AD=AO=6,CD=OC=x,∠BDC=90°,∴BD=AB﹣AD=4,BC=8﹣x,在Rt△BDC中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3,则C的坐标为(0,3).【点评】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,折叠的性质,勾股定理,熟练掌握性质及定理是解本题的关键.24.已知图1、图2、图3都是4×5的方格纸,其中每个小正方形的边长均为1cm,每个小正方形的顶点称为格点.(1)在图1的方格纸中画出一个三边均为无理数的直角三角形,使它的顶点都在格点上;(2)在图2的方格纸中画出一个面积为10cm2的正方形,使它的顶点都在格点上;(3)将图3的长方形方格纸剪拼成一个与它面积相等的正方形,在图3中画出裁剪线(线段),在备用图中画出拼接好的正方形示意图及拼接线,并且使正方形的顶点都在格点上.说明:备用图是一张8×8的方格纸,其中小正方形的边长也为1cm,每个小正方形的顶点也称为格点.只设计一种剪拼方案即可.【考点】作图—应用与设计作图;图形的剪拼.【分析】(1)由勾股定理结合图形画出图形即可;(2)先根据正方形的面积求得正方形的边长,然后画出图形即可;(3)先算出图3的面积,然后计算出正方形的边长,最后结合图形进行分割即可.【解答】解:(1)如图所示:(2)如图2所示:(3)如图3所示:【点评】本题主要考查的是作图﹣应用与设计、图形的简拼、勾股定理的应用,求得正方形的边长是解题的关键.。

山西省太原市2023-2024学年八年级上学期期中数学试题(含答案)

2023~2024学年第一学期八年级期中学业诊断数学试卷(考试时间:上午8:00-9:30)说明:本试卷为闭卷笔答,不允许携带计算器.答题时间90分钟.一、选择题(本大题共10个小题.在每小题给出的四个选项中,只有一项符合题目要求,请将其字母序号填入下表相应位置)1.有理数16的算术平方根是()A.8B.±8C.4D.±42.下列各点,位于第三象限的是()A. B. C. D.3.如图,用两个边长为1的小正方形拼成一个大正方形,则下列关于大正方形边长的说法正确的是()A.是整数B.满足C.是分数D.是无理数4.现有长度为4cm ,5cm ,8cm ,12cm ,13cm 的五根细木条,若选择其中的三根首尾顺次相接,恰好能摆成直角三角形的是()A.4cm ,5cm ,8cmB.5cm ,8cm ,12cmC.5cm ,12cm ,13cmD.8cm ,12cm ,13cm5.下列运算正确的是()C.6.在学习勾股定理时,小明利用右图验证了勾股定理.若图中,,则阴影部分直角三角形的面积为()A.5B.25C.D.7.A. B. C. D.8.将所有满足关系式的,的值作为点的坐标,这些点在平面直角坐标系中组成的图形可()3,2-()3,2--()3,0-()0,2-a a a 24a =a a ==2==3a =4b =52252±23y x =+x y (),x y能是()A. B. C. D.9.如图的数轴上,点,对应的实数分别为1,3,线段于点,且长为1个单位长度.若以点为圆心,长为半径的弧交数轴于0和1之间的点,则点表示的实数为()A.D.10.若点,,在一次函数(是常数)的图象上,则,,的大小关系是()A. B. C. D.二、填空题(本大题共5个小题.把答案写在题中横线上)11._____________.12.如图是杭州第19届亚运会火炬传递路线示意图.若以“杭州站”为原点建立平面直角坐标系,“金华站”的坐标可表示为,则“台州站”的坐标可表示为_____________.13.已知正比例函数的图象经过点,则此正比例函数的表达式为_____________.14.如图,在中,,,,若的平分线交于点,则的长为_____________.A C AB AC ⊥A AB C BC P P 321-3()12,A y -()23,B y ()31,C y 3y x m =-+m 1y 2y 3y 123y y y >>213y y y >>132y y y >>321y y y >>()1,3--()0y kx k =≠()4,2P Rt ABC △90C ∠=o 4AC =3BC =ABC ∠AC D AD15.包装纸箱是我们生活中常见的物品.如图1,创意DIY 小组的同学将一个的长方体纸箱裁去一部分(虚线为裁剪线),得到图2所示的简易书架.若一只蜘蛛从该书架的顶点出发,沿书架内壁爬行到顶点处,则它爬行的最短距离为_____________cm.三、解答题(本大题共8个小题.解答应写出必要的文字说明、演算步骤或推理过程)16.计算下列各题:(1);(2;(3)(417.在如图所示的平面直角坐标系中,线段的两个端点,的坐标分别为,,点在轴负半轴上,且到轴的距离为2个单位长度.(1)请在图中标出点的位置;(2)将点,的纵坐标分别乘-1,横坐标不变,得到点,,请在图中画出;(3)请在图中画出,使它与(2)中得到的关于轴对称.若点是线段上的任意一点,则点在上的对应点的坐标为___________.18.北京时间10月2日,在杭州亚运会女子撑杆跳高决赛中,李玲刷新了由个人保持的赛会纪录,以4米6310cm 30cm 40cm ⨯⨯A B -+()21-+AB A B ()3,4-()5,1-C x y C A B 1A 1B 11A B C △222A B C △11A B C △y ()2,P m n 22A B 2P 11A B 1P夺冠,实现了个人亚运会三连冠.据研究,撑杆跳高运动员起跳后身体重心提高的高度(米)与其起跳速度(米/秒)之间满足(其中米/秒).若某运动员在训练中要使起跳后身体重心提高4米,则其起跳时的速度应为多少?,结果保留整数)19.如图,已知等边顶点,的坐标分别为,,且顶点在第一象限,求点的坐标.20.清德铺位于清徐县徐沟镇正南5公里,该村种植红薯由来已久,据传从清光绪时就开始享誉龙城,2018年获国家农产品地理标志登记保护.红薯丰收时节,某农户启动线上销售,每千克红薯的定价为3元,当销售量不超过10千克时,每笔订单均收取6元的快递费;当销售量超过10千克时,免快递费.设每笔线上红薯订单的销售量为千克,每笔订单的总收款额为元.(1)当时,与之间的函数关系式为_________________;当时,与之间的函数关系式为_________________________;(2)一笔10千克的线上红薯订单,总收款额为多少元?(3)若一笔订单的总收款额为108元,求这笔订单的销售量.21.校园内有一处池塘,数学实践小组的同学想利用所学知识测量池塘两端,两点之间的距离,他们的操作过程如下:①沿延长线的方向,在池塘边的空地上选点,使米;②在的一侧选点,恰好使米,米;③测得米.请根据他们的操作过程,求出,两点间的距离.h v22v h g=10g =2.24≈ABC △A B ()1,0-()3,0C C x y 010x <≤y x 10x >y x A B AB C 6BC =AC D 8BD =10CD =17AD =A B22.阅读下列材料,解答相应的问题:研究函数的图象一般要研究其形状、位置、图象特征(如对称性).借助图象我们可以直观地得到函数的性质.例如,在研究正比例函数的图象时,通过列表、描点、连线等步骤,得到如下结论:①的图象是经过原点的一条直线;②的图象经过坐标系的第一、三象限.小文借鉴研究正比例函数的经验,对新函数的图象展开探究,过程如下.①根据函数表达式列表:...-3-2-10123......246...②在如图所示的坐标系中描点、连线,画出函数的图象.备用图(1)请你将小文列表、描点、连线的过程补充完整;2y x =2y x =2y x =2y x =2y x =x2y x=(2)请从A ,B 两题中任选一题作答.我选择__________题.A.根据小文的探索过程,类比研究图象时得到的结论,写出函数图象的两个结论.B.小文类比探索函数图象的过程,借助下面的平面直角坐标系,进一步研究函数(为常数,且)的图象.他从特殊到一般选取,,,…等具体情况,通过列表、描点、连线等步骤,画出它们的图象,并归纳出函数图象的一般结论,请你帮他总结得到的结论.(写出任意两条即可)23.如图,在平面直角坐标系中,一次函数的图象分别与轴、轴交于点,,点是线段上的一个动点(不与点,点重合),过点作轴的垂线交直线于点,在射线上取点,使.设点的横坐标为.(1)求,两点的坐标;(2)若点落在直线上,求的值;(3)请从A ,B 两题中任选一题作答.我选择_________题.A.若线段的长等于的一半时,求的值.B.若的面积等于面积的一半,求的值.2023-2024学年第一学期八年级期中学业诊断数学参考答案与等级评定建议一、选择题(本大题含10道小题,每小题3分,共30分)题号12345678910答案CBDCDDABAC二、填空题(本大题含5道小题,每小题3分,共15分)11.-212.13.14.15.50三、解答题(本大题含8道小题,共55分)16.(本题12分,每小题3分)解:(1)原式2分2y x =2y x =2y x =y kx =k 0k ≠3k =2k =-12k =y kx =132y x =-+x y A B C OA O A C x AB D CD E 2CE OC =C m A B E AB m DE OB m ABE △AOB △m ()3,4-12y x =52=+.……………………3分(2)原式.…………………………1分…………………………2分.………………………………3分(3)原式.…………………………2分………………………………3分(4)原式2分.…………………………3分17.(本题4分)解:(1)如图点即为所求;……………………1分(2)如图即为所求;…………………………2分(3)如图即为所求;…………………………3分点的坐标为.………………………………4分18.(本题4分)解:将,代入,得,………………1分即.====201=-++21==-=C 12A B C △122A B C △1P (),m n -4h =10g =22v h g =24210v =⨯280v =由题意,得,所以,………………2分,所以(米/秒).……………………3分答:他起跳时的速度约为9米/秒.……………………4分19.(本题5分)解:过点作轴于点.,,,,.……………………1分是等边三角形,,.……………………2分.……………………3分在中,由勾股定理得,……………………4分点在第一象限,点的坐标为.……………………5分20.(本题7分)解:(1);;…………………………2分(2)当时,,……………………3分答:此笔订单的总收款额是36元……………………4分(3)因为,所以.……………………5分所以把代入,得,……………………6分解,得.答:此笔订单的销售量是36千克.……………………7分21.(本题5分)解:米,米,米,0v >v ==2.24≈4 2.248.969v ≈⨯=≈C CD x ⊥D ()1,0A -Q ()3,0B 1OA ∴=3OB =4AB =ABC Q △4AC AB ∴==122AD AB ==1OD AD OA ∴=-=Rt ACD △CD ===Q C ∴C (1,36y x =+3y x =10x =310636y =⨯+=10836>10x >108y =3y x =3108x =36x =6BC =Q 8BD =10CD =,,………………1分,………………2分是直角三角形,其中………………3分.米,在中,由勾股定理得,米.……………………4分答:,两点间的距离为15米.……………………5分22.(本题6分)解:(1)表中依次填入:-6,-4,-2;………………………………1分描点、连线如图所示;…………………………2分(2)结论如下:(写对一个结论得2分,共4分)…………………………6分A.①的图象是以原点为公共端点的两条射线;②的图象经过坐标系的第一、二象限;③的图象关于轴对称;④的图象的最低点是;B.①的图象是以原点为公共端点的两条射线;②的图象经过坐标系的第一、二象限;③的图象关于轴对称;222268100BC BD ∴+=+=2210100CD ==222BC BD CD ∴+=BCD ∴△90DBC ∠=o 18090ABD DBC ∠∠∴=-=o o 17AD =Q ∴Rt ACD △15AB ===A B 2y x =2y x =2y x =y 2y x =()0,0y kx =y kx =y kx =y④的图象的最低点是;⑤的绝对值越大,的图象越靠近轴.23.(本题12分)解:(1)把代入,,所以,.……………………1分把代入,得,解,得,所以,.……………………2分(2)因为点在线段上,且横坐标为,所以,.……………………3分因为,所以.因为轴,所以.……………………4分因为点在线段上所以把代入,得,……………………5分解,得.……………………6分(3)A.因为轴交直线于点,所以.……………………7分所以.………………8分由(1)得,,所以.因为,所以.………………9分当时,解,得;……………………11分当时,解,得.……………………12分B.因为轴交直线于点,y kx =()0,0k y kx =y 0x =132y x =-+3y =()0,3B -0y =132y x =-+1302x -+=6x =()6,0A C AB m OC m =2CE OC =2CE m =CE x ⊥(),2E m m C AB (),2E m m 132y x =-+1232m m =-+65m =CE x ⊥AB D 1,32D m m ⎛⎫-+⎪⎝⎭1523322DE m m m ⎛⎫=--+=- ⎪⎝⎭()0,3B -3OB =12DE OB =53322m -=53322m -=95m =53322m -=-35m =CE x ⊥AB D所以.………………7分所以.………………8分因为,,所以,,所以.……………………9分因为.因为,所以,即.………………10分所以.当时,解,得;……………………11分当时,解,得.……………………12分【评分说明】以上解答题的其他解法,请参照此标准评分.1,32D m m ⎛⎫-+ ⎪⎝⎭1523322DE m m m ⎛⎫=--+=- ⎪⎝⎭()6,0A ()0,3B 6OA =3OB =1163922AOB S OA OB =⨯⨯=⨯⨯=△1122ABE BDE ADE S S S DE OC DE AC =+=⨯⨯+⨯⨯△△△()12DE OC AC =⨯⨯+132DE OA DE =⨯⨯=12ABE AOB S S =△△1392DE =⨯32DE =53322m -=53322m -=95m =53322m -=-35m =。

【精编】2017-2018学年山西省吕梁市八年级上期中数学试卷(附答案解析).doc

2017-2018学年山西省吕梁市八年级(上)期中数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的字母号填入表中相应的空格内.1.(3分)下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(3分)点(﹣4,3)关于x轴对称的点的坐标为()A.(4,3) B.(4,﹣3)C.(﹣4,﹣3)D.无法确定【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点(﹣4,3)关于x轴对称的点的坐标为(﹣4,﹣3).故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.3.(3分)下面各组线段中,能组成三角形的是()A.5,11,6 B.8,8,16 C.10,5,4 D.6,9,14【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵5+6=11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.【点评】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.4.(3分)如图,王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至少要再钉上木条的根数是()A.0 B.1 C.2 D.3【分析】根据三角形具有稳定性可得:沿对角线钉上1根木条即可.【解答】解:根据三角形的稳定性可得他至少要再钉上1根木条,故选:B.【点评】此题主要考查了三角形具有稳定性,题目比较简单.5.(3分)若十边形的每个外角都相等,则一个外角的度数为()A.18°B.36°C.45°D.60°【分析】利用十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.故选:B.【点评】本题主要考查了多边形的外角性质及内角与外角的关系.多边形的外角性质:多边形的外角和是360度.边形的内角与它的外角互为邻补角.6.(3分)如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【分析】利用“设k法”求出最大角的度数,然后作出判断即可.【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便.7.(3分)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC,若CE=5,则BC等于()A.2 B.3 C.4 D.5【分析】△ABC中,AB=AC,∠A=36°,可得∠B=72°又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=5.【解答】解:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.故选:D.【点评】本题考查了等腰三角形、线段垂直平分线的性质,应熟记其性质:线段的垂直平分线上的点到线段的两个端点的距离相等.8.(3分)如图,要测量河岸相对的两点A、B之间的距离,先从B处出发与AB成90°方向,向前走50米到C处立一根标杆,然后方向不变继续朝前走50米到D处,在D处转90°沿DE方向再走17米,到达E处,此时A、C、E三点在同一直线上,那么A、B两点间的距离为()A.10米B.12米C.15米D.17米【分析】根据已知条件求证△ABC≌△EDC,利用其对应边相等的性质即可求得AB.【解答】解:∵先从B处出发与AB成90°角方向,∴∠ABC=90°,∵BC=50m,CD=50m,∠EDC=90°∴△ABC≌△EDC,∴AB=DE,∵沿DE方向再走17米,到达E处,即DE=17∴AB=17.故选:D.【点评】本题考查了全等三角形对应边相等的性质,考查了全等三角形的判定,难度不大,属于基础题.9.(3分)如图,已知△ABC的周长是20,OB和OC分别平分∠ABC和∠ACB,OD⊥BC 于点D,且OD=3,则△ABC的面积是()A.20 B.25 C.30 D.35【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是20,OD⊥BC于D,且OD=3,=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3∴S△ABC=×20×3=30,故选:C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.10.(3分)如图,在平面直角坐标系中,点A的坐标为(4,0)点M的坐标为(0,4),过M点作直线MN⊥y轴,在直线MN上找一点B,使△OAB是等腰三角形,此时,点B 的坐标不可能是()A.(0,4) B.(2,4)C.(4,4) D.(4,2)【分析】根据点B的坐标,分别画图,如果有两边相等,可构成等腰三角形,可得结论.【解答】解:A、如图1,若点B(0,4),则OB=OA=4,△OAB是等腰三角形,B、如图2,若点B(2,4),则OB=BA==2,△OAB是等腰三角形,C、如图3,若点B(4,4),则AB=OA=4,△OAB是等腰三角形,D、如图4,若点B(4,2),则OB≠OA≠AB,△OAB不是等腰三角形,故选:D.【点评】本题考查了等腰三角形的判定和坐标与图形的性质,熟练掌握坐标与图形特征,利用坐标特征和勾股定理求线段的长,从而判定出是否组成等腰三角形.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=3.【分析】直接根据等腰三角形“三线合一”的性质进行解答即可.【解答】解:∵△ABC中,AB=AC,BC=6,AD⊥BC于D,∴BD=BC=×6=3.故答案为:3.【点评】本题考查的是等腰三角形的性质,即等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.12.(3分)已知,如图:∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“ASA”为依据,还要添加的条件为∠A=∠D.【分析】本题要判定△ABC≌△DEF,已知∠ABC=∠DEF,AB=DE,加∠A=∠D即可.【解答】解:添加∠ACB=∠F或AC∥DF后可根据ASA判定△ABC≌△DEF.故填∠A=∠D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.13.(3分)如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=75°.【分析】依据平行线的性质,即可得到∠BAC=∠1=30°,依据三角形内角和定理,即可得到∠ABC的度数,进而得出∠2的度数.【解答】解:∵直线m∥n,∴∠BAC=∠1=30°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)=75°,∴∠2=∠ABC=75°,故答案为:75°.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.14.(3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,第2017个三角形的底角度数是()2016×75°.【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的底角度数.【解答】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的底角度数是()n﹣1×75°.∴第2017个三角形中以A2017为顶点的底角度数是()2016×75°,故答案为:()2016×75°.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.15.(3分)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为180°.【分析】根据翻折变换前后对应角不变,故∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,进而求出∠1+∠2的度数.【解答】解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°﹣180°=180°,故答案为:180.【点评】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°是解题关键.三、解答题:共8小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(10分)(1)如图1,在△ABC中,EF与AC交于点G,与BC的延长线交于点F,∠B=45°,∠F=30°,∠CGF=70°,求∠A的度数.(2)利用三角板也能画出一个角的平分线,画法如下:①利用三角板在∠AOB的两边上分别取OM=ON;②分别过点M、N画OM、ON的垂线,交点为P;③画射线OP,所以射线OP为∠AOB的角平分线.请你评判这种作法的正确性,并加以证明.【分析】(1)利用对顶角线段得到∠AGE=70°,再根据三角形外角性质得∠AEF=∠B+∠F=75°,然后根据三角形内角和计算∠A的度数;(2)由作图得∠PMO=∠PNO=90°,则可根据“HL”可证明Rt△PMO≌Rt△PNO,所以∠POM=∠PON,从而可判断射线OP为∠AOB的角平分线.【解答】解:(1)∵∠CGF=70°,∴∠AGE=70°,∵∠B=45°,∠F=30°,∴∠AEF=∠B+∠F=75°,∴∠A=180°﹣75°﹣70°=35°;(2)证明:这种作法的正确.理由如下:由作图得∠PMO=∠PNO=90°,在Rt△PMO和Rt△PNO中,∴Rt△PMO≌Rt△PNO,∴∠POM=∠PON,即射线OP为∠AOB的角平分线.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.17.(6分)小王准备用一段长30m的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为am,由于受地势限制,第二条边长只能是第一条边长的2倍多2m.(1)请用a表示第三条边长.(2)问第一条边长可以为7m吗?请说明理由.【分析】(1)三角形的第三边=周长﹣另外两边的和;(2)根据三角形的三边关系即可判断;【解答】解:(1)第三边为:30﹣a﹣(2a+2)=(28﹣3a)m.(2)第一条边长不可以为7m.理由:a=7时,三边分别为7,16,7,∵7+7<16,∴不能构成三角形,即第一条边长不可以为7m.【点评】本题考查三角形的三边关系、列代数式求值等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(7分)在下列条件中,过△ABC任意一个顶点作一条直线将△ABC分割成两个等腰三角形,并注明这两个等腰三角形顶角的度数.(1)如图1,在△ABC中,∠A=∠B=45°.(2)如图2,在△ABC中,∠A=30°,∠B=15°.【分析】(1)直接利用等腰三角形的性质直接作出AB的垂直平分线进而得出答案;(2)利用已知角度进而得出:∠ACD=120°,∠BDC=150°,即可得出答案.【解答】解:(1)如图1所示:∠ADC=∠BDC=90°;(2)如图2所示:∠ACD=120°,∠BDC=150°.【点评】此题主要考查了应用设计与作图,正确应用等腰三角形的性质是解题关键.19.(7分)(1)如图1,点P是等腰三角形ABC的底边BC上的一个动点,过点P作BC 的垂线,交直线AB于点Q,交CA的延长线于点R,请观察AR与AQ,它们有何数量关系?并证明你的猜想.(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图2中完成图形,并直接写出结论.【分析】(1)利用△ABC是等腰三角形,可知AB=AC,∠B=∠C,利用同角的余角相等即可求证∠AQR=∠R,从而可知AR=AQ;(2)证明方法与(1)类似.【解答】(1)AR=AQ,证明如下:∵△ABC是等腰三角形∴AB=AC,∠B=∠C又∵PR⊥BC∴∠RPC=90°∴∠C+∠R=90°,∠B+∠BQP=90°∵∠BQP=∠AQR∴∠AQR=∠R∴AR=AQ(2)AR=AQ仍然成立:∵△ABC是等腰三角形∴AB=AC,∠ABC=∠C又∵PR⊥BC∴∠RPC=90°∴∠C+∠R=90°,∠PBQ+∠BQP=90°∵∠ABC=∠PBQ∴∠AQR=∠R∴AR=AQ.【点评】本题考查等腰三角形的判定,解题的关键是利用AB=AC,∠B=∠C以及同角的余角相等求证∠AQR=∠R.20.(12分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.【分析】根据等腰直角三角形的性质利用SAS判定△ABE≌△ACD;因为全等三角形的对应角相等,所以∠ACD=∠ABE=45°,已知∠ACB=45°,所以可得到∠BCD=∠ACB+∠ACD=90°,即DC⊥BE.【解答】(1)解:图2中△ACD≌△ABE.证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD.∵在△ABE与△ACD中,∴△ABE≌△ACD(SAS);(2)证明:由(1)△ABE≌△ACD,则∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.【点评】此题主要考查学生对等腰三角形的性质及全等三角形的判定方法的理解及运用.21.(7分)如图,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.(1)求证:∠ABC=∠BAD.(2)试判断OE和AB的位置关系,并给出证明.【分析】(1)根据边角边判定全等三角形的方法即可求证△ABC≌△BAD;(2)根据(1)中结论可得∠DAB=∠CBA,可得OA=OB,根据等腰三角形底边三线合一性质即可解题.【解答】证明:(1)∵在△ABC和△BAD中,∴△ABC≌△BAD(SAS);(2)OE垂直且平分AB.理由:∵△ABC≌△BAD,∴∠DAB=∠CBA,∴OA=OB,∵点E是AB的中点,∴OE⊥AB.∴OE垂直且平分AB.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABC≌△BAD是解题的关键.22.(12分)已知△ABC在平面直角坐标系中的位置如图所示,直线l过点M(3,0)且平行于y轴.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标.(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求P1P2的长.(用含a的代数式表示)(3)通过计算加以判断,PP2的长会不会随点P位置的变化而变化.【分析】(1)如图1,分别作出点B、C关于y轴的对称点,再顺次连接可得;(2)P与P1关于y轴对称,利用关于y轴对称点的特点:纵坐标不变,横坐标变为相反数,求出P1的坐标,再由直线l的方程为直线x=3,利用对称的性质求出P2的坐标,即可PP2的长.(3)根据以上两种情况,分别利用PP2=PP1+P1P2、PP2=PP1﹣P1P2计算可得结论.【解答】解:(1)如图,△A1B1C1即为所求,A1(0,4)、B1(2,2)C1(1,1);(2)①如图2,当0<a≤3时,∵P与P1关于y轴对称,P(﹣a,0),∴P1(a,0),又∵P1与P2关于l:直线x=3对称,设P2(x,0),可得:=3,即x=6﹣a,∴P2(6﹣a,0),则PP2=6﹣a+a=6.②如图3,当a>3时,∵P与P1关于y轴对称,P(﹣a,0),∴P1(a,0),又∵P1与P2关于l:直线x=3对称,设P2(x,0),可得:=3,即x=6+a,∴P2(6+a,0),则PP2=6+a﹣a=6.综上所述,当0<a≤3时,P1P2=6﹣2a;当a>3时,P1P2=2a﹣6;(3)当0<a≤3时,PP2=PP1+P1P2=2a+6﹣2a=6;当a>3时,PP2=PP1﹣P1P2=2a﹣(2a﹣6)=6;∴PP2的长不会随点P位置的变化而变化.【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称的定义和性质及分类讨论思想的运用.23.(14分)问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F 在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为5.【分析】图2,求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根据AAS证两三角形全等即可;图③根据已知和三角形外角性质求出∠ABE=∠CAF,∠BAE=∠FCA,根据ASA证两三角形全等即可;图④求出△ABD的面积,根据△ABE≌△CAF得出△ACF与△BDE的面积之和等于△ABD的面积,即可得出答案.【解答】证明:图②,∵CF⊥AE,BD⊥AE,∠MAN=90°,∴∠BDA=∠AFC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,∴∠ABD=∠CAF,在△ABD和△CAF中,∵,∴△ABD≌△CAF(AAS);图③,∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,∴∠ABE=∠CAF,∠BAE=∠FCA,在△ABE和△CAF中,∵,∴△ABE≌△CAF(ASA);图④,解:∵△ABC的面积为15,CD=2BD,∴△ABD的面积是:×15=5,由图3中证出△ABE≌△CAF,∴△ACF与△BDE的面积之和等于△ABE与△BDE的面积之和,即等于△ABD的面积,是5,故答案为:5.【点评】本题考查了全等三角形的性质和判定,三角形的面积,三角形的外角性质等知识点,主要考查学生的分析问题和解决问题的能力,题目比较典型,证明过程有类似之处.。

2017-2018年山西省太原市高二(上)期中数学试卷和答案

2017-2018学年山西省太原市高二(上)期中数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知点A(1,0),B(﹣1,1),则直线AB的斜率为()A.B.C.﹣2 D.22.(3分)下列平面图形中,通过围绕定直线l旋转可得到下图所示几何体的是()A.B.C.D.3.(3分)圆(x﹣1)2+(y﹣2)2=4的圆心坐标和半径分别为()A.(﹣1,﹣2),4 B.(1,2),4 C.(﹣1,﹣2),2 D.(1,2),24.(3分)直线y=x﹣1与圆x2+y2=1的位置关系是()A.相离B.相交C.相切D.不确定5.(3分)已知m,n是两条不同直线,α是一个平面,则下列结论正确的是()A.若m∥α,n⊂α,则m∥n B.若m∥α,n∥α,则m∥nC.若m∥α,m⊥n,则n⊥αD.若m∥n,m⊥α,则n⊥α6.(3分)直线x+y﹣1=0与直线2x+2y+1=0的距离是()A.B.C.D.7.(3分)如图,△O'A'B'是△OAB用斜二测画法画出来的直观图,其中O'B'=4,A'C'=6,A'C'∥y',则△OAB的面积()A.6 B.12 C.24 D.488.(3分)已知实数x,y满足条件,则z=x﹣2y的最大值为()A.8 B.6 C.﹣8 D.9.(3分)若直线m2x+(m2﹣m)y+1=0与2x﹣y﹣1=0互相垂直,则实数m=()A.﹣1 B.0 C.﹣1或0 D.110.(3分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C. D.11.(3分)若关于x的方程有两个不同实数根,则实数m的取值范围是()A.B.(﹣1,1)C.D.12.(3分)已知圆O和圆M是球O的大圆和小圆,其公共弦长为球O半径的倍,且圆O和圆M所在平面所成的二面角是30°,OM=1,则圆O的半径为()A.B.2 C.D.4二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)已知空间直角坐标系中点P(1,2,3),Q(3,2,1),则|PQ|=.14.(3分)已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为.15.(3分)已知经过点M(2,1)作圆C:(x+1)2+y2=1的两条切线,切点分别为A,B两点,则直线AB的方程为.16.(3分)如图,三棱锥P﹣ABC中,PA,PB,PC两两垂直,PA=PB=PC=2,设点K是△ABC内一点,现定义f(K)=(x,y,z),其中x,y,z分别是三棱锥K﹣PAB,K﹣PBC,K﹣PAC的体积,若,则的最小值为.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.已知△ABC的三个顶点坐标分别是A(﹣2,﹣1),B(2,1),C(1,3).(Ⅰ)求边AB高所在直线的点斜式方程;(Ⅱ)求边AB上的中线所在直线的一般式方程.18.如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,点M,N分别是BD1,B1C 的中点,(1)求证:MN⊥B1C;(2)求三棱锥B1﹣BCD1的体积.19.已知圆C1:x2+y2﹣4x=0与圆C2:x2+y2+2my+n=0关于直线y=x对称.(Ⅰ)求实数m,n的值;(Ⅱ)求经过圆C1与圆C2的公共点以及点P(﹣1,1)的圆的方程.20.如图,在四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥DC,点E,F,G,M,N分别是PB,AB,BC,PD,PC的中点(1)求证:AN∥平面EFG;(2)求证:平面MNE⊥平面EFG.21.如图,在四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥DC,点E、F、G、M、N分别是PB,AB,BC,PD,PC的中点.(Ⅰ)若AB=2CD,求证:CE∥平面PAD(Ⅱ)求证:MN⊥平面EFG.22.已知圆C1:x2+y2=4与圆C2:(x﹣4)2+(y﹣2)2=4,点A在圆C1上,点B 在圆C2上.(Ⅰ)求|AB|的最小值;(Ⅱ)直线x=3上是否存在点P,满足经过点P由无数对相互垂直的直线l1和l2,它们分别与圆C1和圆C2相交,并且直线l1被圆C1所截得的弦长等于直线l2被圆C2所截得的弦长?若存在,求出点P的坐标;若不存在,请说明理由.23.已知圆C1:x2+(y+2)2=4与圆C2:(x﹣4)2+y2=4(1)若直线mx﹣y+(m﹣1)=0(m∈R)与圆C1相交于A,B两个不同点,求|AB|的最小值;(2)直线x=3上是否存在点P,满足经过点P有无数对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,并且直线l1被圆C1所截得的弦长等于直线l2被圆C2所截得的弦长?若存在,求出点P的坐标;若不存在,请说明理由.2017-2018学年山西省太原市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知点A(1,0),B(﹣1,1),则直线AB的斜率为()A.B.C.﹣2 D.2【解答】解:直线AB的斜率k==﹣.故选:A.2.(3分)下列平面图形中,通过围绕定直线l旋转可得到下图所示几何体的是()A.B.C.D.【解答】解:几何体是由两个圆锥和一个圆柱组合而成的,由旋转体的性质得选项B中梯形绕下底旋转,形成的几何体是由两个圆锥和一个圆柱组合而成,故选:B.3.(3分)圆(x﹣1)2+(y﹣2)2=4的圆心坐标和半径分别为()A.(﹣1,﹣2),4 B.(1,2),4 C.(﹣1,﹣2),2 D.(1,2),2【解答】解:∵圆C的方程为(x﹣1)2+(y﹣2)2=4,则圆C的圆心坐标为(1,2),半径r=2,故选:D.4.(3分)直线y=x﹣1与圆x2+y2=1的位置关系是()A.相离B.相交C.相切D.不确定【解答】解:圆心(0,0)到直线y=x﹣1的距离d==<1,∴直线与圆相交.故选:B.5.(3分)已知m,n是两条不同直线,α是一个平面,则下列结论正确的是()A.若m∥α,n⊂α,则m∥n B.若m∥α,n∥α,则m∥nC.若m∥α,m⊥n,则n⊥αD.若m∥n,m⊥α,则n⊥α【解答】解:对于A,m∥α,n⊂α,则m∥n或m,n异面,所以A错误;对于B,若m∥α,n∥α,则m与n相交、平行或异面,故B错误;对于C,若m∥α,m⊥n,则n、α可能相交,故错;对于D,若m∥n,m⊥α,则n⊥α,正确.故选:D.6.(3分)直线x+y﹣1=0与直线2x+2y+1=0的距离是()A.B.C.D.【解答】解:直线2x+2y+1=0化为:x+y+=0.∴平行直线x+y﹣1=0与直线2x+2y+1=0的距离d==.故选:A.7.(3分)如图,△O'A'B'是△OAB用斜二测画法画出来的直观图,其中O'B'=4,A'C'=6,A'C'∥y',则△OAB的面积()A.6 B.12 C.24 D.48【解答】解:由已知中的直观图可得:△OAB中OB=4,AC=12,AC⊥OB,故△OAB的面积S=×12×4=24,故选:C.8.(3分)已知实数x,y满足条件,则z=x﹣2y的最大值为()A.8 B.6 C.﹣8 D.【解答】解:由实数x,y满足条件作出可行域如图,化目标函数z=x﹣2y为y=﹣,由图可知,当直线y=﹣过A时,z取得最大值,由解得A(2,﹣2)时,直线在y轴上的截距最小,z有最大值为2﹣2×(﹣2)=6.故选:B.9.(3分)若直线m2x+(m2﹣m)y+1=0与2x﹣y﹣1=0互相垂直,则实数m=()A.﹣1 B.0 C.﹣1或0 D.1【解答】解:∵直线m2x+(m2﹣m)y+1=0与2x﹣y﹣1=0互相垂直,∴2m2﹣m2+m=0,解得m=﹣1或m=0,当m=0时,m2x+(m2﹣m)y+1=0不成立,故选:A.10.(3分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.B.C. D.【解答】解:由三视图还原原几何体如图:该几何体为三棱锥,底面三角形ABC为直角三角形,侧棱PA⊥底面ABC,由AB=1,BC=3,得AC=,由PA=2,AB=1,得PB=,=1,,,,则S△PAB∴该几何体的表面积为1+=.故选:A.11.(3分)若关于x的方程有两个不同实数根,则实数m的取值范围是()A.B.(﹣1,1)C.D.【解答】解:∵方程,∴设函数y=x+b,和y=,则﹣1≤x≤1,由y=得x2+y2=1,∵﹣1≤x≤1,∴函数y=为圆的上半部分.作出函数y=的图象如图:当直线x﹣y+b=0与圆相切时,圆心到直线的距离d=,即|b|=,解得b=,由图象可知b>0,即b=.当直线经过点(﹣1,0)时,直线满足﹣1+b=0,即b=1,∴要使x的方程有两个不同的实数解,则满足1,故选:D.12.(3分)已知圆O和圆M是球O的大圆和小圆,其公共弦长为球O半径的倍,且圆O和圆M所在平面所成的二面角是30°,OM=1,则圆O的半径为()A.B.2 C.D.4【解答】解:设两圆的公共弦长为AB,C为AB的中点,连结MC、OC,则OC⊥AB,MC⊥AB,∴∠MCO就是圆O与圆K所在的平面所成的二面角的平面角,即∠MCO=30°∵Rt△MOC中,OM=1,∴OC==2,Rt△AOC中,OA2=OC2+AC2,即R2=4+()2,解得R=4.故选:D.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3分)已知空间直角坐标系中点P(1,2,3),Q(3,2,1),则|PQ|=2.【解答】解:|PQ|==2,故答案为:2.14.(3分)已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为.【解答】解:设圆锥的底面半径为r,母线长为l,则,解得r=1,l=2.∴圆锥的高h==.∴圆锥的体积V=πr2h=.故答案为.15.(3分)已知经过点M(2,1)作圆C:(x+1)2+y2=1的两条切线,切点分别为A,B两点,则直线AB的方程为3x+y+2=0.【解答】解:(x+1)2+y2=1的圆心为C(﹣1,0),半径为1,以M(2,1)、C(﹣1,0)为直径的圆的方程为(x﹣)2+(y﹣)2=,将两圆的方程相减可得公共弦AB的方程3x+y+2=0,故答案是:3x+y+2=0.16.(3分)如图,三棱锥P﹣ABC中,PA,PB,PC两两垂直,PA=PB=PC=2,设点K是△ABC内一点,现定义f(K)=(x,y,z),其中x,y,z分别是三棱锥K﹣PAB,K﹣PBC,K﹣PAC的体积,若,则的最小值为.【解答】解:∵PA、PB、PC两两垂直,且PA=PB=PC=2,=××2×2×2==a++b,∴V P﹣ABC∴a+b=1.则==()(a+b)=4+,由题意可得a>0,b>0,且a+b=1,∴=4+,当且仅当b=时,上式“=”成立.∴的最小值为.故答案为:4+2.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.已知△ABC的三个顶点坐标分别是A(﹣2,﹣1),B(2,1),C(1,3).(Ⅰ)求边AB高所在直线的点斜式方程;(Ⅱ)求边AB上的中线所在直线的一般式方程.【解答】解:(Ⅰ)AB边上的高所在的直线为直线CH,H为垂足,由已知A(﹣2,﹣1),B(2,1),得:,而k AB k CH=﹣1,则k CH=﹣2,而C(1,3),所以直线CH的方程为y﹣3=﹣2(x﹣1);(Ⅱ)AB边上的中线所在的直线为直线CE,E为AB中点,由已知A(﹣2,﹣1),B(2,1)得:E(0,0),而C(1,3),得:,所以直线CE的方程为y=3x即3x﹣y=0.18.如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,点M,N分别是BD1,B1C 的中点,(1)求证:MN⊥B1C;(2)求三棱锥B1﹣BCD1的体积.【解答】证明:(1)取BD,CD的中点为P,Q,连接PQ,MP,NQ,在△ADD1中,,同理在△BCB1中,又BB1=DD1,BB1∥DD1,所以MP=NQ,MP∥NQ,所以四边形MNQP是平行四边形,所以MN∥PQ,又PQ∥DC,DC⊥平面BCC1B1,所以PQ⊥平面BCC1B1,所以PQ⊥B1C,所以MN⊥B1C;解:(2)三棱锥B1﹣BCD1的体积:.19.已知圆C1:x2+y2﹣4x=0与圆C2:x2+y2+2my+n=0关于直线y=x对称.(Ⅰ)求实数m,n的值;(Ⅱ)求经过圆C1与圆C2的公共点以及点P(﹣1,1)的圆的方程.【解答】解:(Ⅰ)圆的标准方程为(x﹣2)2+y2=4,圆心C1(2,0),半径r1=2,圆的标准方程为x2+(y+m)2=m2﹣n,圆心C2(0,﹣m),半径∵圆C1与圆C2关于直线y=x对称,所以,解得.(Ⅱ)解得,或,即圆C1与圆C2的交点为(0,0),(2,2).令O(0,0),Q(2,2),又OP⊥OQ,∴所求圆的圆心为线段PQ的中点,即;半径,∴所求圆的方程为:.20.如图,在四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥DC,点E,F,G,M,N分别是PB,AB,BC,PD,PC的中点(1)求证:AN∥平面EFG;(2)求证:平面MNE⊥平面EFG.【解答】解:(1)在△PAB中,E,F分别是PB,AB的中点,所以EF∥PA,所以EF∥平面PAC在△ACB中,F,G分别是AB,BC的中点,所以FG∥AC,所以FG∥平面PAC又EF∩FG=F,所以平面PAC∥平面EFG,所以AN∥平面EFG(2)∵E、F分别是PB、AB中点,∴EF∥PA又AB⊥PA,∴AB⊥EF同理可证AB⊥FG.又EF∩FG=F,EF、FG⊂面EFG,故AB⊥EFG.又M、N分别为PD、PC中点,∴MN∥CD,又AB∥CD,故MN∥AB,∴MN⊥EFG,∵MN⊂EMN,∴EFG⊥EMN.21.如图,在四棱锥P﹣ABCD中,AB⊥AC,AB⊥PA,AB∥DC,点E、F、G、M、N分别是PB,AB,BC,PD,PC的中点.(Ⅰ)若AB=2CD,求证:CE∥平面PAD(Ⅱ)求证:MN⊥平面EFG.【解答】解:(Ⅰ)连结CF,∵E、F分别是PB、AB的中点,∴EF是△PAB的中位线,∴EF∥PA,又∵AB∥DC,AB=2DC,∴AF∥DC,AF=DC,∴四边形ADCF是平行四边形,∴CF∥AD,又∵EF∩EC=E,PA∩AD=A,∴平面EFC∥平面PAD,∵CE⊂平面EFC,∴CE∥平面PAD.(Ⅱ)∵AB⊥AC,AB⊥PA,∴AB⊥平面PAC,又∵E、F、G分别是PB、AB、CB的中点,∴EF∥PA,EG∥AC,∴平面EFG∥平面PAC,∴AB⊥平面EFG,又∵M、N分别是PD、PC的中点,∴MN∥DC∥AB,∴MN⊥平面EFG.22.已知圆C1:x2+y2=4与圆C2:(x﹣4)2+(y﹣2)2=4,点A在圆C1上,点B 在圆C2上.(Ⅰ)求|AB|的最小值;(Ⅱ)直线x=3上是否存在点P,满足经过点P由无数对相互垂直的直线l1和l2,它们分别与圆C1和圆C2相交,并且直线l1被圆C1所截得的弦长等于直线l2被圆C2所截得的弦长?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)两圆的圆心距为|C1C2|==2>2+2=4,∴圆C1与圆C2外离,∴|AB|的最小值为2﹣4.(Ⅱ)设P(3,a),当直线l1斜率不存在时,显然不符合题意,舍去;当直线l1斜率存在且不为0时,设直线l1:y=k(x﹣3)+a,即kx﹣y+a﹣3k=0,直线,即x+ky﹣ak﹣3=0,∴两圆圆心到直线l1,l2的距离分别为:∵两圆半径相等,弦长相等,∴d1=d2,即,化简得:(a2﹣4a﹣5)k2+4(a+1)k+1﹣a2=0,∴上式对任意k≠0恒成立,故,解得a=﹣1.故存在点P(3,﹣1)满足题意.23.已知圆C1:x2+(y+2)2=4与圆C2:(x﹣4)2+y2=4(1)若直线mx﹣y+(m﹣1)=0(m∈R)与圆C1相交于A,B两个不同点,求|AB|的最小值;(2)直线x=3上是否存在点P,满足经过点P有无数对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,并且直线l1被圆C1所截得的弦长等于直线l2被圆C2所截得的弦长?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)直线mx﹣y+(m﹣1)=0(m∈R)过定点M(﹣1,﹣1),∴当AB⊥C1M时,|AB|取得最小值,∵,∴|AB|的最小值为2=2.(2)设P(3,a),当直线l1斜率为0或斜率不存在时不符合题意,舍去;当直线l1斜率存在且不为0时,设直线l1:y=k(x﹣3)+a,即kx﹣y+a﹣3k=0,设直线,即x+ky﹣ak﹣3=0,则C1到直线l1的距离为d1=,C2到直线l2的距离为d2=,∵两圆半径相等,弦长相等,∴,化简得:(9﹣a2)k2﹣(12+4a)k+a2+4a+3=0,∴上式对任意k≠0恒成立,故,解得a=﹣3.故存在点P(3,﹣3)满足题意.。

2017-2018年山西省大同市矿区八年级上学期期中数学试卷和答案

2017-2018学年山西省大同市矿区八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3.00分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.162.(3.00分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.3.(3.00分)如图:AB∥CD,CB⊥DB,∠D=55°,则∠ABC的度数是()A.55°B.35°C.25°D.65°4.(3.00分)根据下列条件,只能画出唯一的△ABC的是()A.AB=3,BC=4 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=60°,AB=55.(3.00分)如图,在△ABC中,AB=AC,D为BC 的中点,连接AD,那么以下结论不正确的是()A.△ABD≌△ACD B.∠B=∠CC.AD是△ABC的高D.AD不是△ABC的角平分线6.(3.00分)已知点A(6,3),点B(6,﹣3),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.没有对称关系7.(3.00分)如图:在△ABC中,若AB=10,BC=8,AC=12,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.16 B.20 C.18 D.128.(3.00分)如图:∠1=∠2再添加一个条件,仍不能判定△ABC≌△ABD的是()A.∠C=∠D B.∠ABC=∠ABD C.AC=AD D.AB=AB9.(3.00分)如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C. D.10.(3.00分)如图:△ABC中,AD平分∠BAC,DE⊥AB于点E,S△ABC=8,DE=2,AB=5,则AC=()A.4 B.5 C.3 D.2二.填空题(每小题3分,共18分)11.(3.00分)一副分别含30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°.则∠AFE=度.12.(3.00分)如图:在Rt△ABC和Rt△DEF中,∠C=90°,∠F=90°,BC=EF.请你添加一个条件:使△ABC≌△DEF.13.(3.00分)如图:在△ABC中,若∠ABC=90°,∠A=58°,又CD=CB,则∠ABD=度.14.(3.00分)一个正多边形的一个外角是60°,则这个正多边形的内角和是.15.(3.00分)如图:在△ABC中,∠ABC=45°,AD、BE是△ABC的高,若已知CD=5,就可得到DF=5,这样做的理论依据.16.(3.00分)如图:△ABC中,∠C=90°,AD平分∠BAC交CB于点D.现将直角边AC沿直线AD折叠,AC边恰好落在斜边上,且点C与斜边AB的中点E刚好重合,若CD=3,则BD=.三、解答题(共52分)17.(8.00分)如图:△ABC的边BC的高为AF,AC边上的高为BG,中线为AD,AF=6,BC=12,BG=5,(1)求△ABD的面积.(2)求AC的长.(3)△ABD和△ACD的面积有何关系.18.(8.00分)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.19.(8.00分)在平面直角坐标系中有一点A,其坐标为A(3,2)回答下列问题:(1)点A关于x轴的对称点B的坐标点为点A关于y轴的对称点C的坐标点为(2)若在x轴上找一点D,使DA+DC之和最短,则点D的坐标为(3)若在x轴上找一点E,使△OAE为等腰三角形,则有个这样的E点.20.(8.00分)如图:∠ACD是△ABC的一个外角,CA=CB,(1)画出∠ACD的角平分线CE.(2)求证:CE∥AB.21.(10.00分)在学习了全等三角形和等边三角形的知识后,张老师出了如下一道题:如图,点B是线段AC上任意一点,分别以AB、BC为边在AC同一侧作等边△ABD和等边△BCE,连接CD、AE分别与BE和DB交于点N、M,连接MN.求证:△ABE≌△DBC.接着张老师又让学生分小组进行探究:你还能得出什么结论?精英小组探究的结论是:AM=DN奋斗小组探究的结论是:△EMB≌△CNB.创新小组探究的结论是:MN∥AC.(1)你认为哪一小组探究的结论是正确的?(2)选择其中你认为正确的一种情形加以证明.22.(10.00分)(1)图(1)中AB和AC 相交于点A,BD和CD相交于点D,探究∠BDC与∠B、∠C、∠BAC的关系小明是这样做的:解:以点A为端点作射线AD∵∠1是△ABD的外角∴∠1=∠B+∠BAD同理∠2=∠C+∠CAD∴∠1+∠2=∠B+∠BAD+∠C+∠CAD即∠BDC=∠B+∠C+∠BAC小英的思路是:延长BD交AC于点E.1小英的思路完成∠BDC=∠B+∠C+∠BAC这一结论.(2)按照上面的思路解决如下问题:如图(2):在△ABC中,BE、CD分别是∠ABC∠ACB的角平分线,交AC于E,交AB于D.BE、CD相交于点O,∠A=60°.求∠BOC的度数.(3)如图(3):△ABC中,BO、CO分别是∠ABC与∠ACB的角平分线,且BO、CO相交于点O.猜想∠BOC与∠A有怎样的关系,并加以证明.2017-2018学年山西省大同市矿区八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3.00分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.12 D.16【解答】解:设第三边的长为x,∵三角形两边的长分别是4和10,∴10﹣4<x<10+4,即6<x<14.故选:C.2.(3.00分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.3.(3.00分)如图:AB∥CD,CB⊥DB,∠D=55°,则∠ABC的度数是()A.55°B.35°C.25°D.65°【解答】解:∵CB⊥DB,∴∠CBD=90°,∴∠C+∠D=90°,∵∠D=55°,∴∠C=35°,∵AB∥CD,∴∠ABC=∠C=35°.故选:B.4.(3.00分)根据下列条件,只能画出唯一的△ABC的是()A.AB=3,BC=4 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=60°,AB=5【解答】解:A、只有两边长不能画出△ABC;B、已知AB、BC和BC的对角,不能画出△ABC;C、已知直角三角形的斜边和一条直角边能画出△ABC;D、已知一个角和一条边,不能画出△ABC;故选:C.5.(3.00分)如图,在△ABC中,AB=AC,D为BC 的中点,连接AD,那么以下结论不正确的是()A.△ABD≌△ACD B.∠B=∠CC.AD是△ABC的高D.AD不是△ABC的角平分线【解答】解:∵AB=AC,∴∠B=∠C,∴选项B正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴AD是△ABC的高,∴选项C正确,选项D不正确,在△ABD和△ACD中,∴△ABD≌△ACD(SSS),∴选项A正确,故选:D.6.(3.00分)已知点A(6,3),点B(6,﹣3),则点A与点B的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.没有对称关系【解答】解:∵点A(6,3),点B(6,﹣3)的横坐标相同,纵坐标互为相反数,∴点A与点B关于x轴对称.故选:A.7.(3.00分)如图:在△ABC中,若AB=10,BC=8,AC=12,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.16 B.20 C.18 D.12【解答】解:∵AB的垂直平分线交AC于点D,∴DA=DB,∴△BDC的周长=BC+CD+BD=BC+CD+DA=BC+AC=20,故选:B.8.(3.00分)如图:∠1=∠2再添加一个条件,仍不能判定△ABC≌△ABD的是()A.∠C=∠D B.∠ABC=∠ABD C.AC=AD D.AB=AB【解答】解:A、在△ABC和△ABD中,∵,∴△ABC≌△ABD(AAS),∴添加∠C=∠D可以判定△ABC≌△ABD;B、在△ABC和△ABD中,∵,∴△ABC≌△ABD(ASA),∴添加∠ABC=∠ABD可以判定△ABC≌△ABD;C、在△ABC和△ABD中,∵,∴△ABC≌△ABD(SAS),∴添加AC=AD可以判定△ABC≌△ABD;D、AB属于公共边,不能算作添加的条件,不能判定△ABC≌△ABD;故选:D.9.(3.00分)如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C. D.【解答】解:A、中作∠B的角平分线即可;C、过A点作BC的垂线即可;D、中以A为顶点AB为一边在三角形内部作一个72度的角即可;只有B选项不能被一条直线分成两个小等腰三角形.故选:B.10.(3.00分)如图:△ABC中,AD平分∠BAC,DE⊥AB于点E,S△ABC=8,DE=2,AB=5,则AC=()A.4 B.5 C.3 D.2【解答】解:作DF⊥AC于F,∵DE=2,AB=5,∴S=×2×5=5,△ABD=8,∵S△ABC=3,∴S△ADC∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DF=DE=2,∴AC=3.故选:C.二.填空题(每小题3分,共18分)11.(3.00分)一副分别含30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°.则∠AFE=15度.【解答】解:∵∠C=90°,∠B=30°,∴∠BAC=45°,∵∠E=30°,∴∠BDF=∠EFA=∠BAC﹣∠E=45°﹣30°=15°,故答案为:15.12.(3.00分)如图:在Rt△ABC和Rt△DEF中,∠C=90°,∠F=90°,BC=EF.请你添加一个条件:∠A=∠D使△ABC≌△DEF.【解答】解:添加∠A=∠D,∵在Rt△ABC和Rt△DEF中,∴△ABC≌△DEF(AAS),故答案为:∠A=∠D.13.(3.00分)如图:在△ABC中,若∠ABC=90°,∠A=58°,又CD=CB,则∠ABD= 16度.【解答】解:∵∠ABC=90°,∠A=58°,∴∠C=90°﹣∠A=90°﹣58°=32°,∵CD=CB,∴∠CBD=(180°﹣∠C)=(180°﹣32°)=74°,∴∠ABD=∠ABC﹣∠CBD=90°﹣74°=16°.故答案为:16.14.(3.00分)一个正多边形的一个外角是60°,则这个正多边形的内角和是720°.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故答案为:720°.15.(3.00分)如图:在△ABC中,∠ABC=45°,AD、BE是△ABC的高,若已知CD=5,就可得到DF=5,这样做的理论依据全等三角形的对应边相等.【解答】解:∵AD、BE为△ABC的高,∴∠ADB=∠ADC=∠BEC=90°,∴∠DBF+∠C=90°,∠DAC+∠C=90°,∴∠DBF=∠DAC,∵∠ABC=45°,∠ADB=90°,∴∠DAB=45°,∴∠ABD=∠BAD,∴AD=BD,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴CD=DF=5,故答案为:全等三角形的对应边相等,16.(3.00分)如图:△ABC中,∠C=90°,AD平分∠BAC交CB于点D.现将直角边AC沿直线AD折叠,AC边恰好落在斜边上,且点C与斜边AB的中点E刚好重合,若CD=3,则BD=6.【解答】解:根据翻折变换的特点可知,∠AED=90°,又∵E是斜边AB的中点,∴AD=BD,CD=DE,∴∠B=∠DAE,∵AD平分∠BAC交CB于点D.∴∠CAD=∠DAE,∴∠B+∠CAD+∠DAE=90°,∴∠B=30°,∵∠DEB=90°,DE=CD=3,∴BD=6,故答案为:6.三、解答题(共52分)17.(8.00分)如图:△ABC的边BC的高为AF,AC边上的高为BG,中线为AD,AF=6,BC=12,BG=5,(1)求△ABD的面积.(2)求AC的长.(3)△ABD和△ACD的面积有何关系.【解答】解:(1)∵△ABC的边BC上的高为AF,AF=6,BC=12,∴△ABC的面积=BC•AF=×12×6=36;(2)∵AC边上的高为BG,BG=5,∴△ABC的面积=AC•BG=36,∴AC=;(3)△ABD和△ACD的面积相等.∵△ABC的中线为AD,∴BD=CD,∵△ABD以BD为底,△ACD以CD为底,而且等高,=S△ACD.∴S△ABD18.(8.00分)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.【解答】解:(1)①②;①③.(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.19.(8.00分)在平面直角坐标系中有一点A,其坐标为A(3,2)回答下列问题:(1)点A关于x轴的对称点B的坐标点为(3,﹣2)点A关于y轴的对称点C的坐标点为(﹣3,2)(2)若在x轴上找一点D,使DA+DC之和最短,则点D的坐标为(0,0)(3)若在x轴上找一点E,使△OAE为等腰三角形,则有4个这样的E点.【解答】解:(1)点A关于x轴的对称点B的坐标点为(3,﹣2)点A关于y轴的对称点C的坐标(﹣3,2)故答案为(3,﹣2),(﹣3,2);(2)如图1中,作点A关于x轴的对称点A′,连接A′C与x轴交于点D(与O 重合),此时AD+CD最小.∴D(0,0),故答案为(0,0).(3)如图2中,满足条件的点E有4个,故答案为4.20.(8.00分)如图:∠ACD是△ABC的一个外角,CA=CB,(1)画出∠ACD的角平分线CE.(2)求证:CE∥AB.【解答】解:(1)∠ACD的角平分线CE如图所示:.(2)∵∠A+∠B+∠ACB=180°,又∵∠ECD+∠ECA+∠ACB=180°,∴∠A+∠B=∠ECD+∠ECA,又∵CA=CB,∴∠A=∠B,CE平分∠ACD,∴∠ECD=∠ECA,∴2∠B=2∠ECD,∴∠B=∠ECD,∴AB∥CE.21.(10.00分)在学习了全等三角形和等边三角形的知识后,张老师出了如下一道题:如图,点B是线段AC上任意一点,分别以AB、BC为边在AC同一侧作等边△ABD和等边△BCE,连接CD、AE分别与BE和DB交于点N、M,连接MN.求证:△ABE≌△DBC.接着张老师又让学生分小组进行探究:你还能得出什么结论?精英小组探究的结论是:AM=DN奋斗小组探究的结论是:△EMB≌△CNB.创新小组探究的结论是:MN∥AC.(1)你认为哪一小组探究的结论是正确的?(2)选择其中你认为正确的一种情形加以证明.【解答】解:(1)三个小组探究的结论都正确;(2)∵△ABD和△BCE是等边三角形,∴AB=BD,BC=BE,∠ABD=∠CBE=60°,∴∠ABE=∠DBC,在△BAE与△DBC中,,∴△ABE≌△DBC,∴∠BAM=∠BDN,∠AEB=∠DCB,在△ABM与△DBN中,,∴△ABM≌△DBN,∴AM=DN,BM=BN,∵∠MBN=180°﹣60°﹣60°=60°,∴△BMN是等边三角形,∴∠BMN=60°,∴∠BMN=∠ABM,∴NM∥AC,在△EMB与△CNB中,,∴△EMB≌△CNB.22.(10.00分)(1)图(1)中AB和AC 相交于点A,BD和CD相交于点D,探究∠BDC与∠B、∠C、∠BAC的关系小明是这样做的:解:以点A为端点作射线AD∵∠1是△ABD的外角∴∠1=∠B+∠BAD同理∠2=∠C+∠CAD∴∠1+∠2=∠B+∠BAD+∠C+∠CAD即∠BDC=∠B+∠C+∠BAC小英的思路是:延长BD交AC于点E.1小英的思路完成∠BDC=∠B+∠C+∠BAC这一结论.(2)按照上面的思路解决如下问题:如图(2):在△ABC中,BE、CD分别是∠ABC∠ACB的角平分线,交AC于E,交AB于D.BE、CD相交于点O,∠A=60°.求∠BOC的度数.(3)如图(3):△ABC中,BO、CO分别是∠ABC与∠ACB的角平分线,且BO、CO相交于点O.猜想∠BOC与∠A有怎样的关系,并加以证明.【解答】(1)证明:延长BD交AC于E,∵∠BDC=∠C+∠CED,又∵∠CED=∠BAC+∠B,∴∠BDC=∠C+∠B+∠BAC;(2)解:∵由(1)知∠BOC=∠ABE+∠ACD+∠A,又∵∠ABE=∠ABC ,∠ACD=∠ACB ,∴∠ABE +∠ACD= (∠ABC +∠ACB )= (180﹣∠A )=×120=60°, ∴∠BOC=120°;(3)∠BOC 与∠A 的关系:∠BOC=90°+∠A .理由如下:由(2)得∠BOC=(180°﹣∠A )+∠A=90°+∠A .赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共22页) 2016-2017学年山西省太原市八年级(上)期中数学试卷 一、选择题(共10小题,每小题3分,满分30分) 1.(3.00分)下列各数中的无理数是( ) A. B.0.9 C. D. 2.(3.00分)已知平面直角坐标系中一点P(3,﹣4),它在坐标系的( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.(3.00分)下列给出的四组数中,是勾股数的一组是( ) A.1、2、3 B.1、2、 C.5、12、10 D.6、8、10 4.(3.00分)下列计算结果正确的是( ) A.+= B.=4 C.×= D.=3 5.(3.00分)一次函数y=x﹣1的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.(3.00分)如图,在Rt△ABC中,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,若S1=4,S2=8,则AB的长为( )

A.12 B.4 C.2 D.2 7.(3.00分)如图是利用正方形网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立平面直角坐标系,表示太原火车站的点的坐标是(3,0),表示府西征街站的点的坐标是(0,2),则表示双塔西征街站(正好在两条网格线的交点上)的点坐标为( ) 第2页(共22页)

A.(0,1) B.(﹣3,﹣1) C.(0,﹣1) D.(﹣1,0) 8.(3.00分)下列图象中,不能表示变量y是变量x的函数的是( )

A. B. C. D. 9.(3.00分)已知下表中变量y是变量x的一次函数. x … ﹣2 ﹣1 0 1 2 … y … 5 3 1 m ﹣3 … 根据表中的对应关系,当自变量x=1时,对应的函数值m等于( ) A.﹣2 B.﹣1 C.0 D.1 10.(3.00分)如图,小华将升旗的绳子拉紧到旗杆底端点B,绳子末端刚好接触到地面,然后拉紧绳子使其末端到点D处,点D到地面的距离CD长为2m,点D到旗杆AB的水平距离为8m,若设旗杆的高度AB长为xm,则根据题意所列的方程是( )

A.(x﹣2)2+82=x2 B.(x+2)2+82=x2 C.x2+82=(x﹣2)2 D.x2+82=(x+2)2 二、填空题(共6小题,每小题2分,满分12分) 11.(2.00分)实数﹣27的立方根是 . 12.(2.00分)正比例函数y=kx经过点(1,3),则k= . 第3页(共22页)

13.(2.00分)比较大小: 2(填“>”、“<”或“=”号). 14.(2.00分)根据如图的作图痕迹可知,点A表示的实数为 .

15.(2.00分)若一次函数y=3x+1的图象经过点(﹣2,y1)和(﹣1,y2),则y1与y2的大小关系是y1 y2.(填“<”,“=”“>”) 16.(2.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,点D是AB边上的一点,沿CD折叠△ABC,若点A落在AB的延长线上的点E处,则AD的长为 .

三、解答题(共8小题,满分58分) 17.(12.00分)计算: (1)﹣; (2); (3)(+1)2+(+1)(﹣1); (4)﹣+.

18.(6.00分)如图,是一个10×10的正方形网格,其中正方形的顶点称为格点,网格中△ABC的顶点A,B,C均在格点上,利用网格建立的平面直角坐标系中点A的坐标为(3,4). (1)直接写出B,C两点的坐标:B ;C ; (2)将A,B,C三点的纵坐标保持不变,横坐标分别乘﹣1,得到点A1,B1,C1,在图中描出点A1,B1,C1,并画出△A1B1C1; (3)描述图中的△A1B1C1与△ABC的位置关系. 第4页(共22页)

19.(6.00分)如图,一艘货轮和一艘渔船同时从港口O出发,货轮沿北偏西20°方向航行60海里到达点A处,此时,渔船到达港口O南偏西70°的点B处,与港口O相距80海里,求此时货轮和渔船之间的距离.

20.(5.00分)已知平面直角坐标系中,一次函数y=﹣2x+4的图象与x轴相交于点A,与y轴相交于点B,求A、B两点的坐标,并在图中画出该一次函数的图象.

21.(4.00分)某地气象资料表明,当地雷雨持续的时间t(h)可以用公式t2=来估计,其中d(km)是雷雨区域的直径,如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间? 第5页(共22页)

22.(5.00分)某校团支部计划将同学们捐赠的学习用品与图书寄往贫困山区希望小学,经了解,甲、乙两家快递公司的收费标准分别是: 甲公司:物品不超过1千克的,按10元收费;超过1千克,超过的部分按每千克15元收费; 乙公司:按每千克14元收费,另加包装费3元. 该设团支部支划快递的物品供x千克,请解决下列问题: (1)甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数表达式如下,请你将空缺的部分补充完整:

甲公司: 乙公司:y= (x>0); (2)团支部要寄50千克的捐赠物品,通过计算,判断选择哪家快递公司更省钱? 23.(7.00分)如图,学校有一块三角形草坪,数学课外小组的同学测得其三边的长分别为AB=200米,AC=160米,BC=120米. (1)小明根据测量的数据,猜想△ABC是直角三角形,请判断他的猜想是否正确,并说明理由; (2)若计划修一条从点C到BA边的小路CH,使CH⊥AB于点H,求小路CH的长.

24.(13.00分)如图,平面直角坐标系中,一次函数y=2x+6的图象与x轴交于点A,与y轴交于点B,点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D. (1)求点C的坐标及线段AB的长; (2)已知点P是直线CD上一点. 请从A、B两个题目中任选一题作答. A.①若△POC的面积为4,求点P的坐标; ②若△POC上直角三角形,请直接写出所有满足条件的点P的坐标. B.①若△PAB的面积为6,求点P的坐标; 第6页(共22页)

②若△PAB是等腰三角形,请直接写出所有满足条件的点P的坐标. 第7页(共22页)

2016-2017学年山西省太原市八年级(上)期中数学试卷 参考答案与试题解析

一、选择题(共10小题,每小题3分,满分30分) 1.(3.00分)下列各数中的无理数是( ) A. B.0.9 C. D.

【解答】解:是无理数, 故选:A.

2.(3.00分)已知平面直角坐标系中一点P(3,﹣4),它在坐标系的( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解答】解:点P(3,﹣4),它在坐标系的是第四象限, 故选:D.

3.(3.00分)下列给出的四组数中,是勾股数的一组是( ) A.1、2、3 B.1、2、 C.5、12、10 D.6、8、10 【解答】解:A、因为32≠12+22,所以它们不是勾股数,故本选项错误; B、因为22=12+()2,但不是整数,所以它们不是勾股数,故本选项错误; C、因为122≠52+102,所以它们不是勾股数,故本选项错误; D、因为102=62+82,所以它们是勾股数,故本选项正确; 故选:D.

4.(3.00分)下列计算结果正确的是( ) A.+= B.=4 C.×= D.=3 【解答】解:A、+≠,本选项错误; B、=2≠4,本选项错误; C、×=3≠,本选项错误; D、=3,本选项正确. 第8页(共22页)

故选:D. 5.(3.00分)一次函数y=x﹣1的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【解答】解:∵一次函数y=x﹣1的1>0, ∴该直线经过第一、三象限. 又﹣1<0, ∴该直线与y轴交于负半轴, ∴一次函数y=x﹣1的图象一、三、四象限,即该函数不经过第二象限. 故选:B.

6.(3.00分)如图,在Rt△ABC中,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,若S1=4,S2=8,则AB的长为( )

A.12 B.4 C.2 D.2 【解答】解:∵S1=4, ∴BC2=4, ∵S2=8, ∴AC2=8, 在Rt△ABC中,BC2+AC2=AB2, 故可得:AB==2; 故选:C. 第9页(共22页)

7.(3.00分)如图是利用正方形网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立平面直角坐标系,表示太原火车站的点的坐标是(3,0),表示府西征街站的点的坐标是(0,2),则表示双塔西征街站(正好在两条网格线的交点上)的点坐标为( )

A.(0,1) B.(﹣3,﹣1) C.(0,﹣1) D.(﹣1,0) 【解答】解:如图所示: 双塔西征街站(正好在两条网格线的交点上)的点坐标为:(0,﹣1). 故选:C.

8.(3.00分)下列图象中,不能表示变量y是变量x的函数的是( ) 第10页(共22页)

A. B. C. D. 【解答】解:∵对于x的每一个取值,y都有唯一确定的值, ∴B,C,D的图象符合x取值时,y有唯一的值对应; 故选:A.

9.(3.00分)已知下表中变量y是变量x的一次函数. x … ﹣2 ﹣1 0 1 2 … y … 5 3 1 m ﹣3 … 根据表中的对应关系,当自变量x=1时,对应的函数值m等于( ) A.﹣2 B.﹣1 C.0 D.1 【解答】解:一次函数的解析式为y=kx+b(k≠0), ∵x=﹣1时y=3;x=0时y=1, ∴,

解得, ∴一次函数的解析式为y=﹣2x+1, ∴当x=1时,y=﹣2×1+1=﹣1,即m=﹣1. 故选:B.

10.(3.00分)如图,小华将升旗的绳子拉紧到旗杆底端点B,绳子末端刚好接触到地面,然后拉紧绳子使其末端到点D处,点D到地面的距离CD长为2m,点D到旗杆AB的水平距离为8m,若设旗杆的高度AB长为xm,则根据题意所列的方程是( )

相关文档
最新文档