教学:第三节 理想气体的状态方程
8.3理想气体的状态方程 优秀教案优秀教学设计 高中物理选修3-3 (2)

3 理想气体的状态方程一、理想气体问题:以下是一定质量的空气在温度不变时,体积随常压和非常压变化的实验数据:压强(p)(atm)空气体积V(L)pV值( 1×1.013×105PaL)1 100 200 500 10001.0000.9730/1001.0100/2001.3400/5001.9920/10001.0000.97301.01001.34001.9920问题分析:(1)从表中发现了什么规律?在压强不太大的情况下,实验结果跟实验定律——玻意耳定律基本吻合,而在压强较大时,玻意耳定律则完全不适用了。
(2)为什么在压强较大时,玻意耳定律不成立呢?如果温度太低,查理定律是否也不成立呢?○1分子本身有体积,但在气体状态下分子的体积相对于分子间的空隙很小,可以忽略不计。
○2分子间有相互作用的引力和斥力,但分子力相对于分子的弹性碰撞时的冲力很小,也可以忽略。
○3一定质量的气体,在温度不变时,如果压强不太大,气体分子自身体积可忽略,玻意耳定律成立,但在压强足够大时,气体体积足够小而分子本身不能压缩,分子体积显然不能忽略,这样,玻意耳定律也就不成立了。
○4一定质量的气体,在体积不变时,如果温度足够低,分子动能非常小,与碰撞时的冲力相比,分子间分子力不能忽略,因此查理定律亦不成立了。
总结规律:设想有这样的气体,气体分子本身体积完全可以忽略,分子间的作用力完全等于零,也就是说,气体严格遵守实验定律。
这样的气体就叫做理想气体。
a.实际的气体,在温度不太低、压强不太大时,可以近似为理想气体。
b.理想气体是一个理想化模型,实际气体在压强不太大、温度不太低的情况下可以看作是理想气体. 二、理想气体的状态方程情景设置:理想气体状态方程是根据气体实验定律推导得到的。
如图所示,一定质量的理想气体由状态1(T 1、p 1、v 1)变化到状态2(T 2、p 2、v 2),各状态参量变化有什么样的变化呢?我们可以假设先让气体由状态1(T 1、p 1、v 1)经等温变化到状态c (T 1、p c 、v 2),再经过等容变化到状态2(T 2、p 2、v 2)。
高中物理选修3-3理想气体的状态方程教案

8.3、理想气体的状态方程一、教学目标1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具1.气体定律实验器、烧杯、温度计等。
四、主要教学过程(一)引入新课前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
8.3 理想气体的状态方程教案

8.3、理想气体的状态方程一、教学目标1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具1.气体定律实验器、烧杯、温度计等。
四、主要教学过程(一)引入新课前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
物理选修3-3教案8.3理想气体的状态方程

普通高中课程标准实验教科书—物理选修3-3[人教版]第八章气体3 理想气体的状态方程一、教学目标1、知识目标:(1)理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2、能力目标通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3、情感目标通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、教学重点1、理想气体的状态方程三、教学难点对“理想气体”这一概念的理解四、教具1、投影幻灯机、书写用投影片2、气体定律实验器、烧杯、温度计等。
五、主要教学过程(一)引入新课玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1、关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
(2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件得出的。
老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。
这就是说,当温度足够低或压强足够大时,任何气体都被液化了,当然也不遵循反映气体状态变化的玻意耳定律和查理定律了。
理想气体状态方程教案

理想气体状态方程教案一、教学目标1. 让学生了解理想气体的概念及特点。
2. 掌握理想气体的状态方程,理解各个参数之间的关系。
3. 能够运用理想气体状态方程解决实际问题。
二、教学内容1. 理想气体的概念及特点2. 理想气体的状态方程(PV=nRT)3. 状态方程的推导4. 各个参数的含义及单位5. 状态方程的应用三、教学方法1. 采用讲授法,讲解理想气体的概念、特点及状态方程。
2. 利用公式推导法,引导学生理解状态方程的推导过程。
3. 运用案例分析法,让学生通过实际问题掌握状态方程的应用。
四、教学步骤1. 引入理想气体的概念,讲解理想气体的特点。
2. 讲解理想气体的状态方程,引导学生理解各个参数之间的关系。
3. 利用公式推导法,引导学生推导理想气体的状态方程。
4. 讲解状态方程的适用条件,让学生了解状态方程的局限性。
5. 通过案例分析,让学生运用状态方程解决实际问题。
五、教学评价1. 课堂讲解:观察学生对理想气体概念、特点及状态方程的理解程度。
2. 课堂练习:检查学生运用状态方程解决实际问题的能力。
3. 课后作业:评估学生对状态方程的掌握情况。
4. 小组讨论:观察学生在讨论中能否运用状态方程进行分析。
六、教学活动1. 气体分子动理论:回顾气体分子的基本假设和动理论,为学生提供气体状态方程的微观基础。
2. 实验观察:安排实验,让学生观察气体在不同温度、压力下的体积变化,从而加深对状态方程的理解。
3. 状态方程的应用练习:提供一系列练习题,让学生应用状态方程解决不同情境下的气体问题。
七、教学资源1. 教材:选用合适的物理学教材,提供详细的理论解释和例题。
2. 实验设备:准备一定量的实验器材,如气压计、温度计、容器等,以便进行气体状态实验。
3. 多媒体教学:利用PPT或视频资料,生动展示气体状态方程的推导过程和应用场景。
八、教学难点与对策1. 状态方程的推导:对于这部分内容,可能需要多次讲解和示例,确保学生理解。
理想气体状态方程(教案)

教案
其中C是与P、V、T无关的。
该两式都叫做一定质量理想气体的。
【典型例题】(教材25页)
【梳理总结】
【变式训练】使一定质量的理想气体按图甲中箭头所示的顺序变化,图中BC段是以纵轴和横轴为渐近线的双曲线一部分.
(1)已知气体在状态A的温度T A=300 K,求气体在状态B、C和D的温度各是多少?
(2)将上述状态变化过程在图乙中画成体积V和温度T表示的图线(图中要标明A、B、C、D四点,并且要画箭头表示变化的方向).说明每段图线各表示什么过程乐。
(分组讨论发表见解)
学生分组完成
归纳小结略布置作业略
板书设计
8.3、理想气体的状态方程(一)理想气体
理想化模型
(二)理想气体的状态方程
pV
C
T
=
或
例题:
习题:
教学反思
1122
12 p V p V T T
=。
理想气体状态方程 教案
理想气体状态方程教案教案标题:理想气体状态方程教学目标:1. 理解理想气体状态方程的概念和基本原理;2. 掌握理想气体状态方程的数学表达形式;3. 能够运用理想气体状态方程解决实际问题。
教学内容:1. 理想气体状态方程的概念和基本原理;2. 理想气体状态方程的数学表达形式;3. 理想气体状态方程的应用。
教学步骤:Step 1: 引入理想气体状态方程的概念和基本原理(15分钟)- 通过引入实际气体与理想气体的区别,激发学生对理想气体状态方程的学习兴趣;- 解释理想气体状态方程的基本原理,即气体分子的运动和碰撞导致气体的压强、体积和温度之间存在一定的关系。
Step 2: 讲解理想气体状态方程的数学表达形式(20分钟)- 介绍理想气体状态方程的数学表达形式:PV = nRT,其中P为气体的压强,V 为气体的体积,n为气体的物质量,R为气体常数,T为气体的温度;- 解释每个变量的含义和单位,并通过实例演示如何使用理想气体状态方程进行计算。
Step 3: 运用理想气体状态方程解决实际问题(25分钟)- 提供一些实际问题,要求学生运用理想气体状态方程进行计算和分析;- 指导学生如何进行单位换算、代入数值和解方程等步骤;- 鼓励学生在小组或个人中进行讨论和交流,加深对理想气体状态方程的理解和应用能力。
Step 4: 总结与拓展(10分钟)- 对本节课所学内容进行总结,并强调理想气体状态方程在化学和物理学中的重要性;- 提供一些拓展问题,鼓励学生进一步思考和探索理想气体状态方程的应用领域。
教学资源:1. 理想气体状态方程的教学PPT;2. 实验室设备和材料,用于演示理想气体状态方程的实验;3. 相关教材和参考书籍。
评估方法:1. 课堂练习:布置一些理论计算题,考察学生对理想气体状态方程的理解和应用能力;2. 实验报告:要求学生进行一次与理想气体状态方程相关的实验,并撰写实验报告,评估学生的实验设计和数据分析能力。
高中物理 8.3《理想气体的状态方程》教学设计 新人教版选修3-3
2014高中物理 8.3《理想气体的状态方程》教学设计新人教版选修3-3一、教学目标1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具1.气体定律实验器、烧杯、温度计等。
四、主要教学过程(一)引入新课前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
理想气体的状态方程教案
8.3、理想气体的状态方程一、教学目标1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具1.气体定律实验器、烧杯、温度计等。
四、主要教学过程(一)引入新课前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
高中物理8.3、理想气体的状态方程教案
8.3、理想气体的状态方程一、教学目标1.在物理知识方面的要求:(1)初步理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(3)熟记盖·吕萨克定律及数学表达式,并能正确用它来解答气体等压变化的有关问题。
2.通过推导理想气体状态方程及由理想气体状态方程推导盖·吕萨克定律的过程,培养学生严密的逻辑思维能力。
3.通过用实验验证盖·吕萨克定律的教学过程,使学生学会用实验来验证成正比关系的物理定律的一种方法,并对学生进行“实践是检验真理唯一的标准”的教育。
二、重点、难点分析1.理想气体的状态方程是本节课的重点,因为它不仅是本节课的核心内容,还是中学阶段解答气体问题所遵循的最重要的规律之一。
2.对“理想气体”这一概念的理解是本节课的一个难点,因为这一概念对中学生来讲十分抽象,而且在本节只能从宏观现象对“理想气体”给出初步概念定义,只有到后两节从微观的气体分子动理论方面才能对“理想气体”给予进一步的论述。
另外在推导气体状态方程的过程中用状态参量来表示气体状态的变化也很抽象,学生理解上也有一定难度。
三、教具1.气体定律实验器、烧杯、温度计等。
四、主要教学过程(一)引入新课前面我们学习的玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,即这两个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)教学过程设计1.关于“理想气体”概念的教学设问:(1)玻意耳定律和查理定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节理想气体的状态方程教学目标:(一)知识与技能(1)理解“理想气体”的概念。
(2)掌握运用玻意耳定律和查理定律推导理想气体状态方程的过程,熟记理想气体状态方程的数学表达式,并能正确运用理想气体状态方程解答有关简单问题。
(二)过程与方法通过推导理想气体状态方程的过程,培养学生严密的逻辑思维能力。
(三)情感态度与价值观通过理想气体状态方程的学习,培养学生尊重知识,勇于探索的科学精神。
教学重点:理想气体的状态方程。
教学难点:对“理想气体”这一概念的理解。
教学方法:推理法、讲述法教学用具:1、投影幻灯机、书写用投影片。
2、气体定律实验器、烧杯、温度计等。
教学过程:(一)引入新课玻意耳定律是一定质量的气体在温度不变时,压强与体积变化所遵循的规律,而查理定律是一定质量的气体在体积不变时,压强与温度变化时所遵循的规律,盖-吕萨克定律是一定质量的气体在压强不变时,温度与体积变化时所遵循的规律,即这三个定律都是一定质量的气体的体积、压强、温度三个状态参量中都有一个参量不变,而另外两个参量变化所遵循的规律,若三个状态参量都发生变化时,应遵循什么样的规律呢?这就是我们今天这节课要学习的主要问题。
(二)新课教学1、关于“理想气体”的教学设问:(1)玻意耳定律、查理定律和盖-吕萨克定律是如何得出的?即它们是物理理论推导出来的还是由实验总结归纳得出来的?答案是:由实验总结归纳得出的。
(2)这两个定律是在什么条件下通过实验得到的?老师引导学生知道是在温度不太低(与常温比较)和压强不太大(与大气压强相比)的条件下得出的。
老师讲解:在初中我们就学过使常温常压下呈气态的物质(如氧气、氢气等)液化的方法是降低温度和增大压强。
这就是说,当温度足够低或压强足够大时,任何气体都被液化了,当然也不遵循反映气体状态变化的三个实验定律了。
而且实验事实也证明:在较低温度或较大压强下,气体即使未被液化,它们的实验数据也与玻意耳定律或查理定律计算出的数据有较大的误差。
出示投影片(1):说明讲解:投影片(l)所示是在温度为0℃,压强为Pa的条件下取1L几种常见实际气体保持温度不变时,在不同压强下用实验测出的pV乘积值。
从表中可看出在压强为Pa至Pa之间时,实验结果与玻意耳定律计算值,近似相等,当压强为Pa时,玻意耳定律就完全不适用了。
这说明实际气体只有在一定温度和一定压强范围内才能近似地遵循气体的实验定律。
而且不同的实际气体适用的温度范围和压强范围也是各不相同的。
为了研究方便,我们假设这样一种气体,它在任何温度和任何压强下都能严格地遵循气体实验定律。
我们把这样的气体叫做“理想气体”。
(板书“理想气体”概念意义。
)2、理想气体状态方程前面已经学过,对于一定质量的理想气体的状态可用三个状态参量p、V、T 来描述,且知道这三个状态参量中只有一个变而另外两个参量保持不变的情况是不会发生的。
换句话说:若其中任意两个参量确定之后,第三个参量一定有唯一确定的值。
它们共同表征一定质量理想气体的唯一确定的一个状态。
根据这一思想,我们假定一定质量的理想气体在开始状态时各状态参量为(),经过某变化过程,到末状态时各状态参量变为(),这中间的变化过程可以是各种各样的,现假设有两种过程:第一种:从()先等温并使其体积变为,压强随之变为,此中间状态为()再等容并使其温度变为,则其压强一定变为,则末状态()。
第二种:从()先等容并使其温度变为,则压强随之变为,此中间状态为(),再等温并使其体积变为,则压强也一定变为,也到末状态(),如投影片所示。
出示投影片(2):将全班同学分为两大组,根据玻意耳定律和查理定律,分别按两种过程,自己推导理想气体状态过程。
(即要求找出与间的等量关系。
)基本方法是:解联立方程或消去中间状态参量或均可得到:这就是理想气体状态方程。
它说明:一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。
3、典例探究一水银气压计中混进了空气,因而在27℃,外界大气压为758毫米汞柱时,这个水银气压计的读数为738毫米汞柱,此时管中水银面距管顶80毫米,当温度降至-3℃时,这个气压计的读数为743毫米汞柱,求此时的实际大气压值为多少毫米汞柱?教师引导学生按以下步骤解答此题:(1)该题研究对象是什么?答案:混入水银气压计中的空气。
(2)画出该题两个状态的示意图:(3)分别写出两个状态的状态参量:(S是管的横截面积)。
(4)将数据代入理想气体状态方程:得解得(三)课堂小结1、在任何温度和任何压强下都能严格遵循气体实验定律的气体叫理想气体。
2、理想气体状态方程为:(四)布置作业:问题与练习1、2、3、4以下为赠送文档:气体热现象的微观意义一、教学目标1.在物理知识方面的要求:(1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。
(2)能用气体分子动理论解释三个气体实验定律。
2.通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。
3.通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。
二、重点、难点分析1.用气体分子动理论来解释气体实验定律是本节课的重点,它是本节课的核心内容。
2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。
三、教具计算机控制的大屏幕显示仪;自制的显示气体压强微观解释的计算机软件。
四、主要教学过程(一)引入新课先设问:气体分子运动的特点有哪些?答案:特点是:(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。
(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。
气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。
(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。
(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。
今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律。
(二)教学过程设计1.关于气体压强微观解释的教学首先通过设问和讨论建立反映气体宏观物理状态的温度(T)、体积(V)与反映气体分子运动的微观状态物理量间的联系:温度是分子热运动平均动能的标志,对确定的气体而言,温度与分子运动的平均速率有关,温度越高,反映气体分子热运动的平均速率体积影响到分子密度(即单位体积内的分子数),对确定的一定质量的理想气体而言,分子总数N是一定的,当体积为V时,单位体积内n越小。
然后再设问:气体压强大小反映了气体分子运动的哪些特征呢?这应从气体对容器器壁压强产生的机制来分析。
先让学生看用计算机模拟气体分子运动撞击器壁产生压强的机制:首先用计算机软件在大屏幕上显示出如图1所示的图形:向同学介绍:如图所示是一个一端用活塞(此时表示活塞部分的线条闪烁3~5次)封闭的气缸,活塞用一弹簧与一固定物相连,活塞与气缸壁摩擦不计,当气缸内为真空时,弹簧长为原长。
如果在气缸内密封了一定质量的理想气体。
由于在任一时刻气体分子向各方向上运动的分子数相等,为简化问题,我们仅讨论向活塞方向运动的分子。
大屏幕上显示图2,即图中显示的仅为总分子数的合,(图中显示的“分子”暂呈静态)先看其中一个(图2中涂黑的“分子”闪烁2~3次)分子与活塞碰撞情况,(图2中涂黑的“分子”与活塞碰撞且以原速率反弹回来,活塞也随之颤抖一下,这样反复演示3~5次)再看大量分子运动时与活塞的碰撞情况:大屏幕上显示“分子”都向活塞方向运动,对活塞连续不断地碰撞,碰后的“分子”反弹回来,有的返回途中与别的“分子”相撞后改变方向,有的与活塞对面器壁相碰改变方向,但都只显示垂直于活塞表面的运动状态,而活塞被挤后有一个小的位移,且相对稳定,如图3所示的一个动态画面。
时间上要显示15~30秒定格一次,再动态显示15~30秒,再定格。
得出结论:由此可见气体对容器壁的压强是大量分子对器壁连续不断地碰撞所产生的。
进一步分析:若每个分子的质量为m,平均速率为v,分子与活塞的碰撞是完全弹性碰撞,则在这一分子与活塞碰撞中,该分子的动量变化为2mv,即受的冲量为2mv,根据牛顿第三定律,该分子对活塞的冲量也是2mv,那么在一段时间内大量分子与活塞碰撞多少次,活塞受到的总冲量就是2mv的多少倍,单位时间内受到的总冲量就是压力,而单位面积上受到的压力就是压强。
由此可推出:气体压强一方面与每次碰撞的平均冲量2mv有关,另一方面与单位时间内单位面积受到的碰撞次数有关。
对确定的一定质量的理想气体而言,每次碰撞的平均冲量,2mv由平均速率v有关,v越大则平均冲量就越大,而单位时间内单位面积上碰撞的次数既与分子密度n有关,又与分子的平均速率有关,分子密度n越大,v也越大,则碰撞次数就越多,因此从气体分子动理论的观点看,气体压强的大小由分子的平均速率v和分子密度n共同决定,n越大,v也越大,则压强就越大。
2.用气体分子动理论解释实验三定律(1)教师引导、示范,以解释玻意耳定律为例教会学生用气体分子动理论解释实验定律的基本思维方法和简易符号表述形式。
范例:用气体分子动理论解释玻意耳定律。
一定质量(m)的理想气体,其分子总数(N)是一个定值,当温度(T)保持不变时,则分子的平均速率(v)也保持不变,当其体积(V)增大几倍时,则单位体积内的分子数(n)变为原来的几分之一,因此气体的压强也减为原来的几分之一;反之若体积减小为原来的几分之一,则压强增大几倍,即压强与体积成反比。
这就是玻意耳定律。
书面符号简易表述方式:小结:基本思维方法(详细文字表述格式)是:依据描述气体状态的宏观物理量(m、p、V、T)与表示气体分子运动状态的微观物理量(N、n、v)间的相关关系,从气体实验定律成立的条件所述的宏观物理量(如m一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出有关的微观量(如n)的变化,再依据推出的有关微观量(如v和n)的变与不变的情况推出宏观因变量(如p)的变化情况,结论是否与实验定律的结论相吻合。
若吻合则实验定律得到了微观解释。
(2)让学生体验上述思维方法:每个人都独立地用书面详细文字叙述和用符号简易表述的方法来对查理定律进行微观解释,然后由平时物理成绩较好的学生口述,与下面正确答案核对。
书面或口头叙述为:一定质量(m)的气体的总分子数(N)是一定的,体积(V)保持不变时,其单位体积内的分子数(n)也保持不变,当温度(T)升高时,其分子运动的平均速率(v)也增大,则气体压强(p)也增大;反之当温度(T)降低时,气体压强(p)也减小。