2019-2020年九年级数学下学期第一次月考试题 (II)
2023年湖南省永州市冷水滩区京华中学九年级下学期3月第一次月考数学试卷

2023年湖南省永州市冷水滩区京华中学九年级下学期3月第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图, 已知O e 的圆心角80AOB ∠=o , 则圆周角ACB ∠的度数等于( )A .160oB .100oC .80oD .40o 2.下列几何体的左视图为长方形的是( )A .B .C .D . 3.如图,AB 是⊙O 直径,过⊙O 上的点C 作⊙O 切线,交AB 的延长线于点D ,若∠D =40°,则∠A 大小是( )A .20°B .25°C .30°D .35° 4.如图,AB 是O e 的直径,弦CD 交AB 于点P ,3AP =,7BP =,30APC ∠=︒,则CD 的长为( )A .B .CD .85.已知A (4,y 1),B (1,y 2),C (﹣3,y 3)在函数y =﹣3(x ﹣2)2+m (m 为常数)的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 1<y 2<y 3 6.下列说法正确的是( )A .对角线相等的四边形一定是矩形B .任意掷一枚质地均匀的硬币10次,一定有5次正面向上C .如果有一组数据为5,3,6,4,2,那么它的中位数是6D .“用长分别为5cm 、12cm 、6cm 的三条线段可以围成三角形”这一事件是不可能事件 7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .图象关于直线x =1对称B .函数y =ax 2+bx +c (a ≠0)的最小值是﹣4C .﹣1和3是方程ax 2+bx +c (a ≠0)=0的两个根D .当x <1时,y 随x 的增大而增大8.已知正多边形的边心距与边长的比为12,则此正多边形为( ) A .正三角形 B .正方形 C .正六边形 D .正十二边形 9.在平面直角坐标系中,已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论:①0abc >;②20a b -=;③930a b c ++>;④24b ac >;⑤a c b +<.其中正确的有( )A .1个B .2个C .3个D .4个 10.已知二次函数()()2y a x h k a 0=-+≠的图象与一次函数()0y mx n m =+≠的图象交于(x 1,1y )和(x 2,2y )两点,( )A .若a<0,0m <,则122x x h +> B .若0a >,0m <,则122x x h +> C .若122x x h +>,则0a >,0m > D .若122x x h +<,则0a >,0m <二、填空题11.写出一个y 关于x 的二次函数的解析式,且它的图象的顶点在x 轴上:______. 12.如图,一块飞镖游戏板是33⨯的正方形网格,假设飞镖击中每块小正方形是等可能的(若没有击中游戏板,则重投一次).任意投掷飞镖一次,击中阴影部分的概率是______.13.某中学开展劳动实习,学生到教具加工厂制作圆锥,他们制作的圆锥,母线长为30cm ,底面圆的半径为10 cm ,这种圆锥的侧面展开图的圆心角度数是_____. 14.已知二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)的y 与x 的部分对应值如表.当2x =时,函数值为______.15.将抛物线23y x =-先向右平移2个单位,再向下平移3个单位得到的抛物线所对应的函数表达式为_____________.16.一个几何体的三视图如图所示,这个几何体的侧面积为_____.17.如图,二次函数21y ax bx c =++与一次函数2y kx =的图象交于点A 和原点O ,点A 的横坐标为4-,点A 和点B 关于抛物线的对称轴对称,点B 的横坐标为1,则满足120y y <<的x 的取值范围是___________.18.如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合),PQ MN NE ⊥平分MNP ∠,交PM 于点E ,交PQ 于点F . (1) PF PE PQ PM+=___________________. (2)若2PN PM MN =⋅,则MQ NQ=___________________.三、解答题19.已知二次函数245y x x =--.(1)把这个二次函数化成()2y a x h =-的形式;(2)写出二次函数的对称轴和顶点坐标;(3)求二次函数与x 轴的交点坐标.20.防疫期间,全市所有学校都严格落实测温进校的防控要求.我校开设了A 、B 、C 三个测温通道,每名师生进入每个通道的机会均等.某天早晨,小颖和小明将随机通过测温通道进入校园.(1)小颖通过A 通道进入校园的概率是 ;(2)利用画树状图或列表的方法,求小颖和小明通过不同通道进入校园的概率. 21.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:(1)求y 与x 之间的函数表达式;(2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本);(3)试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?22.如图,O e 是ABC V 的外接圆,AB 是O e 的直径,过O 作OD AC ⊥于点E ,延长OE 至点D ,连结CD ,使D A ∠=∠.(1)求证:CD 是O e 的切线;(2)若AB CD ==AC 的长.23.如图所示,以40/m s 的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有关系式.2205h t t =-(0)t ≥解答以下问题:(1)球的飞行高度能否达到15m ?如能,需要飞行多少时间?(2)球飞行到最高点时的高度是多少m ?24.如图,△ABC 的点A ,C 在⊙O 上,⊙O 与AB 相交于点D ,连接CD ,∠A =30°,DC(1)求圆心O 到弦DC 的距离;(2)若∠ACB +∠ADC =180°,求证:BC 是⊙O 的切线.25.如图,△ABC 中,∠C =90°,AC =3,AB =5,点O 在BC 边的中线AD 上,⊙O 与BC 相切于点E ,且∠OBA =∠OBC .(1)求证:AB 为⊙O 的切线;(2)求⊙O 的半径;(3)求tan ∠BAD .26.综合与探究如图,在平面直角坐标系xOy 中,抛物线24y ax bx =++交x 轴于A ,B 两点(点B 在点A 的左边),交y 轴于点C ,其中()1,0A ,2OB OA =.(1)求抛物线的函数表达式;(2)连接BC ,点P 为线段BC 上一个动点,过点P 作//PD y 轴交抛物线于点D ,当线段PD 的值最大时,求点P 的坐标;(3)在(2)的条件下,是否在y 轴上存在点Q ,使CPQ V 与BOC V相似?若存在,请直接写出点Q 的坐标;若不存在,说明理由.。
湖南省长沙市湖南师大附中2022学年九年级下学期第一次月考数学试题(含答案与解析)

C.10D.16
【9题答案】
【答案】B
【解析】
【分析】由题意知,盒子中白球的个数可能是 ,计算求解即可.
【详解】解:由题意知
∴盒子中白球的个数可能是8个
故选B.
【点睛】本题考查了频率.解题的关键在于明确大量试验可以用频率估计概率.
10.在一次数学活动课上,某数学老师在4张同样的纸片上各写了一个正整数,从中随机取2张,并将它们上面的数相加,重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到,根据以上信息,下列判断正确的是()
【详解】解:A.不是中心对称图形,故本选项不符合题意;
B.不是中心对称图形,故本选项不符合题意;
C.是中心对称图形,故本选项符合题意;
D.不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转 后与原图重合,掌握中心对称图形的概念是解题的关键.
14.已知扇形的圆心角为 ,半径为 ,则扇形的弧长是 .
15.如图,在△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是________.
16.如图,AB为半圆O的直径,点C为半圆上的一点,CD⊥AB于点D,若AB=10,CD=4,则tan∠BCD的值为________.
(1)参加这次调查的学生总人数为___________人;
(2)请补全条形统计图;
(3)扇形统计图中类别 所对应扇形的圆心角度数为__________ ;
(4)类别 的4名学生中有3名男生和1名女生,班主任想从这4名学生中随机选取2名学生进行访谈,请用列举法(画树状图或列表)求所选取的2名学生恰好都是男生的概率.
2023-2024学年北京中学九年级下学期月考数学试题+答案解析

2023-2024学年北京中学九年级下学期月考数学试题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.则“比邻星”距离太阳系约为()A.千米B.千米C.千米D.千米2.在正方形,平行四边形,等腰直角三角形和等边三角形中,既是轴对称图形又是中心对称图形的有个()A.1B.2C.3D.43.十二边形的外角和是()A. B. C. D.4.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. B. C. D.5.如图,将一张矩形纸片折叠,若,则的度数是()A. B. C. D.6.若二次函数的最小值是非负数,则实数m取值范围为()A. B. C. D.7.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄单位:岁13141516频数单位:名515x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差8.如图,已知的半径2,在直径AB上有一个异于端点的动点C,分别以线段AC和BC直径作,周长分别为,面积分别为,点D为中点,给出三个结论:①;②;③上述结论中,所有正确的序号是()A.①②B.②③C.①③D.①②③二、填空题:本题共8小题,每小题3分,共24分。
9.分式有意义的条件是__________.10.分解因式:__________.11.方程的解为__________.12.如图是某个几何体的展开图,写出该几何体的名称__________.13.如图,在直角坐标系中,直线,则s的值是__________.14.正三角形的边长为6,则它的内切圆的半径大小是__________.15.一个猜想是否正确,科学家们要经过反复的论证.下表是几位科学家“掷硬币”实验数据:实验者德摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次数3109204849791803139699频率请根据以上数据,估计硬币出现“正面朝上”的概率为__________精确到16.有一条可以坐20名游客的木船要载40名游客从岸边到湖中的A、B两岛参观,参观A岛需要30分钟,参观B岛需要25分钟,岸边与A岛间船航行需要10分钟,岸边与B岛间船航行12分钟,A岛与B岛间航行需6分钟,则40名游客全部参观完两岛后返回岸边最少需要__________分钟.三、解答题:本题共12小题,共96分。
2024年湖北省武汉市七一华源中学九年级下学期月考数学试题

2024年 湖北省武汉市七一华源中学九年级下学期月考数学试题一、单选题1.-5的相反数是( )A .15-B .15C .5D .-52.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是( )A .B .C .D .3.成语是中国文化的瑰宝,下列成语描述的事件是不可能事件的是( ) A .守株待兔B .水中捞月C .旭日东升D .水涨船高4.某几何体的三视图如图所示,则该几何体为( )A .B .C .D .5.若0a ≠,下列运算正确的是( )A .()235a a =B .330a a +=C .624a a a ÷=D a6.在数学活动课上,小明同学将含30︒角的直角三角板的一个顶点按如图方式放置在直尺上,测得123∠=︒,则2∠的度数是( ).A.23︒B.53︒C.60︒D.67︒7.将分别标有“中”、“考”、“必”、“胜”汉字的四张卡片装在一个不透明的盒子中,这些卡片除汉字外无其他差别,随机抽出其中两张,抽出的卡片上的汉字能组成“必胜”的概率是()A.12B.14C.16D.188.暑期将至,某游泳俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠;按照方案一所需费用为y1(元),且y=k1x+b;按照方案二所需费用为y2(元),且y2=k2x,其函数象如图所示.若小明打算办一张暑期专享卡使得游泳时费用更合算,则他去游泳的次数x至少是()A.5 B.6 C.7 D.89.如图,AB是Oe一条弦,将劣弧沿弦AB翻折,连结AO并延长交翻折后的弧于点C,连结BC,若2AB=,1BC=,则AC的长为()A B C D 10.小雨利用几何画板探究函数y =()ax b x c --图象,在他输入一组a ,b ,c的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足( )A .a >0,b >0,c =0B .a <0,b >0,c =0C .a >0,b =0,c =0D .a <0,b =0,c >0二、填空题11.“燕雪花大轩台”是诗仙李白眼里的雪花,单个雪花的重量其实很轻,只在0.000003kg 左右,0.000003用科学记数法可表示为. 12.反比例函数m y x =的图象经过点,8m A m ⎛⎫⎪⎝⎭,则反比例函数的表达式为. 13.化简293332x x x x x⎛⎫++÷ ⎪--⎝⎭的结果是.14.如图,一艘游轮在A 处测得北偏东45︒的方向上有一灯塔B .游轮以/时的速度向正东方向航行2小时到达C 处,此时测得灯塔B 在C 处北偏东15︒的方向上.则A 处与灯塔B 相距海里.(结果精确到1 1.41≈ 1.73≈)15.如图,一块材料的形状是锐角三角形ABC ,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,若AEF △、BGE △、CHF V 的面积分别为4、6、3,则求这个正方形零件的边长是.16.抛物线()20y ax bx c c +=+>经过()1,0A ,(),0B t 两点,且42t -<<-.下列四个结论:①0ab >;②20c a +<;③当12x >-时,y 随x 的增大而减小;④方程()()9104x x t --+=必有两个不相等的实数根.则正确的结论有(填写序号).三、解答题17.解不等式组()211212x x x ⎧-<+⎪⎨+≥-⎪⎩,并求该不等式组的正整数解.18.如图,已知AB CD ∥,A C ∠=∠,直线BE 交AD 的延长线于点E ,(1)求证:CBE E ∠=∠.(2)当BC DE =时,连接DB 、CE ,请添加一个条件,使四边形BCED 是菱形.(不用证明) 19.端午节是中国的传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数、为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题: (1)样本中,七年级活动成绩为7分的学生数是________,七年级活动成绩是9分所在扇形的圆心角度数是(2)=a _______,b =______;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,请你估计全校七八年级1200名学生中“优秀”的人数.20.如图,在四边形ABCD 中,AB CD ∥,AD CD ⊥,BC DC =,以D 为圆心,AD 为半径作弧,(1)求证:BC 为D e 的切线;(2)若AD =3AB CD +=,求图中阴影部分的面积.21.如图是由小正方形组成的88⨯网格,每个小正方形的顶点叫做格点,A 、B 、C 三点是格点,点D 是线段AB 与竖网格线的交点.仅用无刻度的直尺在给定网格中完成画图.(1)在图1中,作ABC V 的角平分线BP ,再在BP 上画点Q ,使DQ DB =; (2)在图2中,连接CD ,画CD 的中点M ;(3)在图3中,在AC 上画点E ,使得ADE ACB △△∽. 22.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是 米,抛物线的顶点坐标为 ;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.23.【问题提出】如图,在ABC V 中,AD BC ⊥,CE AB ⊥,连接DE ,探究DEAC的值.【问题探究】(1)先将问题特殊化.如图1,当A D B D =时,直接写出DEAC的值为__________; (2)再探究一般情形、如图2,当AD nBD =时,求DEAC的值; 【问题拓展】如图3,在AD C △中,AD CD ⊥,3AD CD ==,P 是ADC △内一点,2DP =,AE CP ⊥于E ,CE 交AD 于F ,当CDE V 的面积最大时,直接写出DEFACFS S △△的值为________.24.如图1,已知抛物线2142y x kx =--交x 轴于点A ,B (A 在B 点左侧),交y 轴负半轴于点C ,()2,0A -.(1)求该抛物线的解析式;(2)已知直线364y x =--交x 轴于点D ,交y 轴于点E ,过抛物线上一动点P 作PQ DE ⊥于Q ,求PQ 的最小值;(3)如图2,将抛物线L 向上平移()04m m <<个单位长度得到抛物线1L ,抛物线1L 与y 轴交于点C ,过点C 作y 轴的垂线交抛物线1L 于另一点D .F 为抛物线1L 的对称轴与x 轴的交点,P 为线段OC 上一点,若PCD V 与POF V 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.。
北京市丰台区第十二中学2019-2020学年九年级下学期3月月考数学试题(含答案及解析)

北京十二中2019~2020学年第二学期月考试题初三数学说明:本试卷共4页,共2道大题,25道小题,满分100分,考试时间为40分钟一、选择题(每题均有四个选项,符合题意的选项只有一个,每题4分,共52分)1.北京大兴国际机场直线距天安门约46公里,占地1400000平方米,相当于63个天安门广场!被英国《卫报》等媒体评为“新世界七大奇迹”榜首。
其中数据1400000用科学记数法应表示为()A. 8⨯ D. 514101.410⨯⨯ B. 7⨯ C. 60.14101.410【答案】C【解析】【分析】利用科学记数法的表示形式进行解答即可【详解】科学记数法表示:1400 000=1.4×106故选:C.【点睛】此题考查科学记数法,解题关键在于掌握科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a <10,n 为正整数.)2.若a为非零实数,则下列各式的运算结果一定比a大的是()a+ B. 2a C. a D. 2aA. 1【答案】A【解析】【分析】根据实数的运算法则进行计算即可.【详解】A.a+1>a,选项正确;B.当a<0时2a<a,选项错误;C.当a>0时|a|=a,选项错误;D.当a<0时2a<a,选项错误;故选:A.【点睛】此题考查实数的大小比较,解题关键在于掌握一个数加1,减1,乘1,除以1,值的大小变化规律.基础题.3.下图均由正六边形与两条对角线所组成,其中不是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念逐一进行判断即可得.【详解】A 、是轴对称图形,故不符合题意;B 、是轴对称图形,故不符合题意;C 、是轴对称图形,故不符合题意;D 、不是轴对称图形,故符合题意,故选D .【点睛】本题主要考查轴对称图形,解题的关键是掌握轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.4.在数轴上,点A 、B 在原点O 的两侧,分别表示数a ,2,将点A 向左平移1个单位长度,得到点C .若CO BO =,则a 的值为( )A. 3-B. 2-C. 1-D. 1【答案】C【解析】【分析】根据CO=BO 可得点C 表示的数为-2,据此可得a 的值.【详解】解:∵点A 、B 在原点O两侧,分别表示数a ,2, ∴点A 在原点的左侧,∵将点A 向左平移1个单位长度,得到点C ,∴点C 在原点的左侧,∵CO=BO , ∴点C 表示的数为-2,∴a=-2+1=-1.故选:C .【点睛】本题考查的是数轴,相反数的几何意义,熟知相反数的几何意义是解答此题的关键.在数轴上,表示互为相反数的两个点,分别位于原点的两旁,并且到原点的距离相等.5.已知正多边形的一个内角为144°,则该正多边形的边数为()A. 12B. 10C. 8D. 6【答案】B【解析】【分析】根据正多边形的一个内角是144°,则知该正多边形的一个外角为36°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是144°,∴该正多边形的一个外角为180°-144°=36°,∵多边形的外角之和为360°,∴边数=360=10 36,∴这个正多边形的边数是10,故选:B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是知道多边形的外角之和为360°,此题难度不大.6.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A. ﹣2B. ﹣12C. 0D.12【答案】A【解析】【分析】反例中的n满足n<1,使n2-1≥0,从而对各选项进行判断.【详解】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以每次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?()A. 12B. 13C. 253D. 255【答案】D【解析】【分析】红球的个数除以球的总数即为所求的概率.【详解】解:∵一个盒子内装有大小、形状相同的53255+=个球,其中红球2个,白球53个, ∴小芬抽到红球的概率是:2253255=+. 故选D .【点睛】本题考查了概率公式,熟练掌握概率的概念是解题的关键.8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A. 平均分不变,方差变大B. 平均分不变,方差变小C. 平均分和方差都不变D. 平均分和方差都改变 【答案】B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41, ∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.9.当5b c +=时,关于x 的一元二次方程230x bx c +-=的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定【答案】A【解析】【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】由已知,得()224312b c b c =-⨯⨯-=+△∵5b c +=∴5b c =-∴()()()222243125121240b c b c c c c =-⨯⨯-=+=-+=++△> ∴方程有两个不相等的实数根故答案为A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题.10.如图的ABC ∆中,AB AC BC >>,且D 为BC 上一点.今打算在AB 上找一点P ,在AC 上找一点Q ,使得APQ ∆与PDQ ∆全等,以下是甲、乙两人的作法:(甲)连接AD ,作AD 的中垂线分别交AB 、AC 于P 点、Q 点,则P 、Q 两点即为所求(乙)过D 作与AC 平行的直线交AB 于P 点,过D 作与AB 平行的直线交AC 于Q 点,则P 、Q 两点即为所求对于甲、乙两人作法,下列判断何者正确?( )A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确【答案】A【解析】【分析】 如图1,根据线段垂直平分线的性质得到PA PD =,QA QD =,则根据“SSS ”可判断APQ DPQ ∆∆≌,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形APDQ 为平行四边形,则根据平行四边形的性质得到PA DQ =,PD AQ =,则根据“SSS ”可判断APQ DQP ∆∆≌,则可对乙进行判断.【详解】解:如图1,PQ ∵垂直平分AD ,PA PD ∴=,QA QD =,而PQ PQ =,()APQ DPQ SSS ∴∆∆≌,所以甲正确;如图2,//PD AQ ,//DQ AP ,∴四边形APDQ 为平行四边形,PA DQ ∴=,PD AQ =,而PQ QP =,()APQ DQP SSS ∴∆∆≌,所以乙正确.故选A .【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.11.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( )A. aB. bC. cD. d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.12.如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式2y =的图形交于B 、C 两点,ABC ∆为正三角形.若A 点坐标为()3,0-,则此抛物线与Y 轴的交点坐标为何?( )A. 90,2⎛⎫ ⎪⎝⎭ B. 270,2⎛⎫ ⎪⎝⎭ C. ()0,9 D. ()0,19【答案】B【解析】【分析】设()3,2B m --,()3,2C m -+,()0m >,可知2BC m =,再由等边三角形的性质可知233,23C ⎛⎫-+ ⎪⎝⎭,设抛物线解析式()23y a x =+,将点C 代入解析式即可求a ,进而求解.【详解】解:设()3,2B m --,()3,2C m -+,()0m > A 点坐标为()3,0-,2BC m ∴=,ABC ∆为正三角形,2AC m ∴=,C 60AO ∠=︒ ,233m ∴= 233,23C ⎛⎫∴-+ ⎪⎝⎭设抛物线解析式()23y a x =+, 2233323a ⎛⎫-++= ⎪ ⎪⎝⎭, 32a ∴=, ()2332y x ∴=+, 当0x =时,272y =; 故选B .【点睛】本题考查二次函数的图象及性质,等边三角形的性质;结合函数图象将等边三角形的边长转化为点的坐标是解题的关键.13.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时 2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t 的函数关系大致是( )A. B. C. D.【答案】B【解析】【分析】根据极差的定义,分别从0t =、010t <≤、1020t <≤及2024t <≤时,极差2y 随t 的变化而变化的情况,从而得出答案.【详解】当0t =时,极差285850y =-=,当010t <≤时,极差2y 随t 的增大而增大,最大值为43;当1020t <≤时,极差2y 随t 的增大保持43不变;当2024t <≤时,极差2y 随t 的增大而增大,最大值为98;故选B .【点睛】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.二、填空题(每题4分,共48分)14.若分式1x x -的值为0,则x 的值为__________. 【答案】0【解析】【分析】根据分式的值为零的条件可以求出x 的值. 【详解】∵分式1x x -的值为0, ∴x=0,x-1≠0,故答案为:0.【点睛】此题考查分式值为零的条件,解题关键在于掌握若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.在平面直角坐标系中,点()4,2P 到x 轴的距离是__________. 【答案】2【解析】【分析】 根据点的坐标的意义求解.【详解】点P (4,2)到x 轴的距离为2.故答案为2.【点睛】此题考查点的坐标,解题关键在于掌握把有顺序的两个数a 和b 组成的数对,叫做有序数对,记作(a ,b ).建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限;坐标平面内的点与有序实数对是一一对应的关系.16.不等式组x 12x 74⎧-⎪⎨⎪-+>⎩的解集是_____.【答案】2x -≤【解析】 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式12x ≤-,得:2x -≤, 解不等式+7>4x -,得:x<3,则不等式组的解集为2x -≤,故答案为2x -≤.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(2013tan 602π-⎛⎫--︒+= ⎪⎝⎭__________.【答案】5【解析】【分析】根据二次根式的性质,负整数指数幂,特殊角的三角函数值,零指数幂,进行计算即可.【详解】原式=33+4-33+1⨯=5,故答案为:5.【点睛】此题考查二次根式的性质,负整数指数幂,特殊角的三角函数值,零指数幂,解题关键在于掌握运算法则.18.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.这四种矿泉水某天的销售量如图所示,则这天销售的矿泉水的平均单价是__________元.【答案】2.25【解析】【分析】根据加权平均数的定义列式计算可得.【详解】这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故答案为:2.25.【点睛】此题考查加权平均数,解题的关键是掌握加权平均数的定义.19.当99x =时,代数式2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭的值为__________. 【答案】1100【解析】 【分析】先根据分式的混合运算化简原式,再把x=99,代入即可解答. 【详解】2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭=()()()21-11111x x x x x x x +⎛⎫-÷ ⎪--+-⎝⎭=()()()211-1111x x x x x x x +-⎛⎫- ⎪--⎝⎭+ =1-11+1x x x - =1+1x 把99x =代入可得:11=99+1100, 故答案为:1100. 【点睛】此题考查分式化简求值,解题关键在于掌握运算法则.20.如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为2y ax bx =+,小强骑自行车从拱梁一端O 匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶到10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需__________秒.【答案】36【解析】【分析】10秒时和26秒时拱梁的高度相同,则A ,B 一定是关于对称轴对称的点,据此即可确定对称轴,则O 到对称轴的时间可以求得,进而即可求得OC 之间的时间.【详解】如图所示:设在10秒时到达A 点,在26秒时到达B ,∵10秒时和26秒时拱梁的高度相同,∴A ,B 关于对称轴对称.则从A 到B 需要16秒,则从A 到D 需要8秒.∴从O 到D 需要10+8=18秒.∴从O 到C 需要2×18=36秒.故答案为:36.【点睛】此题考查二次函数的应用,注意到A 、B 关于对称轴对称是解题的关键.21.如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时,x 的取值范围为__________.【答案】3x >【解析】【分析】根据题意结合图象首先可得13y x =的图象过点A ,因此便可得13kx b x +<的解集. 【详解】解:∵正比例函数13y x =也经过点A , ∴13kx b x +<的解集为3x >, 故答案为3x >.【点睛】本题主要考查函数的不等式的解,关键在于根据图象来判断,这是最简便的解题方法.22.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)【答案】π-1【解析】【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N ,则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为π−1.【点睛】本题考查了圆中阴影部分面积的计算,正方形的性质,正确的识别图形是解题的关键. 23.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD x ∥轴,反比例函数()0,0k y k x x=>>的图象经过矩形对角线的交点E ,若点20A (,),04D (,),则k 的值为__________.【答案】20【解析】【分析】根据平行于x 轴的直线上任意两点纵坐标相同,可设B (x ,4).利用矩形的性质得出E 为BD 中点,∠DAB=90°.根据线段中点坐标公式得出E (12x ,4).由勾股定理得出AD 2+AB 2=BD 2,列出方程22+42+(x-2)2+42=x 2,求出x ,得到E 点坐标,代入y=k x ,利用待定系数法求出k . 【详解】∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4,∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E ,∴E 为BD 中点,∠DAB=90°.∴E (12x ,4). ∵∠DAB=90°,∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4),∴22+42+(x-2)2+42=x 2,解得x=10,∴E (5,4).∵反比例函数y=k x(k >0,x >0)的图象经过点E , ∴k=5×4=20. 故答案为20.【点睛】此题考查矩形的性质,勾股定理,反比例函数图象上点的坐标特征,线段中点坐标公式等知识,求出E 点坐标是解题的关键.24.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用,已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车,若他们缆车费用的总花费为4100元,则此旅行团共有__________人.【答案】16【解析】【分析】设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意列出二元一次方程,求出其解.【详解】设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意得, 2003004100(15)(10)x y y y x +⎧⎨-+-⎩== , 解得79x y ⎧⎨⎩==, 则总人数为7+9=16(人)故答案为16.【点睛】此题考查二元一次方程组的应用,解题关键是读懂题意,找出等量关系,列出方程组. 25.如图,正方形ABCD 和Rt AEF ,10AB =,8AE AF ==,连接BF ,DE .若AEF 绕点A 旋转,当ABF ∠最大时,ADE S =__________.【答案】24【解析】【分析】作DH ⊥AE 于H ,如图,由于AF=8,则△AEF 绕点A 旋转时,点F 在以A 为圆心,8为半径的圆上,当BF 为此圆的切线时,∠ABF 最大,即BF ⊥AF ,利用勾股定理计算出BF=6,接着证明△ADH ≌△ABF 得到DH=BF=6,然后根据三角形面积公式求解.【详解】作DH ⊥AE 于H ,如图,∵AF=8,当△AEF 绕点A 旋转时,点F 在以A 为圆心,8为半径的圆上,∴当BF 为此圆的切线时,∠ABF 最大,即BF ⊥AF ,在Rt △ABF 中,22108-=6,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF ,在△ADH 和△ABF 中AHD AFB DAH BAF AD AB ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ADH ≌△ABF (AAS ),∴DH=BF=6,∴S △ADE =12AE•DH=12×6×8=24. 故答案为24.【点睛】此题考查旋转的性质,正方形的性质,解题关键在于掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.。
黑龙江省大庆市第六十九中学2022-2023学年九年级下学期第一次月考数学试卷(五四学制)

A.1
B.2
C.3
D.4
2.这些年“舌尖上的浪费”仍有发生.疫情之下,全球近 690000000 人处于饥饿状态.习
总书记居安思危,以身作则,亲自践行光盘行动.将数据 690000000 用科学记数法表示
为( )
A.6.9×108
B.0.69×1010
C.6.9×109
D.69×108
3.下列计算结果正确的是( )
三、解答题
试卷第 3 页,共 6 页
19.解分式方程: 2 x 1 1. x3 3x
20.计算:
4
2
cos
30
1 3
2
2021
0
.
21.先化简,再求值
1
a
1 1
a2 a2
4 a
,其中
a
1
.
22.如图所示,九(1)班数学兴趣小组为了测量河对岸的古树 A、B 之间的距离,他们
在河边与 AB 平行的直线 l 上取相距 60m 的 C、D 两点,测得∠ACB=15°,∠BCD=120°,
试卷第 6 页,共 6 页
C. 2 3 33
D. 2 2 3 33
10.二次函数 y ax2 bx c( a 、b 、c 是常数,且 a 0 )的自变量 x 与函数值 y 的部
分对应值如下表:
x … 1 0 1 2 …
y … m 22 n …
且当 x 3 时,对应的函数值 y 0 .有以下结论:① abc 0 ;② m n 20 ;③关于 x
∠ADC=30°.
(1)求河的宽度; (2)求古树 A、B 之间的距离.(结果保留根号) 23.为庆祝党的二十大胜利召开,学校举行党史知识竞赛活动,赛后随机抽取了部分学 生的成绩,按得分划分为 A、B、C、D 四个等级,并绘制了如下不完整的统计表和统计 图.根据图表信息,回答下列问题:
安徽省桐城二中2019~2020年第一学期九年级第一次月考数学试题
桐城二中2019~2020年第一学期九年级第一次月考数学试题一、选择题(4×10=40分)1.下列函数中,y 一定是x 的二次函数的是()A.232x x y +=B.21⎪⎭⎫ ⎝⎛=x y C.()1-=x x y D.c bx ax y ++=2 2.二次函数3632+--=x x y 的图象的顶点坐标为() A.(1,-6) B.(-1,2) C.(0,3) D.(-1,6)3.对于反比例函数xy 18-=,下列说法不正确的是() A.图象分布在第二、四象限 B.图象往过点(3,-6)C.y 随x 的增大而增大D.图象与坐标轴没有交点4.二次函数12)8(2+-+-=x m x y ,当2>x 时,y 随x 增大而减小,当2<x 时,y 随x 增大而增大,则m 的值为()A.-4B.4C.6D.125.将抛物线352+-=x y 向左平移1个单位,再向下平移2个单位,所得到的抛物线为()A.()1152++-=x yB.()1152+--=x y C.()2152-+-=x y D.()2152---=x y 6.如图是二次函数c bx ax y ++=2图象的一部分,已知二次函数图象的对称轴是直线)0,3(1A x ,=则下列结论正确的是()(第9题图)A.ac b 42<B.0>acC.02=-b aD.0=+-c b a 7.点()11,1y P -,()22,3y P ,()33,6y P均在二次函数14222+-+-=m x x y 的图象上,则321,,y y y 的大小关系是()A.123y y y >>B.213y y y =>C.321y y y >>D.321y y y >=8.已知y 关于x 的函数表达式是a x ax y --=22,下列结论不正确的是()A.若a=1,则函数的最小值为-2B.若a=-1 则当x 2-≤时,y 随着x 值的增大而增大C.不论a 为何值,函数图象与x 轴都有两个交点D.不论a 取何值,函数图象必过点(1,-2)和(-1,2)9.如图,若△ABC 的3个顶点分别为()2,1A ,()5,2B ,()1,6C 且反比例函数x k y =第一象限内的图象与△ABC 有公共点则k 的取值范围是()A.62≤≤kB.2252≤≤kC.4492≤≤k D.102≤≤k 10.如图,一次函数x y -=与二次函数c bx ax y ++=2的图象交于Q P ,两点,则函数()c x b ax y +++=12的图象可能为()二、填空题(5×4=20分)11.抛物线322+-=x x y 与坐标物的交点个数为个.12.如果一个正比例函数的图象与反比例函数xy 6=的图象交于()11,y x A ,()22,y x B 两点,那么()()1212y y x x -⋅-的值为.13.飞机着陆后滑行距离1y (单位:m )关于滑行时间t (单位:S )的函数关系式是250t t y -=,则经过S 后,飞机停止滑行.14.已知抛物线c bx x y ++=22与x 轴只有一个交点,直线AB ∥X 轴交抛物线于A 、B 两点,交y 轴于M 点,若4=AB ,则OM =.三、解答题15.(8分)已知二次函数与x 轴交点为()0,2-A 和()0,3B 且经过点()4,1--C ,求抛物线的解析式.16.(8分)如图,反比例函数()0>=x x k y 的图象与一次函数421+-=x y 的图象交于A 和B (6,n )两点.(1)求k 和n 的值;(2)若()y x C ,也在反比例函数()0>=x xk y 的图象上,求当62≤≤x 时,函数值y 的取值范围.17.(8分)某商场购进一种每件价格为100元的新商品,在商场试销过程中发现:销售单价x (元/件)与每天销售量y (元)之间满足如图所示的关系.(1)求出y 与x 之间的函数关系式;(2)写出每天的利润W (元)与销售单价x (元/件)之间的函数关系式,并确定售价为何值时,每天获得的利润最大?最大利润是多少?18.(8分)如图抛物线6822-+-=x x y 与x 轴交于A ,B 两点(A 点在B 点左侧)(1)求A ,B 两点坐标;(2)在抛物线上是否存在D 点,使△ABD 的面积为6?若存在求出D 点坐标,若不存在,请说明理由.19.(10分)如图,一次函数b x k y +=1的图象与反比例函数x k y 2=的图象交于A ,B 两点,与x 轴,轴分别交于C ,D 两点,已知A 点的横坐标为1,⎪⎭⎫ ⎝⎛--2,21B . (1)求反比例函数xk y 2=与一次函数b x k y +=1的表达式; (2)观察图象,直接写出关于X 的不等式xk b x k 21>+的解集.20.(10分)已知二次函数22-++=a ax x y .(1)求证:不论a 为何实数,此函数图象与x 轴总有两个交点;(2)设0<a ,当此函数图象与x 轴两个交点的距离为13时,求此二次函数的解析式.21.(12分)在美化校园的活动中,某兴趣小组借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边)设xm AB =.(1)若花园面积为2192m ,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别为16m 和5m ,要将这棵树围在花园内(含边界,不考虑树的粗细)求花园面积S 的最大值.22.(12分)如图,某隧道的截面由抛物线和长方形构成,长方形的长OA 为12m ,宽OB 为4m ,隧道顶端D 到路面的距离为10m ,建立如图所示的直角坐标系.(1)求该抛物线的解析式;(2)一辆货运汽车载一长方体集装箱,集装箱最高处距地面6m ,宽为5m ,若隧道内设双向行车道,问这辆货车能否安全通过?若隧道改设为单向行车道,这辆货车能否安全通过?D23.(14分)如图,二次函数c bx ax y ++=2的图象往过点()4,1-且与直线121+-=x y 相交于A ,B 两点,点A 在y 轴上,过B 点作x BC ⊥轴于C 点,()0,3-C .(1)求二次函数解析式;(2)N 是二次函数图象上一点,且N 在AB 上方,过N 点作x NP ⊥轴于P 点,交AB 于M 点. ①求线段MN 的最大值;②若BM 与CN 互相垂直平分,求N 点的坐标.。
九年级数学下学期第一次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题
某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
广西柳州市龙城中学2019-2020学年第一学期九年级数学第一次月考试题
龙城中学教育集团2019年秋季学期初三年级教学过关检测试卷一、选择题(每题3分,共12题)1.下列图形中,既是轴对称图形又是中心对称图形的是().A.B.C.D.2.抛物线y=—(x+2)2—3的顶点坐标是()A.(-2,3)B.(-2,-3)C.(2,3)D.(2,-3)3.函数y=-x2+1的图象大致为()A. B. C. D. 第4题4.如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′的长度为()A.2B.3C.4D.1.55.关于抛物线 y=x2-2x+1下列说法错误的是()A.开口向上B.与x轴有两个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而增大6.已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于()A.-1B.0C.1D.27.若将抛物线y=3x2平移,得到抛物线y=3(x-2)2-1采用的办法是()A.向左平移2个单位,再向上平移1个单位 B.向左平移2个单位,再向下平移1个单位C .向右平移2个单位,再向上平移1个单位D .向右平移2个单位,再向下平移1个单位8.竖直向上发射的小球的高度h (m )关于运动时间t (s )的函数表达式为h =at 2+bt ,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是( )A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒9.如图,公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18,求原正方形空地的边长.设原正方形的空地的边长为x m ,则可列方程为( ).A .=18B .﹣3x+16=0C .=18D .+3x+16=0 10.如图,在直角坐标系中,将△ABC 绕A 点逆时针旋转90°后,B 点对应点的坐标为( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)11.二次函数y =x 2-2x+3,当-2≤x ≤3时,函数最值情况说法正确的是( ) A .函数值最小为2,最大为11 B .函数值最小为6,最大为11C .函数值最小为2,最大为6D .函数值最小为6,无最大值12. 在平面直角坐标系中,已知抛物线与直线的图象如图所示,当y 1≠y 2时,取y 1,y 2中的较大值记为N ;当y 1=y 2时,N=y 1=y 2.则下列说法:①当0<x <2时,N=y 1;②N 随x 的增大而增大的取值范围是x <0;③取y 1,y 2中的较小值记为M ,则使得M 大于4的x 值不存在;④若N=2,则x=2﹣或x=1.其中正确的有( )A. 1个B. 2个C. 3个D. 4个第8题 第9题 第10题 第12題二、填空题(每题3分,共6题) 13.方程02=+x x 的根是_________.14.已知点A (a ,2)和点B (-1,b )关于原点对称,则a+b=________.15. 某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为__________________.16. 根据下列表格的对应值,判断方程一个解x 的范围是_______.-017. 若规定两数a ,b 通过*运算得2ab ,即a*b=2ab ,若x*x+2*x-1*3=0,则x=______.18. 在平面直角坐标系中,Rt △AOB 的两条直角边OA 、OB 分别在x 轴和y 轴上,OA=3,OB=4.把△AOB 绕点A 顺时针旋转120°,得到△ADC .边OB 上的一点M 旋转后的对应点为M ′,当AM ′+DM 取得最小值时,点M 的坐标为_________.三、解答题(共66分)19.解方程(每题4分,共8分)(1)0342=+-x x (2)x (x-3)=2(3-x )20. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,在方格纸中建立平面直角坐标系如图所示.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1,并写出C 1点的坐标.(2)画出△ABC 关于点O 对称得到的△A 2B 2C 2, 并写出C 2 的坐标.21.(6分) 已知关于x 的方程x 2-mx-3x+m-4=0(m 为常数).(1)求证:方程有两个不相等的实数根;(2)设x 1,x 2是方程的两个实数根,求(x 1-1)(x 2-1)的值.22. (8分)如图,△ABC 中,∠B=10°,∠ACB=20°,AB=4cm ,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE 的度数和AE 的长.23.(8分)汽车产业的发展,有效促进我国现代化建设,某汽车销售公司2012年盈利1500万元,到2014年盈利2160万元,且从2012年到2014年,每年盈利的年增长率相同.(1)求该公司盈利的年增长率;(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?24.(10分)如图,在某场足球比赛中,球员甲从球门底部中心点O的正前方10m处起脚射门,足球沿抛物线飞向球门中心线;当足球飞离地面高度为3m时达到最高点,此时足球飞行的水平距离为6m.已知球门的横梁高OA为2.44m.(1)在如图所示的平面直角坐标系中,问此飞行足球能否进球门?(不计其它情况)(2)守门员乙站在距离球门2m处,他跳起时手的最大摸高为2.52m,他能阻止球员甲的此次射门吗?如果不能,他至少后退多远才能阻止球员甲的射门?25.(10分)某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低元(为偶数),每周销售量为个.(1)直接写出销售量个与降价元之间的函数关系式;(2)设商户每周获得的利润为元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?26.(10分)如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y 轴交于点C,且OC=OB.(1)求此抛物线的解析式;(2)如图1,若点E为第二象限抛物线上一动点,连接BC,求△BCE面积的最大值,并求出此时的E点坐标;(3)如图2,点P在抛物线对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A'恰好也落在抛物线上,求点P坐标.图1 图2。
2023年湖南省永州市冷水滩区李达中学九年级下学期第一次月考数学试卷
2023年湖南省永州市冷水滩区李达中学九年级下学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.抛物线264y x x =-+-的对称轴是( )A .2x =-B .2x =C .3x =D .3x =- 2.如图所示几何体的左视图是( )A .B .C .D . 3.关于函数()2312y x =-+-,下列描述错误的是( )A .开口向下B .对称轴是直线=1x -C .函数最大值是2-D .当1x >-时,y 随x 的增大而增大 4.在平面直角坐标系中,二次函数2()y a x h =-(0a ≠)的图象可能是( ) A . B . C . D . 5.把抛物线24y x =-向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式为( )A .24(2)3=-+-y xB .24(2)3=---y xC .24(3)2=--+y xD .24(3)2=---y x6.如图,△ABC 中,内切圆I 和边BC ,AC ,AB 分别相切于点D ,E ,F ,若65,75B C ∠=︒∠=︒,则∠EDF 的度数是( )A .65︒B .140︒C .55︒D .70︒ 7.如图,有一圆心角为120°、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( )A .BC .D . 8.如图,正六边形ABCDEF 内接于O e ,过点O 作OM ⊥弦BC 于点M ,若O e 的半径为4,则弦心距OM 的长为( )A .B C .2 D .9.如图,AD 是半圆O 的直径,四边形ABCD 内接于半圆O ,20ADB ∠=︒,则C ∠=( )A .100°B .110°C .120°D .130° 10.如图,抛物线2(0)y ax bx c a =++≠的对称轴是直线2x =-,并与x 轴交于AB 两点,若5OA OB =,则下列结论中;①0abc >;②22()0a c b +-=;③90a c +<;④若m 为任意实数,则224am bm b a ++≥,正确的个数是( )A .1B .2C .3D .4二、填空题11.二次函数()235y x =-+的顶点坐标是______.12.抛物线221y ax x =--与x 轴有唯一一个交点,则a 的值为________.13.在O e 中,弦AB =8,则弦AB 所对的圆周角是_____________. 14.二次函数243y x x =-+,当14x -≤<时,y 的取值范围为____________. 15.如图,PA 、PB 是O e 的切线,切点分别为A 、B .若30OBA ∠=︒,3PA =,则AB 的长为___________.16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.17.二次函数()20y ax bx c a =++≠的部分图象如图,图象过点()1,0-,对称轴为直线2x =,当函数值0y <时,自变量x 的取值范围是__________.18.如图,点A 的坐标是()(),00a a <,点C 是以OA 为直径的B 上一动点,点A 关于点C 的对称点为P 当点C 在OB 上运动时,所有这样的点P 组成的图形与直线=1y x --有且只有一个公共点,则a 的值等于_____________.三、解答题19.某几何体从三个方向看到的图形分别如图;(1)该几何体是.(2)求该几何体的表面积?(结果保留π)20.如图,若对于函数245y x x =--,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点.请回答下列问题;(1)图象的对称轴,顶点坐标各是什么?(2)若P 为二次函数图象上一点,且6ABP S ∆=,求点P 的坐标.21.在Rt ABC △中,90ACB ∠=︒,D 是边AB 上一点,以BD 为直径作O e 交BC 于点F ,并且O e 与AC 相切于点E ,连接OE .(1)求证;BC OE ∥;(2)若O e 的半径为5,30A ∠=︒,求BC 的长.22.一座桥如图,桥下水面宽度AB 是10米,高CD 是4米.如图,若把桥看做是抛物线的一部分,建立如图坐标系.(1)求抛物线的解析式;(2)要使高为3米的船通过,则其宽度须不超过多少米?23.如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的长方形花圃设花圃的面积为S m 2,请问能围成面积比63平方米更大的花圃吗?如果能,请求出最大的面积.如果不能,请说明理由.24..如图,AB 是O e 直径,弦CD 垂直于AB ,交AB 于点E ,连接AC ,30CDB ∠=︒,CD =(1)求半径OC ;(2)»BC的弧长;(3)求阴影面积.25.如图,在ABC V 中,90ABC ∠=︒,以AB 的中点O 为圆心、OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .(1)判断DE 与O e 的位置关系,并说明理由;(2)求证;2BC CD AC =⋅(3)若3cos 5BAD ∠=,6BE =,求OE 的长. 26.如图,已知抛物线:22y x bx c =-++与x 轴交于点A ,(2,0)B (A 在B 的左侧),与y 轴交于点C ,对称轴是直线12x =,P 是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D 为线段OC 的中点,则POD V 能否是等边三角形?请说明理由;(3)过点P 作x 轴的垂线与线段BC 交于点M ,垂足为点H ,若以P ,M ,C 为顶点的三角形与BMH V 相似,求点P 的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B C A 第7题图
2019-2020年九年级数学下学期第一次月考试题 (II) 考试时间:120 分钟 总分: 120分 班级:___________ 姓名:___________
一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)
1.下列四个点中,在反比例函数xy6的图像上的是( ) A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1) 2.如图,已知:AB是⊙O的直径,弦CD⊥AB,连结OC、AD,∠OCD=32°,则∠A=( )
A.32 B.29 C.58 D.45 3.如果反比例函数xky的图象如图所示,那么二次函数y=kx2-k2x-1的图象大致为( )
4.若关于x的一元二次方程的两个根为11x,22x,则这个方程是( ) A.0232xx B.0232xx C.0322xx D.0232xx 5.西安火车站的显示屏每隔4分钟显示一次火车车次的信息,显示时间持续1分钟,某人到达火车站时,显示屏正好显示火车车次信息的概率是( ) A.61 B.51 C.41 D.31 6.下列四个命题中,假命题是( ) A.两条对角线互相垂直且相等的四边形是正方形 B.菱形的一条对角线平分一组对角 C.顺次连结四边形的各边中点所得的四边形是平行四边形 D.对角线互相平分且相等的四边形是矩形
7.如图, ABC中,AC﹦5, 22cosB,53sinC,则ABC的面积为( ) A.221 B. 12 C. 14 D. 21
8.如图,正△ABC内接于⊙O,P是劣弧BC上任意一点,PA与BC交于点E,有如下结论:① PA=PB+PC, 第8题图 EOC
A
BP
A B C D O 第2题图
y x O y x O A.
y x O
B.
y x O
C.
y x O
D. ② 111PAPBPC;③ PA·PE=PB·PC.其中,正确结论的个数为( )。 A.3个 B.2个 C.1个 D.0个 9.在ABCRt中,∠C=90°,5c,两直角边ba,是关于x的一元二次方程0222mmxx的两个根,则ABCRt中较小锐角的正弦值为( ). A.51 B.52 C.53 D. 54 10.如图,在半圆O中,AB为直径,半径OC⊥OB,弦AD平分∠CAB,连结CD、OD,以下四个结论:①AC∥OD;②OECE;③△ODE∽△ADO;③ABCECD22.其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
第II卷(非选择题 共90分) 二、填空题(共8小题,每小题3分,计24分)
11.抛物线2241yxx的顶点坐标为_________。
12.如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线nmxay2)(的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为3,则点D的横坐标最大值为_______
13.如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为_____________.
14.点P是半径为5的⊙O内点,OP=3,在过点P的所有弦中,弦长为整数的弦的条数为______条。 15.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是______________. 16.如图,在△ABC中,点D是AB的中点,DC⊥AC,且31tanBCD,则Atan________________. 17.反比例函数4yx与正比例函数13yx交于A,B两点,过点A作y轴的平行线与过点B作x轴的平行线交于点C,则ABC△的面积为___________________.
y x O
第12题图 DC
B(4,4)A(1,4)
第13题图
A F E
D
C B
ABDCOE
A O
B C x
yA B D
C
第16题图
18.二次函数y=x2+bx+c与y=x的图象如图所示,有以下结论中:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;
④当1<x<3时,x2+(b﹣1)x+c<0.其中正确有那些__________________.(填序号)
三、解答题(共7小题,共计66分.解答应写出过程) 19.计算(每小题3分,计12分)
(1) 02322xx (2) 62)3(2xx (3) )45cos60)(sin45sin30(cos (4) 45tan93)530cos2(60tan)21(3303
20.(本题满分7分) 如图,在□ABCD中,DE平分∠ADC,EF//AD,求证:四边形AEFD是菱形。
21.(本题满分8分)如图,已知⊙O 中,AB为直径,CD为⊙O的切线,交AB的延长线于点D, ∠D=30°。 ⑴求∠A的度数;
⑵若点F在⊙O上,CF⊥AB,垂足为E,CF=34,求图中阴影部分的面积.(结果保留)
22.(本题满分8分)
D B F E A C
第20题图 EDCBAO
F第24题图
y x A C B O
第22题图 在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680,试根据以上数据求出潜艇C离开海平面的下潜深度。(结果保留整
数。参考数据:sin680≈0.9,cos680≈0.4,,tan680≈2.5.3 ≈1.7)
23.(本题满分9分) 在RtABC△中,90ACB°,D是AB边上一点,以BD为直径的O⊙与边AC相切于点E,连结DE并延长,与BC的延长线交于点F. (1)求证:BDBF; (2)若64BCAD,,求O⊙的面积.
24.(本题满分10分) 一次函数yaxb的图象与反比例函数xky的图象交于A,B两点,与x 轴交于点C.已知点A(-2,1),点B的坐标为),1(m. (1)求反比例函数和一次函数的解析式; ( 2 ) 求△AOB的面积。 (3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
25.(本题满分12分) 如图,已知抛物线212yxbxc与x轴交于A(-4,0)和B(1,0)两点,与y轴交于点C. (1)求此抛物线的解析式; (2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.
x y O B C A
(第23题图) A E D
O
B C
F 初三数学3月试题参考答案 一、选择题 1.D 2. B 3.B 4.B 5.B 6.A 7.A 8.B 9.C 10.B
二、填空题 11. (—1, 3) 12.8 13.80π-160 14. 4 15. 13 16.23 17.8 18. ③④
21.⑴解:连结OC, ∵CD切⊙O于点C, ∴∠OCD=90° ∵∠D=30°,∴∠COD=60°. ∵OA=OC,∴∠A=∠ACO=30°.
⑵∵CF⊥直径AB, CF=34,∴CE=23, ∴在Rt△OCE中,OE=2,OC=4.
∴2BOC60483603S扇形==,EOC12232S==23. ∴EOCBOC23SSS阴影扇形8=-=-3 22. .过点C作CD⊥AB,交BA的延长线于点D.则AD即为潜艇C的下潜深度. 根据题意得 ∠ACD=300,∠BCD=680. 设AD=x.则BD=BA十AD=1000+x.
在Rt△ACD中,CD=0x=3xtantan30ADACD 在Rt△BCD中,BD=CD·tan688 ∴1000+x=3x·tan688
∴x=0100010003081.72.513tan681 ∴潜艇C离开海平面的下潜深度约为308米。
23. 解:解:(1)证明:连结OE. AC切O⊙于E,
OEAC⊥,
又90ACB°,即BCAC⊥, OEBC∥,
OEDF.
又ODOE, ODEOED,
ODEF,
BDBF.
(2)设O⊙半径为r,由OEBC∥得AOEABC△∽△. AOOEABBC,即4246rrr
,
2120rr,解之得1243rr,(舍).
2π16π
OSr⊙.
24.(1)将点A代入xky ∴xy2 将点B代入xy2 ∴B(1,-2) 将A,B代入yaxb