高二上学期期末考试数学(理)试题及答案
河南省南阳市2021_2021学年高二数学上学期期末考试试题理(含解析)

高二上学期期末考试数学(理)试题一、选择题(本大题共12小题,共60.0分)1.已知命题,总有,则为A. ,使得B. ,使得C. ,使得D. ,使得【答案】B【解析】【分析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题p:,总有,则为:,使得.故选:B.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2.“”是“方程的曲线是椭圆”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】方程的曲线是椭圆,故应该满足条件:故”是“方程的曲线是椭圆”的必要不充分条件.故答案为:B.3.已知空间四边形,其对角线分别是边的中点,点在线段上,且使,用向量,表示向量是A. B.C. D.【答案】C【解析】【分析】根据所给的图形和一组基底,从起点O出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论.,,故选:C.【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程.4.已知实数满足不等式组,则函数的最大值为()A. 2B. 4C. 5D. 6【答案】D【解析】作出不等式组表示的可行域如下图阴影部分所示,由得。
平移直线,结合图形可得,当直线经过可行域内的点C时,直线在y轴上的截距最大,此时取得最大值。
由,解得,故点C的坐标为(1,2)。
∴。
选D。
5.椭圆的离心率是,则的最小值为A. B. 1C. D. 2【答案】A【解析】【分析】由题意可得,,代入,利用基本不等式可求最小值.【详解】由题意可得,即,,则当且仅当即时取等号的最小值为故选:A.【点睛】本题主要考查了椭圆的性质的应用及利用基本不等式求解最值的应用,属于知识的简单综合.6.如图,在空间直角坐标系中有直三棱柱,,则直线与直线夹角的余弦值为()A. B. C. D.【答案】A【解析】设CA=2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos〈,〉=7.点在圆上运动,则点的轨迹是A. 焦点在轴上的椭圆B. 焦点在轴上的椭圆C. 焦点在轴上的双曲线D. 焦点在轴上的双曲线【答案】B【解析】【分析】根据变形,得出结论.【详解】点在圆上,,,点是椭圆上的点.故选:B.【点睛】本题考查了轨迹方程求解,椭圆的性质,属于基础题.8.若两个正实数满足,且不等式有解,则实数的取值范围A. B.C. D.【答案】B【解析】分析:不等式有解,即为大于的最小值,运用乘1法和基本不等式,计算即可得到所求最小值,解不等式可得m的范围.详解:正实数满足则=4,当且仅当,取得最小值4.由x有解,可得解得或.故选 D .点睛:本题考查不等式成立的条件,注意运用转化思想,求最值,同时考查乘1法和基本不等式的运用,注意满足的条件:一正二定三等,考查运算能力,属中档题.9.直线与抛物线交于两点,若,则弦的中点到直线的距离等于A. B. 2C. D. 4【答案】C【解析】直线4kx-4y-k=0,即y=k,即直线4kx-4y-k=0过抛物线y2=x的焦点.设A(x1,y1),B(x2,y2),则|AB|=x1+x2+=4,故x1+x2=,则弦AB的中点横坐标是,弦AB的中点到直线x+=0的距离是+=.10.已知数列的首项,则()A. B. C. D.【答案】C【解析】由,可得,是以为公差,以为首项的等差数列,,故选C.11.给出以下命题,其中真命题的个数是若“或”是假命题,则“且”是真命题命题“若,则或”为真命题已知空间任意一点和不共线的三点,若,则四点共面;直线与双曲线交于两点,若,则这样的直线有3条;A. 1B. 2C. 3D. 4【答案】C【解析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2) 命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为:C.12.是双曲线的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点若,则的离心率是A. B. 2C. D.【答案】D【解析】由已知渐近线方程为l1:,l2:,由条件得F到渐近线的距离,则,在Rt△AOF中,,则.设l1的倾斜角为θ,即∠AOF=θ,则∠AOB=2θ.在Rt△AOF中,,在Rt△AOB中,.∵,即,即a2=3b2,∴a2=3(c2-a2),∴,即.故选C.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题(本大题共4小题,共20.0分)13.已知数列2008,2009,1,,若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2019项之和______.【答案】4018【解析】【分析】由题意写出数列的前几项,可得数列的最小正周期为6,求得一个周期的和,计算可得所求和.【详解】数列从第二项起,每一项都等于它的前后两项之和,可得2008,2009,1,,,,2008,2009,1,,即有数列的最小正周期为6,可得一个周期的和为0,由,可得.故答案为:4018.【点睛】本题考查数列的求和,注意运用数列的周期,考查运算能力,属于基础题.14.在正三棱柱中,若,点是的中点,求点到平面的距离______.【答案】【解析】【分析】以A为原点,在平面ABC中过A作AC的垂线为x轴,AC为y轴,为z轴,建立空间直角坐标系,利用向量法能求出点到平面的距离.以A为原点,在平面ABC中过A作AC的垂线为x轴,AC为y轴,为z轴,建立空间直角坐标系,0,,0,,,4,,,设平面的法向量,则,取,得,点到平面的距离:.故答案为:.【点睛】本题考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.15.已知空间三点2,,5,,3,,则以为邻边的平行四边形的面积为______.【答案】【解析】分析:利用终点坐标减去起点坐标,求得对应的向量的坐标,进而求得向量的模以及向量的夹角的余弦值,应用平方关系求得正弦值,由此可以求得以,为邻边的平行四边形的面积.详解:由题意可得,,所以,所以,所以以,为邻边的平行四边形的面积为,故答案是.点睛:该题考查的是有关空间向量的坐标以及夹角余弦公式,在解题的过程中,需要对相关公式非常熟悉,再者就是要明确平行四边形的面积公式,以及借助于向量的数量积可以求得对应角的余弦值.16.已知点在离心率为的双曲线上,,为双曲线的两个焦点,且,则的内切圆的半径与外接圆的半径的比值为_____.【答案】【解析】【分析】设P为双曲线的右支上一点,,,,运用双曲线的定义和直角三角形的外接圆的外心为斜边的中点,运用等积法求得内切圆的半径,结合离心率公式,化简即可得到所求比值.【详解】设P为双曲线的右支上一点,,,,由双曲线的定义可得,由即,可得,可得,则,由直角三角形可得外接圆的半径为,内切圆的半径设为r,可得,即有,由,可得,则,可得,则则的内切圆的半径与外接圆的半径的比值为.故答案为:.【点睛】本题考查双曲线的定义和性质,以及三角形的外接圆和内切圆的半径,考查等积法求内切圆的半径,以及化简整理的运算能力,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知命题方程表示圆;命题双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围.【答案】【解析】试题解析:若命题为真命题,则,即整理得,解得4分若命题为真命题,则,解得8分因为命题为假命题,为真命题,所以中一真一假, 10分若真假,则; 若假真,则,所以实数的取值范围为. 12分考点:1.圆的一般方程;2.双曲线的结合性质;3.复合命题的真值表.18.如图,四棱锥底面为正方形,已知,,点为线段上任意一点(不含端点),点在线段上,且.(1)求证:;(2)若为线段中点,求直线与平面所成的角的余弦值.【答案】(1)详见解析(2)【解析】试题分析:(1)延长,交于点,只需证明MN//PG,通过可证明,从而证明MN//PG。
贵州省贵阳市高二数学上学期期末试卷 理(含解析)

贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.164.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s27.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.28810.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.13.(4分)下列四个结论,其中正确的有.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.贵州省贵阳市2014-2015学年高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样考点:分层抽样方法.专题:阅读型.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.2.(4分)“xy=0”是“x2+y2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:因为x2+y2=0,可得x,y=0,再根据充要条件的定义进行判断;解答:解:∵xy=0,或者x=0,或y=0或x=y=0;∵x2+y2=0,可得x=y=0,∵“x2+y2=0”⇒“xy=0”;∴“xy=0”是“x2+y2=0”的必要不充分条件,故选B;点评:此题主要考查充分条件和必要条件的定义,是一道基础题,考查的知识点比较单一.3.(4分)把二进制1011(2)化为十进制数,则此数为()A.8 B.10 C.11 D.16考点:循环结构.专题:计算题.分析:将二进制数转化为十进制数,可以用每个数位上的数字乘以对应的权重,累加后,即可得到答案.解答:解:将二进制数1100化为十进制数为:1100(2)=1×23+1×2+1=11.故选C.点评:本题考查的知识点是不同进制之间的转换,其中其它进制转为十进制方法均为累加数字×权重,十进制转换为其它进制均采用除K求余法.4.(4分)已知命题p:∃x∈R,x﹣2>lgx,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∨(¬q)是假命题D.命题p∧(¬q)是真命题考点:复合命题的真假.专题:计算题.分析:由题设条件,先判断出命题p:∃x∈R,x﹣2>lgx是真命题,命题q:∀x∈R,x2>0是假命题,再判断复合命题的真假.解答:解:当x=10时,10﹣2=8>lg10=1,故命题p:∃x∈R,x﹣2>lgx是真命题;当x=0时,x2=0,故命题q:∀x∈R,x2>0是假命题,∴题pVq是真命题,命题p∧q是假命题,命题pV(¬q)是真命题,命题p∧(¬q)是真命题,故选D.点评:本题考查复合命题真假的判断,是基础题.解题时要认真审题,仔细解答.5.(4分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()A.B.C.1 D.考点:抛物线的简单性质;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.解答:解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B点评:本题给出抛物线方程与双曲线方程,求抛物线的焦点到双曲线的渐近线的距离,着重考查了抛物线、双曲线的标准方程与简单几何性质等知识,属于基础题.6.(4分)如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图,设1,2两组数据的平均数依次为和,标准差依次为s1和s2,那么()(注:标准差s=,其中为x1,x2,…,x n的平均数)A.>,s1>s2B.>,s1<s2C.<,s1>s2D.<,s1<s2考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:根据茎叶图中的数据,求出两组的平均数与标准差即可.解答:解:根据茎叶图中的数据,得;1组的平均数是=(53+56+57+58+61+70+72)=61,方差是=[(53﹣61)2+(56﹣61)2+(57﹣61)2+(58﹣61)2+(61﹣61)2+(70﹣61)2+(72﹣61)2]=,标准差是s1=;2组的平均数是=(54+56+58+60+61+72+73)=62,方差是=[(54﹣62)2+(56﹣62)2+(58﹣62)2+(60﹣62)2+(61﹣62)2+(72﹣62)2+(73﹣62)2]=,标准差是s2=;∴<,s1<s2.故选:D.点评:本题考查了利用茎叶图中的数据,求平均数与方差、标准差的应用问题,是基础题目.7.(4分)已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()A.B.C.D.考点:椭圆的定义.专题:计算题.分析:根据|F1F2|是|PF1|与|PF2|的等差中项,得到2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,得到点P在以F1,F2为焦点的椭圆上,已知a,c的值,做出b的值,写出椭圆的方程.解答:解:∵F1(﹣1,0)、F2(1,0),∴|F1F2|=2,∵|F1F2|是|PF1|与|PF2|的等差中项,∴2|F1F2|=|PF1|+|PF2|,即|PF1|+|PF2|=4,∴点P在以F1,F2为焦点的椭圆上,∵2a=4,a=2c=1∴b2=3,∴椭圆的方程是故选C.点评:本题考查椭圆的方程,解题的关键是看清点所满足的条件,本题是用定义法来求得轨迹,还有直接法和相关点法可以应用.8.(4分)已知回归直线通过样本点的中心,若x与y之间的一组数据:x 0 1 2 3y 1.1 3.1 4.9 6.9则y与x的线性回归方程=x+所表示的直线必过点()A.(,4)B.(1,2)C.(2,2)D.(,0)考点:线性回归方程.专题:计算题;概率与统计.分析:求出x、y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.解答:解:回归直线方程一定过样本的中心点(,),==,==4,∴样本中心点是(,4),则y与x的线性回归方程y=bx+a必过点(,4),故选:A.点评:本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).9.(4分)执行如图所示的程序框图,输出的S值为()A.162 B.200 C.242 D.288考点:程序框图.专题:图表型;算法和程序框图.分析:根据所给数值执行循环语句,然后判定是否满足判断框中的条件,一旦满足条件就退出循环,输出结果.解答:解:模拟执行程序框图,可得k=1,S=0S=2,k=3不满足条件k≥20,S=8,k=5不满足条件k≥20,S=18,k=7不满足条件k≥20,S=32,k=9不满足条件k≥20,S=50,k=11不满足条件k≥20,S=72,k=13不满足条件k≥20,S=98,k=15不满足条件k≥20,S=128,k=17不满足条件k≥20,S=162,k=19不满足条件k≥20,S=200,k=21满足条件k≥20,退出循环,输出S的值为200.故选:B.点评:本题主要考查了循环结构,是直到型循环,先执行循环,直到满足条件退出循环,属于基础题.10.(4分)已知曲线C的方程是(x﹣)2+(y﹣)2=8,若点P,Q在曲线C上,则|PQ|的最大值是()A.6B.8C.8 D.6考点:曲线与方程;两点间距离公式的应用.专题:计算题;直线与圆.分析:先分类讨论化简方程,再根据方程对应的曲线,即可得到结论.解答:解:当x>0,y>0时,方程是(x﹣1)2+(y﹣1)2=8;当 x>0,y<0 时,方程是(x﹣1)2+(y+1)2=8;当 x<0,y>0 时,方程是(x+1)2+(y﹣1)2=8;当 x<0,y<0 时,方程是(x+1)2+(y+1)2=8曲线C既是中心对称图形,又是轴对称图形,对称中心为(0,0),对称轴为x,y轴,点P,Q在曲线C上,当且仅当P,Q与圆弧所在圆心共线时取得最大值,|PQ|的最大值是圆心距加两个半径,即6,故选:A.点评:本题考查曲线与方程的概念,体现分类讨论、数形结合的数学思想,属于中档题.二、填空题(每小题4分,共20分)11.(4分)双曲线的离心率为.考点:双曲线的简单性质.专题:计算题.分析:根据事务性的方程可得a,b,c的数值,进而求出双曲线的离心率.解答:解:因为双曲线的方程为,所以a2=4,a=2,b2=5,所以c2=9,c=3,所以离心率e=.故答案为.点评:本题主要考查双曲线的有关数值之间的关系,以及离心率的公式.12.(4分)已知抛物线y2=ax过点,那么点A到此抛物线的焦点的距离为.考点:抛物线的简单性质.专题:计算题.分析:先确定抛物线的标准方程,求出抛物线的焦点坐标,利用两点间的距离公式,即可得到结论.解答:解:∵抛物线y2=ax过点,∴1=∴a=4∴抛物线方程为y2=4x,焦点为(1,0)∴点A到此抛物线的焦点的距离为=故答案为:点评:本题考查抛物线的标准方程,考查抛物线的性质,考查距离公式的运用,属于中档题.13.(4分)下列四个结论,其中正确的有①②③④.①在频率分布直方图中,中位数左边和右边的直方图的面积相等;②如果一组数据中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变;③一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组样本数据的总和等于60;④数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为4δ2.考点:极差、方差与标准差;频率分布直方图.专题:概率与统计.分析:根据频率分布直方图中平均数、中位数以及样本的平均数与方差的关系,对每一个命题进行分析判断即可.解答:解:对于①,频率分布直方图中,中位数左边和右边的直方图面积相等,都等于,∴①正确;对于②,一组数据中每个数减去同一个非零常数a,这一组数的平均数变为﹣a,方差s2不改变,∴②正确;对于③,一个样本的方差是s2=[(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],∴这组样本数据的平均数是3,数据总和为3×20=60,∴③正确;对于④,数据a1,a2,a3,…,a n的方差为δ2,则数据2a1,2a2,2a3,…,2a n的方差为(2δ)2=4δ2,∴④正确;综上,正确的命题序号是①②③④.故答案为:①②③④.(填对一个给一分).点评:本题考查了频率分布直方图的应用问题,也考查了中位数、平均数与方差的应用问题,是基础题目.14.(4分)已知椭圆的焦点为F1、F2,P为椭圆上一点∠F1PF2=90°,则△PF1F2的面积是9.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的方程求得c,得到|F1F2|,设出|PF1|=t1,|PF2|=t2,利用勾股定理以及椭圆的定义,可求得t1t2的值,即可求出三角形面积.解答:解:∵椭圆的a=5,b=3;∴c=4,设|PF1|=t1,|PF2|=t2,则根据椭圆的定义得t1+t2=10,∵∠F1PF2=90°,根据勾股定理得①t12+t22=82②,由①2﹣②得t1t2=18,∴.故答案为:9.点评:本题主要考查了椭圆的标准方程、椭圆的简单性质.解答的关键是通过勾股定理解三角形,考查计算能力、数形结合思想.15.(4分)地面上有两个同心圆(如图),其半径分别为3、2,1若向图中最大内投点且点投到图中阴影区域内的概率为,则两直线所夹锐角的弧度数为.考点:几何概型.专题:计算题.分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解.解答:解:设两直线所夹锐角弧度为α,则有:,解得:α=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.三、解答题(本题共5小题,共40分)16.(8分)某校在自主招生考试成绩中随机抽取100名学生的笔试成绩,被抽取学生的成绩均不低于160分,且低于185分,如图是按成绩分组得到的频率分布图的一部分(每一组均包括左端点数据),且第三组、第四组、第五组的频数之比一次为3:2:1.(1)请完成频率分布直方图;(2)为了能选拔出最优秀的学生,该校决定在笔试成绩较高的第三组、第四组、第五组中用分层抽样方法抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.考点:分层抽样方法;频率分布直方图.专题:概率与统计.分析:(1)求出对应的频数和频率,即可请完成频率分布直方图;(2)根据分层抽样的定义建立比例关系即可.解答:解:(1)由题意值第1,2组的频数分别为100×0.01×5=5,100×0.07×5=35,故第3,4,5组的频数之和为100﹣5﹣35=60,从而可得其频数分别为30,20,10,其频率依次是0.3,0.2,0.1,其频率分布直方图如图:;(2)由第3,4,5组共60人,用分层抽样抽取6人,故第3,4,5组中抽取的学生人数依次是第3组:,第4组:,第5组:.点评:本题主要考查抽样和统计的知识,比较基础.17.(8分)甲袋中有1只白球,2只红球,3只黑球;乙袋中有2只白球,3只红球,1只黑球.现从两袋中各取一个球.(1)求取得一个白球一个红球的概率;(2)求取得两球颜色相同的概率.考点:列举法计算基本事件数及事件发生的概率;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取出两球的种数,再根据分类和分步计数原理求出一个白球一个红球的种数,根据概率公式计算即可.(2)分为同是红色,白色,黑色,根据分类和分步计数原理即可求出取得两球颜色相同的种数,根据概率公式计算即可.解答:解:(1)两袋中各取一个球,共有6×6=36种取法,其中一个白球一个红球,分为甲袋区取的为白球乙袋红球,甲袋红球乙袋白球,故有1×3+2×2=7种,故取得一个白球一个红球的概率P=;(2)取得两球颜色相同有1×2+2×3+3×1=11种,故取得两球颜色相同的概率P=.点评:本题考查了类和分步计数原理及其概率的求法,关键是求出满足条件的种数,是基础题.18.(8分)如图,60°的二面角的棱上有A,B两点,线段AC,BD分别在这个二面角的两个半平面内,且AC⊥AB,BD⊥AB,已知AB=4,AC=6,BD=8.(1)用向量、、表示;(2)求||的值.考点:平面向量数量积的运算.专题:平面向量及应用.分析:(1)利用向量的多边形法则即可得出;(2)由AC⊥AB,BD⊥A B,可得==0,利用数量积的运算性质展开可得==++代入即可得出.解答:解:(1)=++;(2)∵AC⊥AB,BD⊥AB,∴==0,∴==++=62+42+82+2×6×8×cos(180°﹣60°)=36+16+64﹣48=68.∴=.点评:本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系、二面角,考查了推理能力与计算能力,属于中档题.19.(8分)如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=.(1)求四棱锥S﹣ABCD的体积;(2)求面SCD与面SAB所成二面角的余弦值.考点:棱柱、棱锥、棱台的体积;直线与平面所成的角.专题:综合题;空间位置关系与距离;空间角.分析:(1)四棱锥S﹣ABCD的体积=;(2)以点A为原点建立如图所示的空间直角坐标系,求出平面SCD的法向量,利用向量的夹角公式求面SCD与面SAB所成二面角的余弦值.解答:解:(1)∵底面ABCD是直角梯形,AB垂直于AD和BC,侧棱SA⊥底面ABCD,且SA=AB=BC=1,AD=,∴四棱锥S﹣ABCD的体积==;(2)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(0.5,0,0,),S(0,0,1),则=(1,1,﹣1),=(0.5,0,﹣1).设平面SCD的法向量是=(x,y,z),则令z=1,则x=2,y=﹣1.于是=(2,﹣1,1).设平面SCD与平面SAB所成的二面角为α,∵=(0.5,0,0),∴|cosα|==∴平面SCD与平面SAB所成二面角的余弦值为.点评:本题考查四棱锥S﹣ABCD的体积、平面SCD与平面SAB所成二面角的余弦值,考查学生的计算能力,正确求平面SCD的法向量是关键.20.(8分)椭圆+=1(a>b>0)的一个顶点为A(0,3),离心率e=.(1)求椭圆方程;(2)若直线l:y=kx﹣3与椭圆交于不同的两点M,N.若满足|AM|=|AN|,求直线l的方程.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)由椭圆的离心率公式和a,b,c的关系,解方程可得a=5,b=3,即可得到椭圆方程;(2)联立直线方程和椭圆方程,运用韦达定理,求得线段MN的中点P的坐标,再由|AM|=|AN|知点A在线段MN的垂直平分线上,运用直线垂直的条件:斜率之积为﹣1,即可得到k,进而得到直线方程.解答:解:(1)由一个顶点为A(0,3),离心率e=,可得b=3,=,a2﹣b2=c2,解得a=5,c=4,即有椭圆方程为+=1;(2)由|AM|=|AN|知点A在线段MN的垂直平分线上,由,消去y得(9+25k2)x2﹣150kx=0,由k≠0,得方程的△=(﹣150k)2>0,即方程有两个不相等的实数根.设M(x1,y1)、N(x2,y2),线段MN的中点P(x0,y0),则x1+x2=,∴x0==,∴y0=kx0﹣3=﹣,即P(,﹣),∵k≠0,∴直线AP的斜率为k1=﹣=﹣,由AP⊥MN,得﹣=﹣,∴25k2=7,解得:k=±,即有直线l的方程为y=±x﹣3.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率的运用和方程的运用.联立直线方程,运用韦达定理,同时考查直线垂直的条件:斜率之积为﹣1,考查运算能力,属于中档题.。
东北师范大学附属中学2023-2024学年高二上学期期末考试数学试题(解析版)

注意事项:1.答题前,考生须将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效.4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀. 一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项东北师范大学附属中学2023-2024学年高二上学期期末考试数学试题是符合题目要求的.1. 直线1:10l ax y ++=与直线()2:2320l x a y +−+=平行,则a 的值为( )A. 2−B. 1−C. 1D. 2【答案】D 【解析】【分析】先根据12l l //求解出a 的值,然后再进行检验是否重合,由此求解出a 的值.【详解】因为12l l //,所以()3120a a ×−−×=,解得1a =或2a =, 当1a =时,1:10l x y ++=,2:2220l x y ++=,此时12,l l 重合,舍去; 当2a =时,1:210l x y ++=,2:220l x y ++=,此时12l l //满足, 故选:D.2. 据典籍《周礼·春官》记载,“宫、商、角、徵、羽”这五音是中国古乐的基本音阶,成语“五音不全”就是指此五音.如果把这五个音阶全用上,排成一个五音阶音序,要求“宫”不为末音节,“羽”不为首音节,可以排成不同音序的种数是( ) A. 36 B. 60C. 72D. 78【答案】D 【解析】【分析】将“宫”看为特殊元素,分类讨论:“宫”为首音节、“宫”不为首音节,由此求解出总的排法数. 【详解】①若“宫”为首音节,可排成的音序有44A 24=种,②若“宫”不为首音节,从“宫”“羽”之外的三个音阶中选一个作为首音节有13C 种选法, 再安排“宫”音阶有13C 种排法,剩余三个音阶可以全排列有33A 种排法,所以②一共有113333C C A 54××=种排法, 由分类加法计数原理可知,一共有245478+=种排法, 故选:D.3. 已知点()5,0A ,点B 在圆22(1)4x y −+=上运动,则线段AB 的中点M 的轨迹方程是( ) A. 22680x y x +−+= B. 22650x y x +−+= C. 22680x y x +++= D. 22650x y x +++=【答案】A 【解析】【分析】设出,B M 的坐标,利用相关点法求解出M 的轨迹方程. 【详解】设()()00,,,B x y M x y ,由题意可知005202x x y y+ =+ = ,所以00252x x y y =− = , 又因为()220014x y −+=, 所以()()2225124x y −−+=, 化简可得22680x y x +−+=,所以M 的轨迹方程为22680x y x +−+=, 故选:A.4. 已知直线0ax y +=是双曲线2221(0)4x y a a −=>的一条渐近线,则该双曲线的半焦距为( )A.B.C.D.【答案】A【解析】【分析】根据双曲线的标准方程和渐近线方程求出a 值,求出半焦距,判断选项.【详解】由0ax y +=是双曲线22214x y a −=()0a >的一条渐近线,则2a a=,解得a =故222246c a b =+=+=,则c =故选:A5. 将4名志愿者分别安排到,,A B C 三个社区进行社会实践活动,要求每个社区至少安排一名志愿者,每名志愿者只能去一个社区,若志愿者甲必须安排到A 社区,不同的安排方法有( )种 A. 6 B. 9C. 12D. 36【答案】C 【解析】【分析】根据A 社区的志愿者人数进行分类讨论,然后由分类加法计数原理求解出结果. 【详解】①若A 社区仅有志愿者甲,则剩余3名志愿者需要分成2组并分配到,B C 社区,此时安排的方法数为:1232C A 6×=种; ②若A 社区还有另外一名志愿者,则先选出这名志愿者有13C 种方法, 再将剩余2名志愿者分配到,B C 社区有22A 种方法,根据分步乘法计数原理可知②的安排方法数为:1232C A 6×=种, 所以一共有6612+=种安排方法, 故选:C.6. 已知B 是椭圆2213x y +=的上顶点,点M 是椭圆上的任意一点,则MB 的最大值为( )A. 2B.C.D.92【答案】C 【解析】【分析】设出M 点坐标,利用坐标表示出MB 并进行化简,再根据椭圆的有界性结合二次函数的性质求解出MB 的最大值.【详解】设()00,M x y ,()0,1B ,且220013x y +=,所以MB =,又因为[]01,1y ∈−,所以当012y =−时取最大值,所以max MB = 故选:C.7. 一枚硬币掷三次,已知一次正面朝上,那么另外两次都是反面朝上的概率为( ) A.17B.37C.18D.38【答案】B 【解析】【分析】先分析试验的基本事件总数,然后考虑“有一次正面朝上”的基本事件数,再分析“另外两次都是反面朝上”的基本事件数,根据基本事件数的比值可求结果.(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反),共8个, 有正面朝上的基本事件有:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),共7个, 其中有两次都是反面朝上的基本事件有: (正反反),(反正反),(反反正),共3个, 故所求概率为37, 故选:B.8. 已知抛物线2:8E x y =,直线:360l ax y a +−−=,过抛物线的焦点F 作直线l 的垂线,垂足为P ,若点Q 是拋物线E 上的动点,则FQ PQ +的最小值为( )A. 3B. 4C.72D.172【答案】C 【解析】【分析】通过直线l 过定点A ()3,6,得到P 在以AF 为直径的圆上,将Q 到P 的距离转化为到圆心的距离,再结合抛物线的定义即可求出FQ PQ +的最小值.【详解】因为直线:360l ax y a +−−=,即()-360a x y +−=,过定点()3,6,记作点A , 因为FP l ⊥,垂足为P ,所以90FPA ∠=°,又()0,2F , 故点P 的轨迹为以FA 为直径的圆,半径1522rFA =,圆心为3,42,记作点B , 又因为Q 在抛物线2:8E x y =上,其准线为=2y −, 所以FQ 等于Q 到准线的距离,过点Q 做准线的垂线,垂足为R ,要使FQ PQ +取到最小,即RQ PQ +最小, 此时,,,P Q R 三点共线,且三点连线后直线PR 过圆心B ,如图所示,此时()min574222FQ PQBR r +=−=+−=. .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 3名男生和3名女生站成一排,则下列结论中正确的有( ) A. 3名男生必须相邻的排法有144种 B. 3名男生互不相邻的排法有72种 C. 甲在乙的左边的排法有360种 D. 甲、乙中间恰好有2人的排法有144种【答案】ACD 【解析】【分析】A :利用捆绑法分析;B :利用插空法分析;C :先考虑6人全排列,然后甲在乙的左边的排法数占一半,由此求解出结果;D :先选2人与甲乙捆绑在一起,然后再看成3个元素全排列. 【详解】对于A :将3名男生捆绑在一起看成一个元素,所以排法有3434A A 144×=种,故A 正确;对于B :将3名男生放入到3名女生形成的4个空位中,所以排法有3334A A 144×=种,故B 错误; 对于C :3名男生和3名女生全排列,排法有66A 720=种, 其中甲在乙的左边的排法占总数的12,所以有17203602×=种排法,故C 正确; 对于D :先选2人与甲乙一起看成一个元素,再将此一个元素与剩余2人全排列,所以有排法223423A A A 144××=种,故D 正确; 故选:ACD.10. 二项式61)x−的展开式中( ) A. 前三项的系数之和为22 B. 二项式系数最大的项是第4项 C. 常数项为15D. 所有项的系数之和为64 【答案】BC 【解析】【分析】首先写出二项式展开式的通项,选项A 中根据通项求前三项系数之和即可;选项B 中二项式系数6C k(0,1,2,,6)k =…中最大的是36C ;选项C ,常数项满足通项中x 的指数为0,可得2k =;选项D 中将1x =代入即可.【详解】二项式61)x−展开式的通项为:()()36321661C 1C 0,1,2,,6kk kk kkk T x k x −−+ =⋅−=−=…; 对于选项A ,前三项的系数之和为:()()()0120126661C 1C 1C 10−+−+−=,A 错误;对于选项B ,二项式系数6C k (0,1,2,,6)k =…中最大的是36C ,恰好是第4项,B 正确;对于选项C ,常数项时,通项公式中满足3302k −=,得2k =,即3T =()22061C 15x −=,C 正确; 对于选项D ,将1x =代入,可得所有项的系数之和,结果为0,D 错误; 故选:BC.11. 盒子中有12个乒乓球,其中8个白球4个黄球,白球中有6个正品2个次品,黄球中有3个正品1个次品.依次不放回取出两个球,记事件=i A “第i 次取球,取到白球”,事件i B =“第i 次取球,取到正品”,1,2i =.则下列结论正确的是( )A. ()1123P A B =B. ()212P B =C. ()2113P A B = D. ()2134P B A =【答案】AD 【解析】【分析】利用古典概型的概率公式及排列组合数,求出()1P B ,()11P A B ,()2P B ,()21P A B ,()1P A ,()12P A B ,再利用条件概率公式即可判断各个选项.【详解】对A ,()193==124P B ,()1161==122P A B ,所以()()()111112==3P A B P A B P B ,故A 正确; 对B ,事件2B =“第2次取球,取到正品”,()2119392212A A A 3A 4P B +==,故B 错误; 对C ,事件21A B =“第1次取球,取到正品且第2次取球,取到白球”,包括(正白,正白),(正白,次白),(正黄,正白),(正黄,次白),共有65+62+36+32=66××××种情况,()21212661=A 2P A B =,故C 错误; 对D ,事件12A B =“第1次取球,取到白球且第2次取球,取到正品”,包括(白正,白正),(白正,黄正),(白次,白正),(白次,黄正),共有65+63+26+23=66××××种情况,()12212661=A 2P A B =,又因为()182==123P A ,()()()122113==4P A B P B A P A ,故D 正确; 故选:AD.12. 设12,F F 分别是双曲线22214x y b−=的左右焦点,过2F 的直线与双曲线的右支交于,A B 两点,12AF F △的内心为I ,则下列结论正确的是( ) A. 若1ABFB. 若直线OA 交双曲线的左支于点D ,则1//F D ABC. 若1,F H AI H ⊥为垂足,则2OH =D. 12AF F △的内心I 一定在直线4x =上 【答案】ABC 【解析】【分析】A :利用等边三角形性质以及双曲线定义得到,a c 关系式,则离心率可知;B :利用双曲线的对称性以及三角形的全等关系进行证明;C :根据角平分线的性质结合双曲线的定义求解出OH ;D :利用切线性质以及双曲线的定义进行求解.【详解】对于A :若1ABF 为正三角形,则AB x ⊥轴,由22221x c x y ab = −= 得2x cb y a = =± ,所以222b AF BF a ==, 由等边三角形性质可知:21222b AF AF a==,所以2122b AF AF a a −==, 所以22222a b c a ==−,所以2223c e a==,所以e =A 正确; 对于B :由双曲线的对称性可知OA OD =,如下图,又因为1212,OF OF DOF AOF =∠=∠,所以1DOF 与2AOF △全等, 所以12ODF OAF ∠=∠,所以1//F D AB ,故B 正确; 对于C :延长1F H 交AB 延长线于G ,如下图所示,由角平分线的性质可知1F AH GAH ∠=∠,且190,AHF AHG AH AH °∠===,所以1AHF 与AHG H GH =,所以H 为1F G 中点, 又因为O 为12F F 中点,所以212212222AG AF AF AF OH GF a −−=====,故C 正确; 对于D :设三个切点为,,M N P ,连接,,MI NI PI ,如下图,由切线性质可知:1122,,AM AN F M F P F PF N ===, 设OP x =,因为12121224AF AF F M AM AN F N F P F P a −=+−−=−==,所以()4c x c x +−−=,所以2x =, 所以12AF F △的内心I 一定在直线2x =上,故D 错误; 故选:ABC.【点睛】关键点点睛:本题考查双曲线性质的综合运用,涉及离心率、双曲线的对称性、焦点三角形的内切圆相关问题,对学生的分析与计算能力要求较高,难度较大.其中CD 选项在分析时,不仅要考虑内切圆的性质,同时需要考虑双曲线的定义,二者结合解决问题.三、填空题:本题共4小题,每小题5分,共20分.13. 某人忘记了他在一个网络平台的账户密码,而平台只允许试错三次,如果三次都试错,则账户就会锁定,无法继续试验.假设该用户每次能试中的概率为0.1,记试验的次数为X ,则()3P X ==______.【答案】0.81##81100【解析】【分析】试验次数为3X =,表示该用户前两次均试错,再利用相互独立事件的概率公式进行求解即可.【详解】试验的次数为3X =,表示该用户前两次均试错,所以()30.90.9=0.81P X ==×.故答案为:0.81.14. 已知抛物线2:8E y x =,焦点为,F A 在抛物线上,B 在y 轴上,且2=FA AB ,则AF =______. 【答案】83【解析】【分析】根据抛物线方程可知焦点坐标,根据向量共线可求A x ,结合焦半径公式可求AF . 【详解】因为2:8E y x =,所以()2,0F ,因为2=FA AB ,所以()22A B A x x x −=−, 因为B 在y 轴上,所以0B x =,所以23A x =, 所以282233A p AF x =+=+=, 故答案为:83. 的15. 某商店成箱出售玻璃杯,每箱装有10只.假设在各箱中有0,1,2只残次品的概率依次为0.6,0.25,0.15,顾客随机取出一箱,并从中取出4只查看,若无残次品,则买下该箱玻璃杯,否则退回.则顾客买下该箱玻璃杯的概率为______. 【答案】45##0.8 【解析】【分析】顾客买下这箱玻璃杯有3种情况:该箱中无残次品、该箱中有1只残次品、该箱中有2只残次品,然后由互斥事件的概率公式和全概率公式求解出结果.【详解】记事件B 为顾客买下该箱玻璃杯,事件i A 为取出的该箱中有i 只残次品,0,1,2i =,所以()()()0123130.6,0.25,0.155420P A P A P A ======, 且()()()4498012441010C C 311,,C 5C 3P B A P B A P B A =====, 由全概率公式可得:()()()()()()()001122P B P A P B A P A P B A P A P B A =++31331415452035=×+×+×=, 故答案为:45.16. 已知12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左右焦点,B 为椭圆C 的下顶点,直线1BF 交椭圆C 于另一点P ,且260PF B °∠=,则椭圆C 的离心率为______.##【解析】【分析】利用余弦定理先求解出1PF ,然后再利用相似关系求解出P 点坐标,将坐标代入椭圆方程可求结果.【详解】设()10PF x x =>,由题意可知12BF BF a ==, 所以2,2PB a x PF a x =+=−, 在2PBF 中由余弦定理可知:22222222cos 60PB PF BF PF BF °+−××,化简可得252ax a =,所以25x a =, 过P 作PQ x ⊥轴交于Q 点,如下图,易知1PQF △∽1BOF ,所以111125PQ QF PF OBOF BF ===, 所以122,55PQ b QF c ==,所以72,55P c b−, 将P 代入椭圆方程可得222249412525c b a b +=, 所以22237c e a ==,所以e =,. 四、解答题:本题共6小题,共70分,解答应写出文字说明、解答过程或演算步骤.17. 已知(2)n x +展开式中的第三项和第四项的二项式系数相等,且2012(2)+=++++ n n n x a a x a x a x .(1)求01a a +的值;(2)求0123(1)1112482n n na a a a a −−+−++ 的值. 【答案】(1)112 (2)24332【解析】【分析】(1)先根据二项式系数的性质求出n ,进而可求出答案; (2)令12x =−,即可得解 【小问1详解】因为(2)n x +展开式中的第三项和第四项的二项式系数相等, 所以23C C n n =,所以5n =, 则5(2)(2)n x x +=+,所以05145501C 2C 2112a a =⋅+⋅=+; 【小问2详解】 令12x =−, 则()501235522(1)11124324823n a a a a a x −−+−+++== , 即0123(1)111243248232n n na a a a a −−+−++= . 18. ABC 的顶点()()1,0,2,0,A B ABC −△的垂心(三条高交点)为()1,1H . (1)求顶点C 的坐标; (2)求ABC 的外接圆方程. 【答案】(1)()1,2(2)22115222x y −+−=【解析】【分析】(1)设(),C m n ,根据,BC AH AC BH ⊥⊥,结合斜率公式即可得解;.(2)设ABC 的外接圆方程为()()()2220x a y b r r −+−=>,利用待定系数法求出2,,a b r 即可. 【小问1详解】 设(),C m n ,由题意得,BC AH AC BH ⊥⊥,1,12AH BH k k ==−, 所以112211BC AH AC BHn k k m n k k m=⋅=− − =−=− +,解得12m n = = ,所以顶点C 的坐标为()1,2; 【小问2详解】设ABC 的外接圆方程为()()()2220x a y b r r −+−=>,则()()()()()()2222222221212a b r a b r a b r −−+−=−+−=−+−=,解得2121252a b r= = =, 所以ABC 的外接圆方程为22115222x y −+−=. 19. 如图,在四棱锥P ABCD −中,PA ⊥平面ABCD ,四边形ABCD 是矩形,1,2AB AP AD ==E ,F 分别是,AP BC 的中点.(1)求证://EF 平面PCD ;(2)求平面CDE 与平面FDE 夹角的余弦值.【答案】(1)证明过程见详解; (2【解析】【分析】(1)取PB 的中点G ,由面面平行的判定定理证明平面//EFG 平面PCD ,再由面面平行的性质定理可得//EF 平面PCD ;(2)由,,AB AD AP 两两垂直建立空间直角坐标系,分别求出平面CDE 与平面FDE 的法向量,m n,设平面CDE 与平面FDE 夹角为θ,由公式cos cos ,m nm n m nθ⋅==⋅即可得出结果. 【小问1详解】取PB 的中点G ,连结,EG FG ,因为E ,F 分别是,AP BC 的中点,所以//EG AB ,//FG PC , 又因为//AB CD ,所以//EG CD ,又因为EG ⊄平面PCD ,CD ⊂平面PCD ,所以//EG 平面PCD ; 同理可得//FG 平面PCD ,又因为平,,EG FG G EG FG ∩=面EFG ,所以平面//EFG 平面PCD , 又因为EF ⊂平面EFG ,所以//EF 平面PCD .,【小问2详解】因为PA ⊥平面ABCD ,四边形ABCD 是矩形,所以,,AB AD AP 两两垂直, 以,,AB AD AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设4=AD ,()2,4,0C ,()0,4,0D ,()0,0,1E ,()2,2,0F , ()2,0,0CD =− ,()0,4,1DE=− ,()2,2,0DF=−设平面CDE 的法向量(),,m x y z = ,所以2040CD m x DE m y z ⋅=−= ⋅=−+=, 取0,1,4x y z ===,所以()0,1,4m =; 设平面FDE 的法向量(),,n a b c = ,所以22040DF n a b DE n b c ⋅− ⋅=−+=, 取1,1,4a b c ===,所以()1,1,4n =, 设平面CDE 与平面FDE 夹角为θ,cos cos ,m n m n m nθ⋅∴===⋅, 故平面CDE 与平面FDE20. 已知抛物线2:2(0)C y px p =>,点()1,1M −到焦点F直线l 与抛物线C 交于,A B 两点,设直线,MA MB 斜率分别为12,k k . (1)求p ;(2)若121k k +=−,证明直线l 过定点,并求出满足条件的定点坐标. 【答案】(1)2p =(2)证明见解析,定点坐标()1,0 【解析】【分析】(1)根据两点间距离公式表示出MF ,由此可求p 的值;(2)根据直线l 的斜率是否存在进行分类讨论,斜率存在时,通过联立直线与抛物线得到横坐标的韦达定理形式,然后化简条件等式,得到,k m 的关系式即可求解出所过定点坐标,斜率不存在时直接分析即可. 【小问1详解】 因为,02p F,()1,1M −,所以MF =,解得2p =;【小问2详解】当直线l 的斜率存在时,由题意可知直线l 的斜率不为0,设:l y kx m =+,()()1122,,,A x y B x y , 联立24y kx m y x =+ =可得()222240k x km x m +−+=, 且()2222440km k m ∆=−−>,即1km <,所以212122242,km m x x x x k k−+==, 所以1212121212111111111y y kx m kx m k k x x x x −−+−+−+=+=+=−++++, 所以1212121111211111kx k m k kx k m k m k m kk x x x x ++−−++−−−−−−+=++=−++++,所以()()()()()12122111120k x x m k x x ++++−−++=, 所以()()()()121212211120k x x x x m k x x +++++−−++=, 代入韦达定理化简可得:()()40m k m k −++=, 当0m k +=时,:l y kx k =−,即():1l y k x =−过定点()1,0, 当40m k −+=时,():14l y k x =+−过定点()1,4−−; 当直线l 的斜率不存在时,设:l x n =,由24x n y x == 得x n y = =±,所以121k k +=−,解得1n =,所以:1l x =,此时l 过点()1,0;综上,由l 的斜率存在和斜率不存在的两种情况可知,l 过定点()1,0.【点睛】方法点睛:圆锥曲线中过定点问题的两种求解方法:(1)若设直线方程为y kx m =+或x ky m =+,则只需要将已知条件通过坐标运算转化为,m k 之间的线性关系,再用m 替换k 或用k 替换m 代入直线方程,则定点坐标可求;(2)若不假设直线的方程,则需要将直线所对应线段的两个端点的坐标表示出来,然后选择合适的直线方程形式表示出直线方程,由此确定出定点坐标.21. 某商场为了促销规定顾客购买满500元商品即可抽奖,最多有3次抽奖机会,每次抽中,可依次获得10元,30元,50元奖金,若没有抽中,则停止抽奖.顾客每次轴中后,可以选择带走所有奖金,结束抽奖;也可选择继续抽奖,若没有抽中,结束抽奖.小李购买了500元商品并参与了抽奖活动,己知他每次抽中的概率依次为211,,323,如果第一次抽中选择继续抽奖的概率为23,第二次抽中选择继续抽奖的概率为14,且每次是否抽中互不影响. (1)求小李第一次抽中且所得奖金归零的概率;(2)设小李所得奖金总数为随机变量X ,求X 的分布列. 【答案】(1)727(2)答案见解析 【解析】【分析】(1)设出事件,分两种情况讨论:第一次抽中但第二次没抽中,前两次抽中但第三次没抽中,结合独立事件和互斥事件的概率计算公式求解出结果;(2)先分析X 的可能取值,然后计算出对应概率,由此可求X 的分布列. 【小问1详解】记小李第i 次抽中为事件()1,2,3i A i =,则有()()()123211,,323P A P A P A ===,且123,,A A A 两两互相独立,记小李第一次抽中但奖金归零为事件A , 则()()()12123221221117113323324327P A P A A P A A A =+=××−+××××−= ; 【小问2详解】由题意可知X 的可能取值为:0,10,40,90,()()21601327P X P A ==+−= ,()222101339P X ==×−= ,()2211140133246P X ==×××−= , ()221111903324354P X ==××××=, 所以X 的分布列为:22.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b −=>>()2,2.(1)求双曲线C 的标准方程;(2)圆224x y +=的切线l 与双曲线C 相交于,A B 两点. (ⅰ)证明:OA OB ⊥; (ⅱ)求OAB 面积的最小值.【答案】(1)22124x y −=(2)(ⅰ)证明过程见解析;(ⅱ)4 【解析】【分析】(1)待定系数法求解双曲线方程;(2)(ⅰ)考虑切线l 斜率为0和不为0两种情况,设出切线方程x my t =+,联立双曲线方程,得到两根之和,两根之积,求出0OA OB ⋅=得到垂直关系;(ⅱ)在(ⅰ)的基础上,求出当切线l 的斜率为0时的三角形面积,再得到切线l 的斜率不为0时OAB 面积表达式,求出其取值范围,得到面积的最小值. 【小问1详解】由题意得ca =()2,2代入双曲线中得22441a b−=, 又222c a b =+,解得222,4a b ==, 故双曲线C 的标准方程为22124x y −=;【小问2详解】(ⅰ)当切线l 的斜率为0时,方程为2y =±,不妨设2y =,此时222124x −=,解得2x =±,不妨设()()2,2,2,2A B −,则()()2,22,2440OA OB ⋅=−⋅=−+= ,所以OA OB ⊥;当切线斜率不为0时,设为x t =,2=,故2244t m =+,联立x my t =+与22124x y −=得,()222214240m y mty t −++−=, 则()()22222210Δ16424210m m t t m −≠=−−−> ,又2244t m =+,解得m ≠ 设()()1122,,,A x y B x y ,则2121222424,2121mt t y y y y m m −−+==−−, 故()()()2212121212x x my t my t m y y mt y y t =++=+++,故()()22121212121x x y y y O O m y m B t t A y y ⋅=+=++++的()222222222222222222442424421212121t m t t m t m m t m t t m t m m m −−+−−+−=+−+=−−− 22244021t m m −−=−, 故OA OB ⊥;(ⅱ)当切线l 斜率为0时,OAB的面积为11422OA OB =×=, 当切线斜率不为0时,AB=, 因为2244t m =+,点O 到切线AB 的距离为2,故122OAB S AB =×= 当2210m −>时,令2210m t −=>,则212t m +=,故OAB S = , 因为0t >,所以4OAB S => , 同理,当0t >时,4OAB S >,综上,OAB 面积的最小值为4. 的【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.。
黑龙江省鹤岗市第一中学2018-2019学年高二上学期期末考试数学(理)试题(解析版)

鹤岗一中2018-2019学年度上学期期末考试高二数学试卷(理科)一、单选题。
1.命题“,使”的否定为()A. ,使B. ,使C. ,D. ,【答案】D【解析】因为命题“”的否定为“”,所以命题“,使”的否定为,,选D.点睛:1.命题的否定与否命题区别“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论. 2命题的否定的注意点(1)注意命题是全称命题还是存在性命题,是正确写出命题的否定的前提;(2)注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定;(3)注意“或”“且”的否定,“或”的否定为“且”,且”的否定为“或”.2. “a>0”是“|a|>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:本题主要是命题关系的理解,结合|a|>0就是{a|a≠0},利用充要条件的概念与集合的关系即可判断.解:∵a>0⇒|a|>0,|a|>0⇒a>0或a<0即|a|>0不能推出a>0,∴a>0”是“|a|>0”的充分不必要条件故选A考点:必要条件.3.有50件产品,编号为0,1,2,…,49,现从中抽取5个进行检验,用系统抽样的方法抽取样本的编号可以为( )A. 5,10,15,20,25B. 5,13,21,29,37C. 8,22,23,1,20D. 1,11,21,31,41【解析】试题分析:系统抽样首先按照一定顺序分成5组每组10个个体,在每组中抽取样本抽取的样本间隔为10;所以选D. 考点:系统抽样.4.已知x、y的取值如下表所示:若从散点图分析,y与x线性相关,且,则的值等于()A. 2.6B. 6.3C. 2D. 4.5【答案】A【解析】试题分析:若与线性相关,则样本点中心必在回归直线上,由表中数据,,,将点代入回归方程,得,解得,故选A.考点:线性回归方程中,样本点中心在回归直线上.5.与二进制数相等的十进制数是()A. 6B. 7C. 10D. 11【答案】A【解析】由题意,110(2)=1×22+1×21+0×20=6,故选A.6.下列说法中,正确的是()A. 数据5,4,4,3,5,2的众数是4B. 一组数据的标准差是这组数据的方差的平方C. 数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D. 频率分布直方图中各小长方形的面积等于相应各组的频数【答案】C【解析】试题分析:A选项众数为4、5;B选项应该是方差是标准差的平方;C正确;D选项频率分布直方图中各小长方形的面积等于相应各组的频率.7.5个人站成一排,若甲、乙两人之间恰有1人,则不同的站法数有()A. 18B. 26C. 36D. 48【答案】C【解析】试题分析:先排列其余三人后甲乙两人插空,所以有种考点:排列问题8.在面积为的的边上任取一点,则的面积大于的概率是( )A. B. C. D.【答案】B【解析】试题分析:△的面积大于只需|PB|>,所以概率考点:几何概型9.已知的展开式中没有常数项,则n不能是()A. 5B. 6C. 7D. 8【答案】D【解析】【分析】本题首先可以根据解出二项式的通项,再对通项进行化简,然后通过展开式中没有常数项可知,不能为0,最后将选项依次代入,得出结果。
四川省宜宾市2023-2024学年高二上学期期末数学试题含解析

宜宾2023年秋期高二期末考试数学试题(答案在最后)本试卷共4页,22小题,满分150分.考试用时120分钟.第I 卷选择题(60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线20x ++=的倾斜角为()A.150︒B.120︒C.60︒D.30︒【答案】A 【解析】【分析】有直线倾斜角和斜率的关键即可得解.【详解】由题意直线20x ++=的斜率为3k ==-,所以直线20x ++=的倾斜角为150︒.故选:A.2.直线4350x y -+=与直线8650x y -+=的距离为()A.15B.14C.13D.12【答案】D 【解析】【分析】求平行直线的距离要先将两直线一般式的,A B 化为一样,再利用平行线间距离公式d 计算即可.【详解】先由4350x y -+=化得86100x y -+=,所以两直线间的距离为:51=102d .故选:D.3.在一次体检中,发现甲、乙两个单位的职工中体重超过75kg 的人员的体重如下(单位:kg ).若规定超过80kg 为显著超重,从甲、乙两个单位中体重超过75kg 的职工中各抽取1人,则这2人中,恰好有1人显著超重的概率为()A.14B.38C.12D.58【答案】B 【解析】【分析】列举出所有选取的情况,再找出满足题意的情况,根据古典概型的概率计算公式即可求解.【详解】不妨用(),x y 表示每种抽取情况,其中x 是指甲单位抽取1人的体重,y 代表从乙单位抽取1人的体重.则所有的可能有16种,如下所示:()78,79,()78,83,()78,92,()78,92,()88,79,()88,83,()88,92,()88,92,()92,79,()92,83,()92,92,()92,92,()93,79,()93,83,()93,92,()93,92其中满足题意的有6种:()78,83,()78,92,()78,92,()88,79,()92,79,()93,79故抽取的这2人中,恰好有1人显著超重的概率为:63168=.故选:B .4.椭圆221y x m+=的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为()A.12B.2C.14D.4【答案】D 【解析】【分析】根据椭圆标准方程的形式,求出,a b ,根据2a b =,解出m 的值即可.【详解】椭圆221y x m +=的焦点在y 轴上,∴221y x m+=,可得a m =1b =.∵长轴长是短轴长的2倍,2m =,解得4m =故选:D.5.圆()22125C x y ++=,圆()2222(2)5C x y -+-=,则圆1C 与圆2C 的位置关系为()A.相交B.相离C.内切D.外切【答案】D 【解析】【分析】求出两圆圆心以及半径,再由圆心距与两圆半径的关系确定位置关系.【详解】由题意圆1C 的圆心1(2,0)C -,半径1r =2C 的圆心2(2,2)C ,半径2r =1212C C r r ===+,即两圆外切故选:D6.如图,某圆锥SO 的轴截面SAC 是等边三角形,点B 是底面圆周上的一点,且60BOC ∠=︒,点M 是SA 的中点,则异面直线AB 与CM 所成角的余弦值是()A.13B.74C.34D.32【答案】C 【解析】【分析】建立空间直角坐标系,分别得到,AB CM,然后根据空间向量夹角公式计算即可.【详解】以过点O 且垂直于平面SAC 的直线为x 轴,直线OC ,OS 分别为y 轴,z 轴,建立如图所示的空间直角坐标系.不妨设2OC =,则根据题意可得()0,2,0A -,)3,1,0B,()0,2,0C ,(0,3M -,所以)3,3,0AB =,(0,3CM =-,设异面直线AB 与CM 所成角为θ,则()3033033cos cos ,43993AB CM θ⨯+⨯-+⨯==+⋅+.故选:C .7.倾斜角为30的直线l 经过双曲线()2222100x y a b a b-=>,>的左焦点1F ,交双曲线于,A B 两点,线段AB 的垂直平分线过右焦点2F ,则此双曲线的渐近线方程为()A.y x =±B.12y x =±C.32y x =±D.52y x =±【答案】A 【解析】【分析】由垂直平分线性质定理可得22AF BF =,运用解直角三角形知识和双曲线的定义,求得4AB a =,结合勾股定理,可得a ,c 的关系,进而得到a ,b 的关系,即可得到所求双曲线的渐近线方程.【详解】解:如图2MF 为线段AB 的垂直平分线,可得22AF BF =,且1230MF F ∠=,可得22sin30MF c c=⋅=,12cos303MF c c =⋅=,由双曲线的定义可得122BF BF a -=,212AF AF a -=,即有()1122224AB BF AF BF a AF a a =-=+--=,即有2MA a =,2AF ==,112AF MF MA a =-=-,由212AF AF a -=,可得)22a a --=,可得22243a c c +=,即c =,b a ==,则渐近线方程为y x =±.故选A.【点睛】本题考查双曲线的方程和性质,渐近线方程的求法,考查垂直平分线的性质和解直角三角形,注意运用双曲线的定义,考查运算能力,属于中档题.8.正项数列{}n a 的前n 项和为n S ,112n n n S a a ⎛⎫=+ ⎪⎝⎭,则12100111S S S ⎡⎤+++=⎢⎥⎣⎦ ()其中[]x 表示不超过x 的最大整数.A.18 B.17 C.19 D.20【答案】A 【解析】【分析】讨论1n =、2n ≥,根据,n n a S 关系可得2211n n S S --=且211S =,应用等差数列通项公式求得=n S,利用放缩法有1nS -<<,注意不等式右侧2n ≥,进而根据[]x 的定义求目标式的值.【详解】当1n =时,111111()2a S a a ==+,整理得211a =,又0n a >,故111a S ==,当2n ≥时,11112n n n n n S S S S S --⎛⎫=-+ ⎪-⎝⎭,可得2211n n S S --=,而211S =,所以2{}n S 是首项、公差均为1的等差数列,则2n S n =,又0n S >,故=n S ,12nS=<=,即1nS>,同理可得1nS<且2n≥,1210011121...1)S S S+++>⨯-++=-18>,1210011121 (119)S S S+++<⨯-++++=,综上,1210011118S S S⎡⎤+++=⎢⎥⎣⎦.故选:A【点睛】关键点点睛:首先利用,n na S关系及构造法求nS通项公式,再由放缩法及函数新定义求目标式的值.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线l的方程为10x y+-=,则下列说法正确的是()A.直线l的斜率为1B.直线l的倾斜角为45︒C.直线l不经过第三象限D.直线l与两坐标轴围成的三角形面积为12【答案】CD【解析】【分析】对于A,根据直线方程直接求解斜率判断,对于B,由斜率与倾斜角的关系求解判断,对于C,由直线方程求出直线与坐标轴的交点进行判断,对于D,求出直线与坐标轴的交点后,利用三角形的面积公式求解判断.【详解】对于A,由10x y+-=,得1y x=-+,则直线l的斜率为1-,所以A错误,对于B,由选项A可知直线l的斜率为1-,则直线l的倾斜角为135︒,所以B错误,对于C,当0x=时,1y=,当0y=时,1x=,所以直线l过点(0,1)和(1,0),所以直线l不经过第三象限,所以C正确,对于D ,因为直线l 过点(0,1)和(1,0),所以直线l 与两坐标轴围成的三角形面积为111122⨯⨯=,所以D 正确,故选:CD.10.一个装有8个球的口袋中,有标号分别为1,2的2个红球和标号分别为1,2,3,4,5,6的6个蓝球,除颜色和标号外没有其他差异.从中任意摸1个球,设事件A =“摸出的球是红球”,事件B =“摸出的球标号为偶数”,事件C =“摸出的球标号为3的倍数”,则()A.事件A 与事件C 互斥B.事件B 与事件C 互斥C.事件A 与事件B 相互独立D.事件B 与事件C 相互独立【答案】ACD 【解析】【分析】根据互斥事件的概念可判断AB 的正误,根据独立事件的判断方法可得CD 的正误.【详解】对AB ,若摸得的球为红球,则其标号为1或2,不可能为3的倍数,故事件A 与事件C 互斥,故A 正确;若摸得的球的标号为6,则该标号为3的倍数,故事件B 与事件C 不互斥,故B 错误;对C ,21411(),(),()()()84828P A P B P AB P A P B ======⋅,所以C 正确;对D ,211(),()()()848P C P BC P B P C ====⋅,所以D 正确;故选:ACD .11.已知直线:220l kx y kp --=与抛物线2:2(0)C y px p =>相交于,A B 两点,点()1,1M --是抛物线C 的准线与以AB 为直径的圆的公共点,则下列结论正确的是()A.4p =B.2k =-C.5AB =D.MAB △的面积为【答案】BC 【解析】【分析】求出抛物线C 的准线方程,可求得p 的值,可判断A ;利用点差法可求得线段AB 的中点坐标,根据勾股定理列等式可求得k 的值,可判断B ;利用抛物线的焦点弦长公式以及三角形的面积公式可判断C 、D.【详解】由题意知,抛物线C 的准线为=1x -,即12p=,解得2p =,故A 错误;所以抛物线的方程为24y x =,其焦点为()1,0F ,又直线:220l kx y kp --=,即()1y k x =-,所以直线l 恒过抛物线的焦点()1,0F ,设点()()1122,,,A x y B x y ,因为,A B 两点在抛物线上,联立方程21122244y x y x ⎧=⎨=⎩,两式相减可得1212124y y k x x y y -==-+,设AB 的中点为()00,Q x y ,则02y k=,因为点()00,Q x y 在直线l 上,解得0221x k =+,所以点2221,Q k k ⎛⎫+⎪⎝⎭是以为AB 直径的圆的圆心,由抛物线的定义知,圆Q 的半径012222222222AB x x x r k+++====+,因为222222221QM r k k ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭,解得2k =-,故B 正确;因为2k =-,所以25AB r ==,故C 正确;因为直线l 为()21y x =--,由点到直线的距离公式可得,点M 到直线l的距离为d ==,所以122MAB S d AB =⋅=,故D 错误;故选:BC.12.在棱长为2的正方体1111ABCD A B C D -中,点P 满足1AP AA AB λ=+,点Q 满足()1AQ AA AB AD μ=++,其中][0,1,0,1λμ⎡⎤∈∈⎣⎦,则下列选项正确的是()A.,P Q 的轨迹长度相等B.PQC.存在,P Q ,使得DP BQ ⊥D.DP 与DQ所成角的余弦值的最大值为3【答案】BCD 【解析】【分析】根据空间向量运算法则求得点P 和点Q 的轨迹及长度判断A ,建立空间直角坐标系,利用空间中两点距离公式及配方法求解最值判断B ,利用向量垂直的坐标运算判断C ,利用向量夹角的坐标公式求解余弦值的函数,然后利用二次函数求得最值判断D.【详解】连接11,AC A C ,因为[]1,0,1AP AA AB λλ=+∈,所以1P BB ∈,所以点P 的轨迹长度为2.因为()11AQ AA AB AD AA AC μμ=++=+,所以11Q AC ∈,所以点Q的轨迹长度为,故A 错误;如图,以D 为坐标原点,1,,DA DC DD的方向分别为,,x y z轴的正方向建立空间直角坐标系,则()()2,2,2,22,2,2P Q λμμ-,所以PQ ==当11,2λμ==时,min PQ =B 正确;因为()()()2,2,0,2,2,2,2,22,2B DP BQ λμμ==--,所以444444DP BQ μμλλ⋅=-+-+=-,当1λ=时,0DP BQ ⋅=,即DP BQ ⊥,所以C 正确;因为()()2,2,2,22,2,2DP DQ λμμ==-,所以cos ,DP DQ DP DQ DP DQ⋅〈〉==,=,因为223211213(1)1133λλλ⎛⎫-+=-+⎪+++⎝⎭,且[]11,2λ+∈,所以当1112λ=+,即1λ=时,2321(1)1λλ-+++有最大值,最大值为3,所以当11,2λμ==时,cos,DP DQ〈〉的最大值为333⨯=,故D正确.故选:BCD【点睛】方法点睛:求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)的余弦值,即可求出结果.第II卷非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.过点)(2,5P且与直线1x y+=垂直的直线方程为______.【答案】30x y-+=【解析】【分析】先设出与直线1x y+=垂直的直线方程,再把)(2,5P代入进行求解.【详解】设与直线1x y+=垂直的直线为0x y c-+=,将)(2,5P代入得:250c-+=,解得:3c=,故所求直线方程为30x y-+=.故答案为:30x y-+=14.抛掷一枚质地均匀的骰子(骰子的六个面上分别标有1、2、3、4、5、6个点)一次,观察掷出向上的点数,设事件A为“向上的为奇数点”,事件B为“向上的为4点”,则()P A B=______.【答案】23【解析】【分析】由古典概型的概率求()P A 、()P B ,根据互斥事件有()()()P A B P A P B =+ ,即可得结果.【详解】由题设,事件A 的基本事件有{1,3,5},事件B 的基本事件为{4},而抛掷一次的所有可能事件有{1,2,3,4,5,6},所有31()62P A ==,1()6P B =,则()2()()3P A B P A P B =+= .故答案为:2315.某公司产品研发部为了激发员工的工作积极性,准备在年终奖的基础上再增设18个“幸运奖”,投票产生“幸运奖”,按照得票数(假设每人的得票数各不相同)排名次,发放的奖金数从多到少依次成等差数列.已知第1名发放900元,前10名共发放6750元,则该公司需要准备“幸运奖”______元.【答案】8550【解析】【分析】根据等差数列的通项公式和前n 项和公式即可计算.【详解】设第1名,第2名,…,第18名所得奖金数分别为1a 元,2a 元,…,18a 元,等差数列{}n a 的公差为d ,前n 项和为n S ,依题意可知1900a =,10110456750S a d =+=,解得50d =-,则18118171885502S a d ⨯=+=,故该公司需要准备“幸运奖”8550元.故答案为:8550.16.若对于圆22:2220C x y x y +---=上任意的点A ,直线:4380l x y ++=上总存在不同两点M ,N ,使得90MAN ∠≥︒,则MN 的最小值为______.【答案】10【解析】【分析】将问题转化为直线:4380l x y ++=上任意两点为直径的圆包含圆C ,结合直线上与圆C 最近的点,与圆上点距离的范围,即可确定MN 的最小值.【详解】由题设圆22:(1)(1)4C x y -+-=,故圆心(1,1)C ,半径为2r =,所以C 到:4380l x y ++=的距离3d r ==>,故直线与圆相离,故圆C 上点到直线:4380l x y ++=的距离范围为[1,5],圆C 上任意的点A ,直线:4380l x y ++=上总存在不同两点M 、N ,使90MAN ∠≥︒,即以MN 为直径的圆包含圆C ,至少要保证直线上与圆C 最近的点,与圆上点距离最大值为半径的圆包含圆C ,所以10MN ≥.故答案为:10四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.为了了解某市今年高二年级男生的身体素质情况,从该市高二年级男生中抽取一部分进行“立定跳远”项目测试.立定跳远距离(单位:cm )小于195时成绩为不合格,在[)195,240上时成绩及格,在[)240,255上时成绩为良好,不小于255时成绩为优秀.把获得的所有数据分成以下5组:[)175,195,[)195,215,[)215,235,[)235,255,[]255,275,画出频率分布方图如图所示,已知这次测试中有2名学生的成绩为不及格.(1)求这次测试中成绩为及格或良好的学生人数;(2)若从这次测试成绩为优秀和不及格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生中至少1人成绩为不级格的概率.【答案】(1)44人(2)35【解析】【分析】(1)应用频率分布直方图计算及格或良好的学生人数;(2)根据古典概型计算可得.【小问1详解】由题意可知抽取进行测试的人数为:()20.0022050÷⨯=故测试中成绩为及格或良好的学生人数为()0.0110.0130.020205044++⨯⨯=人【小问2详解】测试中成绩为优秀的有500.004204⨯⨯=人,记作1A ,2A ,3A ,4A 成绩为不及格的有500.002202⨯⨯=人,记作甲,乙从这6人随机抽取2人的所有基本事件有{}12,A A ,{}13,A A ,{}14,A A ,{}1,A 甲,{}1,A 乙,{}23,A A ,{}24,A A ,{}2,A 甲,{}2,A 乙,{}34,A A ,{}3,A 甲,{}3,A 乙.{}4,A 甲,{}4,A 乙,{甲,乙},共15个,其中至少有一人不及格的基本事件有{}1,A 甲,{}2,A 甲,{}3,A 甲,{}4,A 甲,{甲,乙},{}1,A 乙,{}2,A 乙,{}3,A 乙,{}4,A 乙,共9个.故所抽取的2名学生中至少1人成绩为不及格的概率是93155P ==.18.已知圆22:25C x y +=和圆外一点()3,6P .(1)若过点P 的直线截圆C 所得的弦长为8,求该直线的方程;(2)求2286x y x y +--的最大值和最小值.【答案】(1)3x =或34150x y -+=(2)最大值为75;最小值为-25【解析】【分析】(1)根据直线斜率是否存在进行分类讨论,结合弦长求得直线的方程.(2)根据“两点间的距离”求得正确答案.【小问1详解】当过P 的直线斜率不存在时,直线方程为3x =,由22325x x y =⎧⎨+=⎩解得4y =或4y =-,则弦长为8,符合题意.当过P 的直线斜率存在时,设直线的方程为()63y k x -=-,即630kx y k -+-=,圆22:25C x y +=的圆心为()0,0,半径为5,设圆心()0,0到直线630kx y k -+-=的距离为()0d d >,则22285,32d d ⎛⎫+== ⎪⎝⎭,3=,解得34k =,直线方程为396044x y -+-=,即34150x y -+=.【小问2详解】()()2222864325x y x y x y +--=-+--,表示圆上的点(),x y 到点()4,3的距离的平方减去25,点()4,3在圆22:25C x y +=上,所以圆上的点(),x y 到点()4,3的距离的平方的取值范围是20,10⎡⎤⎣⎦即[]0,100,所以()()2222864325x y x y x y +--=-+--的取值范围是[]25,75-,所以2286x y x y +--的最大值为75,最小值为25-.19.在平面直角坐标系xOy 中,已知抛物线2:2C y px =(0p >)的焦点F 到双曲线2213xy -=的渐近线的距离为1.(1)求抛物线C 的方程;(2)若不经过原点O 的直线l 与抛物线C 交于A 、B 两点,且OA OB ⊥,求证:直线l 过定点.【答案】(1)28y x =(2)证明见解析【解析】【分析】(1)求出双曲线的渐近线方程,由点到直线距离公式可得参数p 值得抛物线方程;(2)设直线方程为x ty m =+,1122(,),(,)A x y B x y ,直线方程代入抛物线方程后应用韦达定理得1212,y y y y +,代入0OA OB ⋅=可得m 值,得定点坐标.【小问1详解】已知双曲线的一条渐近线方程为x =,即0x -=,抛物线的焦点为(,0)2p,所以1=,解得4p =(因为0p >),所以抛物线方程为28y x =;【小问2详解】由题意设直线l 方程为x ty m =+,设1122(,),(,)A x y B x y .由28x ty m y x=+⎧⎨=⎩得2880y ty m --=,128y y t +=,128y y m =-,又OA OB ⊥,所以12120OA OB x x y y ⋅=+=,所以22121212121212()()(1)()x x y y ty m ty m y y t y y tm y y m+=+++=++++2228(1)80m t t m m =-+++=,直线不过原点,0m ≠,所以8m =.所以直线l 过定点(8,0).20.已知在多面体ABCDE 中,DE AB ∥,AC BC ⊥,24BC AC ==,2AB DE =,DA DC =且平面DAC ⊥平面ABC.(1)设点F 为线段BC 的中点,试证明EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60 ,求二面角B AD C --的余弦值.【答案】(1)证明见解析(2)34【解析】【分析】(1)由四边形DEFO 为平行四边形.∴//EF DO ,再结合DO ⊥平面ABC ,即可证明EF ⊥平面ABC ;(2)由空间向量的应用,建立以O 为原点,OA 所在直线为x 轴,过点O 与CB 平行的直线为y 轴,OD 所在直线为z 轴的空间直角坐标系,再求出平面ADC 的法向量()0,1,0m =,平面ADB的法向量()n =,再利用向量夹角公式求解即可.【小问1详解】取AC 的中点O ,连接EF ,OF ,∵在DAC △中DA DC =,∴DO AC ⊥.∴由平面DAC ⊥平面ABC ,且交线为AC ,DO ⊂平面DAC ,得DO ⊥平面ABC .∵O ,F 分别为AC ,BC 的中点,∴//OF AB ,且2AB OF =.又//DE AB ,2AB DE =,∴//OF DE ,且OF DE =.∴四边形DEFO 为平行四边形.∴//EF DO ,∴EF ⊥平面ABC .【小问2详解】∵DO ⊥平面ABC ,,AC BC ⊂ABC 平面,所以,DO AC DO BC ⊥⊥,又因为ACBC ⊥,所以,,DO AC BC 三者两两互相垂直,∴以O 为原点,OA 所在直线为x 轴,过点O 与CB 平行的直线为y 轴,OD 所在直线为z 轴,建立空间直角坐标系.则()1,0,0A ,()1,0,0C -,()1,4,0B -.∵EF ⊥平面ABC ,∴直线BE 与平面ABC 所成的角为60EBF ∠= .∴tan 60DO EF BF ===o.∴(0,0,D .可取平面ADC 的法向量()0,1,0m =,设平面ADB 的法向量(),,n x y z = ,()2,4,0AB =-,(1,0,AD =-uuu r ,则240x y x -+=⎧⎪⎨-+=⎪⎩,取1z =,则x =y =.∴()n = ,∴cos ,4m n m n m n⋅==u r ru r r u r r ,∴二面角B AD C --的余弦值为4.21.已知数列{}n a 的前n 项的和为n S ,且()2364N n n S a n n ++=+∈.(1)求证:数列{}3n a -是等比数列;(2)求数列{}n na 的前n 项和.【答案】(1)证明见解析.(2)()3152532522454nn n n +⎛⎫⎛⎫++-⎪⎪⎝⎭⎝⎭.【解析】【分析】(1)先求得12a =,当2n ≥时,利用,n n S a 的关系可推得1536n n a a --=,利用等比数列定义即可证明结论;(2)由(1)可得n a 的表达式,继而可得n na 的表达式,利用分组求和以及错位相减法,即可求得答案.【小问1详解】证明:当1n =时,1112364,2S a a +=+∴=,当2n ≥时,有1123642362n n n n S a n S a n --+=+⎧⎨+=-⎩,两式相减得112365363,n n n n n a a a a a ---=∴-=+,故()13335n n a a --=-,则30n a -≠,否则与12a =矛盾,故1133,3135n n a a a --=-=--,所以数列{}3n a -是以1-为首项,35为公比的等比数列;【小问2详解】由(1)可得11133,,33133555n n n n n n a a na n n ---⎛⎫⎛⎫⎛⎫-=-⨯=-=-⋅ ⎪ ⎪⎪⎝⎭⎝⎝⎭∴⎭∴,设数列{}n na 的前n 项和为n T ,则()()3131232n n n n n T n W W +=++++-=- ,其中012133331235555n n W n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,①,两边同乘以35得()231333333231555555n nn W n n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++-+ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,②,由①-②得213233333553513555555225115nn n n nn W n n n -⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++--=-+ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝=-⎭- ,2552534245nn W n ⎛⎫⎛⎫∴=-+ ⎪⎪⎝⎭⎝⎭,所以()3152532522454nn n n n T +⎛⎫⎛⎫=++-⎪⎪⎝⎭⎝⎭.22.已知椭圆()2222:10,0x y C b bαα+=>>的左、右两焦点分别为()()121,0,1,0F F -,椭圆上有一点A 与两焦点的连线构成的12AF F △中,满足1221π7π,1212AF F AF F ∠=∠=(1)求椭圆C 的方程;(2)设点,,B C D 是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称,设直线,,,BC CD OB OC 的斜率分别为1234,,,k k k k ,且1234k k k k ⋅=⋅,求22OB OC +的值.【答案】(1)2212x y +=(2)223OB OC +=【解析】【分析】(1)由正弦定理与两角和与差的正弦公式化简求解(2)设1122(,),(,)B x y C x y ,得11(,)D x y --,求出1234,,,k k k k ,由1234k k k k =可得22121y y +=,再计算22OB OC +可得.【小问1详解】在12AF F △中,由正弦定理得:1227πππ3sin sin sin12123AF AF ===1437πsin 312AF =,243πsin 312AF =,所以12437ππ43ππππ2sin sin sin sin 23121233434a AF AF ⎡⎤⎛⎫⎛⎫⎛⎫=+=+=++-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦解得a =1b =,所以椭圆C 的方程为:2212x y +=.【小问2详解】设()()1122,,,B x y C x y ,则()11,D x y --.由22212221212112222221212121111222x x y y y y y y k k x x x x x x x x --+-+-⋅=⋅===--+--,所以341212k k k k ==-,即12341212y y k k x x ⋅==-,于是有()()22222212121222224x x y y yy ⋅=-⋅-=⋅,即22121y y +=()()2222222222221122112212222243OB OC x y x y y y y y y y ∴+=+++=-++-+=--=。
四川省成都市2022-2023学年高二上学期1月期末考试理科数学试题及答案

高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。
2021-2022年高二数学上学期期末试卷 理(含解析)

2021-2022年高二数学上学期期末试卷理(含解析)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={x|3≤x<7},B={x|x2﹣7x+10<0},则∁R(A∩B)=()A.(﹣∞,3)∪(5,+∞)B.(﹣∞,3)∪∪∪(5,+∞)2.(5分)若,则下列结论不正确的是()A.a2<b2B.|a|﹣|b|=|a﹣b| C. D.ab<b23.(5分)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C.D.4.(5分)设{an }是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.5.(5分)已知如程序框图,则输出的i是()A.9 B.11 C.13 D.156.(5分)已知θ是三角形的一个内角,且sinθ+cosθ=,则x2sinθ﹣y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线7.(5分)方程|x|(x﹣1)﹣k=0有三个不相等的实根,则k的取值范围是()A.B.C.D.8.(5分)对于任意实数x,符号表示x的整数部分,即是不超过x的最大整数,例如=2;=2;=﹣3,这个函数叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么+++…+的值为()A.21 B.76 C.264 D.642二、填空题(每小题5分,共30分)9.(5分)在△ABC中∠A=60°,b=1,S△ABC=,则=.10.(5分)为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为11.(5分)已知f(x)=则不等式x+(x+2)•f(x+2)≤5的解集是.12.(5分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.13.(5分)设点O为坐标原点,A(2,1),且点F(x,y)坐标满足,则||•cos∠AOP 的最大值为.14.(5分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足,,则抛物线的方程为.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.16.(12分)已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)已知,且α∈(0,π),求α的值.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.18.(14分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?19.(14分)已知如图,椭圆方程为(4>b>0).P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(1)求M点的轨迹T的方程;(2)已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?若存在,求出点Q的坐标,若不存在,说明理由.20.(14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(﹣2),(1)求函数f(x)的解析式;(2)已知各项不为零的数列{a n}满足4S n•f()=1,求数列通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.广东省揭阳一中xx高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={x|3≤x<7},B={x|x2﹣7x+10<0},则∁R(A∩B)=()A.(﹣∞,3)∪(5,+∞)B.(﹣∞,3)∪∪∪(5,+∞)考点:交、并、补集的混合运算.分析:先计算集合B,再计算A∩B,最后计算C R(A∩B).解答:解:∵B={x|2<x<5},∴A∩B={x|3≤x<5},∴C R(A∩B)=(﹣∞,3)∪所以四棱锥的体积为:,所以h=.故选B.点评:本题是基础题,考查三视图与直观图的关系,考查几何体的体积的计算,考查计算能力.4.(5分)设{a n}是由正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a3=1,再由S3=++1=7可得q=,进而可得a1的值,由求和公式可得.解答:解:设由正数组成的等比数列{a n}的公比为q,则q>0,由题意可得a32=a2a4=1,解得a3=1,∴S3=a1+a2+a3=++1=7,解得q=,或q=(舍去),∴a1==4,∴S5==故选:C点评:本题考查等比数列的求和公式,求出数列的公比是解决问题的关键,属基础题.5.(5分)已知如程序框图,则输出的i是()A.9 B.11 C.13 D.15考点:循环结构.专题:计算题.分析:写出前5次循环的结果,直到第五次满足判断框中的条件,执行输出.解答:解:经过第一次循环得到S=1×3=3,i=5经过第二次循环得到S=3×5=15,i=7经过第三次循环得到S=15×7=105,i=9经过第四次循环得到S=105×9=945,i=11经过第五次循环得到S=945×11=10395,i=13此时,满足判断框中的条件输出i故选C点评:解决程序框图中的循环结构的问题,一般先按照框图的流程写出前几次循环的结果,找规律.6.(5分)已知θ是三角形的一个内角,且sinθ+cosθ=,则x2sinθ﹣y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线考点:椭圆的标准方程.专题:计算题;三角函数的求值;圆锥曲线的定义、性质与方程.分析:运用平方法,可得sinθcosθ<0,再将方程化为标准方程,运用作差法,即可判断分母的大小,进而确定焦点的位置.解答:解:θ是三角形的一个内角,且sinθ+cosθ=,则平方可得,1+2sinθcosθ=,则sinθcosθ=﹣<0,即sinθ>0,cosθ<0,x2sinθ﹣y2cosθ=1即为=1,由于﹣=<0,则<,则方程表示焦点在y轴上的椭圆.故选C.点评:本题考查椭圆的方程和性质,注意转化为标准方程,考查三角函数的化简和求值,属于中档题和易错题.7.(5分)方程|x|(x﹣1)﹣k=0有三个不相等的实根,则k的取值范围是()A.B.C.D.考点:函数的零点与方程根的关系.专题:数形结合法.分析:将方程转化为函数y=k与y=|x|(x﹣1),将方程要的问题转化为函数图象交点问题.解答:解:如图,作出函数y=|x|•(x﹣1)的图象,由图象知当k∈时,函数y=k与y=|x|(x﹣1)有3个不同的交点,即方程有3个实根.故选A.点评:本题研究方程根的个数问题,此类问题首选的方法是图象法即构造函数利用函数图象解题,其次是直接求出所有的根.8.(5分)对于任意实数x,符号表示x的整数部分,即是不超过x的最大整数,例如=2;=2;=﹣3,这个函数叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么+++…+的值为()A.21 B.76 C.264 D.642考点:对数的运算性质.专题:压轴题;新定义.分析:利用“取整函数”和对数的性质,先把对数都取整后可知++++…+=1×2+2×4+3×8+4×16+5×32+6,再进行相加运算.解答:解:∵=0,到两个数都是1,到四个数都是2,到八个数都是3,到十六个数都是4,到三十二个数都是5,=6,∴++++…+=0+1×2+2×4+3×8+4×16+5×32+6=264故选C.点评:正确理解“取整函数”的概念,把对数正确取整是解题的关键.二、填空题(每小题5分,共30分)9.(5分)在△ABC中∠A=60°,b=1,S△ABC=,则=2.考点:正弦定理;余弦定理.专题:解三角形.分析:由题意和三角形的面积公式求出c,再由余弦定理求出a,代入式子求值即可.解答:解:由题意得,∠A=60°,b=1,S△ABC=,所以,则,解得c=4,由余弦定理得,a2=b2+c2﹣2bccosA=1+16﹣2×=13,则a=,所以==2,故答案为:2.点评:本题考查正弦定理,余弦定理,以及三角形的面积公式,熟练掌握公式和定理是解题的关键.10.(5分)为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为.考点:其他不等式的解法.专题:计算题;压轴题;分类讨论.分析:先根据分段函数的定义域,选择解析式,代入“不等式x+(x+2)•f(x+2)≤5”求解即可.解答:解:①当x+2≥0,即x≥﹣2时.x+(x+2)f(x+2)≤5转化为:2x+2≤5解得:x≤.∴﹣2≤x≤.②当x+2<0即x<﹣2时,x+(x+2)f(x+2)≤5转化为:x+(x+2)•(﹣1)≤5∴﹣2≤5,∴x<﹣2.综上x≤.故答案为:(﹣∞,]点评:本题主要考查不等式的解法,用函数来构造不等式,进而再解不等式,这是很常见的形式,不仅考查了不等式的解法,还考查了函数的相关性质和图象,综合性较强,转化要灵活,要求较高.12.(5分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为4.考点:等差数列的前n项和;等差数列.专题:压轴题.分析:利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.解答:解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.点评:此题重点考查等差数列的通项公式,前n项和公式,以及不等式的变形求范围;13.(5分)设点O为坐标原点,A(2,1),且点F(x,y)坐标满足,则||•cos∠AOP 的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足的可行域,再根据平面向量的运算性质,对||•cos∠AOP 进行化简,结合可行域,即可得到最终的结果.解答:解:满足的可行域如图所示,又∵||•cos∠AOP=,∵=(2,1),=(x,y),∴||•cos∠AOP=.由图可知,平面区域内x值最大的点为(5,2)||•cos∠AOP的最大值为:故答案为:.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(5分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足,,则抛物线的方程为y2=4x.考点:抛物线的标准方程.专题:计算题.分析:设向量的坐标分别为(x1,y1)(x2,y2)(x3,y3)则可知x1+x2+x3=0,进而表示出A,B,C三点的横坐标,根据抛物线定义可分别表示出|FA|,|FB|和|FC|,进而根据,求得p,则抛物线方程可得.解答:解:设向量的坐标分别为(x1,y1)(x2,y2)(x3,y3)由得x1+x2+x3=0∵X A=x1+,同理X B=x2+,X C=x3+∴|FA|=x1++=x1+p,同理有|FB|=x2++=x2+p,|FC|=x3++=x3+p,又,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故答案为:y2=4x.点评:本题主要考查了抛物线的标准方程和抛物线定义的运用.涉及了向量的运算,考查了学生综合运用所学知识解决问题的能力.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.考点:复合命题的真假;必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:(1)现将a=1代入命题p,然后解出p和q,又p∧q为真,所以p真且q真,求解实数a的取值范围;(2)先由¬p是¬q的充分不必要条件得到q是p的充分不必要条件,然后化简命题,求解实数a的范围.解答:解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]点评:充要条件要抓住“大能推小,小不能推大”规律去推导.16.(12分)已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)已知,且α∈(0,π),求α的值.考点:三角函数中的恒等变换应用;平面向量数量积的运算.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(1)首先根据已知条件,利用向量的坐标运算,分别求出向量的数量积和向量的模,进一步把函数的关系式通过三角恒等变换,把函数关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用(1)的函数关系式,根据定义域的取值范围.进一步求出角的大小.解答:解:(1)已知:则:f(x)====所以:函数的最小正周期为:…(2分)…(4分)(2)由于f(x)=所以解得:所以:…(6分)因为:α∈(0,π),所以:则:解得:点评:本题考查的知识要点:三角函数关系式的恒等变换,向量的坐标运算,正弦型函数的性质的应用,利用三角函数的定义域求角的大小.属于基础题型.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.考点:点、线、面间的距离计算;与二面角有关的立体几何综合题.分析:解法(一):(1)通过观察,根据三垂线定理易得:不管点E在AB的任何位置,D1E⊥A1D总是成立的.(2)在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题可采用“等积法”:即利用三棱锥的换底法,通过体积计算得到点到平面的距离.本法具有设高不作高的特殊功效,减少了推理,但计算相对较为复杂.根据=既可以求得点E到面ACD1的距离.(3)二面角的度量关键在于找出它的平面角,构造平面角常用的方法就是三垂线法.过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,则∠DHD1为二面角D1﹣EC﹣D的平面角.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0).这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,从而,所以点E到平面AD1C的距离为.(3)设平面D1EC的法向量,可求得.,因为二面角D1﹣EC﹣D的大小为,所以根据余弦定理可得AE=时,二面角D1﹣EC﹣D的大小为.解答:解法(一):(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=,故,而.∴,∴,∴.(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,∴∠DHD1为二面角D1﹣EC﹣D的平面角.设AE=x,则BE=2﹣x在Rt△D1DH中,∵,∴DH=1.∵在Rt△ADE中,DE=,∴在Rt△DHE中,EH=x,在Rt△DHC中CH=,在Rt△CBE中CE=.∴.∴时,二面角D1﹣EC﹣D的大小为.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,则也即,得,从而,所以点E到平面AD1C的距离为.(3)设平面D1EC的法向量,∴,由令b=1,∴c=2,a=2﹣x,∴.依题意.∴(不合,舍去),.∴AE=时,二面角D1﹣EC﹣D的大小为.点评:本小题主要考查棱柱,二面角、点到平面的距离和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.18.(14分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?考点:基本不等式;利用导数研究曲线上某点切线方程.专题:不等式的解法及应用;直线与圆.分析:(Ⅰ)求当t=时,直路l所在的直线方程,即求抛物线y=﹣x2+2(0≤x≤)在x=时的切线方程,利用求函数的导函数得到切线的斜率,运用点斜式写切线方程;(Ⅱ)求出x=t时的抛物线y=﹣x2+2(0≤x≤)的切线方程,进一步求出切线截正方形在直线右上方的长度,利用三角形面积公式写出面积,得到的面积是关于t的函数,利用导数分析面积函数在(0<t<)上的极大值,也就是最大值.解答:解:(I)∵y=﹣x2+2,∴y′=﹣2x,∴过点M(t,﹣t2+2)的切线的斜率为﹣2t,所以,过点M的切线方程为y﹣(﹣t2+2)=﹣2t(x﹣t),即y=﹣2tx+t2+2,当t=时,切线l的方程为y=﹣x+,即当t=时,直路l所在的直线方程为12x+9y﹣22=0;(Ⅱ)由(I)知,切线l的方程为y=﹣2tx+t2+2,令y=2,得x=,故切线l与线段AB交点为F(),令y=0,得x=,故切线l与线段OC交点为().地块OABC在切线l右上部分为三角形FBG,如图,则地块OABC在直路l不含泳池那侧的面积为S=(2﹣)×2=4﹣t﹣=4﹣(t+)≤2.当且仅当t=1时,取等号.∴当t=100米时,地块OABC在直路l不含游泳池那侧的面积最大,最大值为xx0平方米.点评:本题考查了函数模型的选择与应用,考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,在实际问题中,函数在定义域内仅含一个极值,该极值往往就是最值.属中档题型.19.(14分)已知如图,椭圆方程为(4>b>0).P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(1)求M点的轨迹T的方程;(2)已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?若存在,求出点Q的坐标,若不存在,说明理由.考点:圆与圆锥曲线的综合.专题:计算题;数形结合.分析:(1)延长F1M与F2P的延长线相交于点N,连接OM,利用条件求出M是线段NF1的中点,转化出|OM|=4即可求出M点的轨迹T的方程;(2)可以先观察出轨迹T上有两个点A(﹣4,0),B(4,0)满足S△OEA=S△OEB=2,再利用同底等高的两个三角形的面积相等,,,知道符合条件的点均在过A、B作直线OE的两条平行线l1、l2上,再利用点Q是轨迹T内部的整点即可求出点Q的坐标.解答:解:(1)当点P不在x轴上时,延长F1M与F2P的延长线相交于点N,连接OM,∵∠NPM=∠MPF1,∠NMP=∠PMF1∴△PNM≌△PF1M∴M是线段NF1的中点,|PN|=|PF1||(2分)∴|OM|=|F2N|=(|F2P|+|PN|)=(|F2P|+|PF1|)∵点P在椭圆上∴|PF2|+|PF1|=8∴|OM|=4,(4分)当点P在x轴上时,M与P重合∴M点的轨迹T的方程为:x2+y2=42.(6分)(2)连接OE,易知轨迹T上有两个点A(﹣4,0),B(4,0)满足S△OEA=S△OEB=2,分别过A、B作直线OE的两条平行线l1、l2.∵同底等高的两个三角形的面积相等∴符合条件的点均在直线l1、l2上.(7分)∵∴直线l1、l2的方程分别为:、(8分)设点Q(x,y)(x,y∈Z)∵Q在轨迹T内,∴x2+y2<16(9分)分别解与得与(11分)∵x,y∈Z∴x为偶数,在上x=﹣2,,0,2对应的y=1,2,3在上x=﹣2,0,2,对应的y=﹣3,﹣2,﹣1(13分)∴满足条件的点Q存在,共有6个,它们的坐标分别为:(﹣2,1),(0,2),(2,3),(﹣2,﹣3),(0,﹣2),(2,﹣1).(14分)点评:本题涉及到轨迹方程的求法.在求动点的轨迹方程时,一般多是利用题中条件得出关于动点坐标的等式,整理可得动点的轨迹方程.20.(14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(﹣2),(1)求函数f(x)的解析式;(2)已知各项不为零的数列{a n}满足4S n•f()=1,求数列通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.考点:反证法与放缩法;数列的函数特性;数列递推式.专题:综合题;等差数列与等比数列.分析:(1)由=x,化简为(1﹣b)x2+cx+a=0,利用韦达定理可求得,代入f(x)=(b,c∈N),依题意可求得c=2,b=2,从而可得函数f(x)的解析式;(2)由4S n﹣=1,整理得2S n=a n﹣(*),于是有2S n﹣1=a n﹣1﹣(**),二式相减得(a n+a n﹣1)(a n﹣a n﹣1+1)=0,讨论后即可求得数列通项a n;(3)由a n+1=f(a n)得,a n+1=,取倒数得=﹣2+≤⇒a n+1<0或a n+1≥2,分别讨论即可.解答:解:(1)依题意有=x,化简为(1﹣b)x2+cx+a=0,由韦达定理得:,解得,代入表达式f(x)=,由f(﹣2)=<﹣,得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,故f(x)=,(x≠1).(2)由题设得4S n•=1,整理得:2S n=a n﹣,(*)且a n≠1,以n﹣1代n得2S n﹣1=a n﹣1﹣,(**)由(*)与(**)两式相减得:2a n=(a n﹣a n﹣1)﹣(﹣),即(a n+a n﹣1)(a n﹣a n﹣1+1)=0,∴a n=﹣a n﹣1或a n﹣a n﹣1=﹣1,以n=1代入(*)得:2a1=a1﹣,解得a1=0(舍去)或a1=﹣1,由a1=﹣1,若a n=﹣a n﹣1得a2=1,这与a n≠1矛盾,∴a n﹣a n﹣1=﹣1,即{a n}是以﹣1为首项,﹣1为公差的等差数列.(3)由a n+1=f(a n)得,a n+1=,=﹣2+≤,∴a n+1<0或a n+1≥2.若a n+1<0,则a n+1<0<3成立;若a n+1≥2,此时n≥2,从而a n+1﹣a n=≤0,即数列{a n}在n≥2时单调递减,由a2=2知,a n≤a2=2<3,在n≥2上成立.综上所述,当n≥2时,恒有a n<3成立.点评:本题考查数列的函数特性,着重考查等差数列的判定,考查推理证明能力,考查转化思想与分类讨论思想的综合应用,属于难题. 36365 8E0D 踍37704 9348 鍈4 27966 6D3E 派z ^Ko32962 80C2 胂T32069 7D45 絅26795 68AB 梫。
2022-2023学年四川省成都市蓉城名校联盟高二上学期期末联考数学(理)试题(解析版)

2022-2023学年四川省成都市蓉城名校联盟高二上学期期末联考数学(理)试题一、单选题1.命题“N,3sin x x x ∀∈>”的否定是( ) A .N,3sin x x x ∀∈≤B .N,3sin x x x ∀∈<C .000N,3sin xx x ∃∈>D .000N,3sin xx x ∃∈≤【答案】D【分析】由全称命题的否定的定义即可得出结果.【详解】由全称命题的否定的定义可知,N,3sin x x x ∀∈>的否定为000N,3sin xx x ∃∈≤.故选:D.2.直线0x y -=的倾斜角为( ) A .6π B .4π C .3π D .34π 【答案】B【分析】由直线的斜率与倾斜角的关系即可求出倾斜角.【详解】由0x y -+=得斜率1tan 4k π==,故选:B.3.抛物线236y x =的准线方程是( ) A .9y = B .9y =- C .9x = D .9x =-【答案】D【分析】根据抛物线方程()220y px p =>的准线方程为2px =-求解. 【详解】由236y x =得18p =,∴准线方程为92px =-=-, 故选:D4.在空间直角坐标系O xyz -中,点(2,1,4)A -与(2,1,4)A '关于( )对称. A .xOy 平面 B .yOz 平面 C .xOz 平面 D .原点【答案】B【分析】根据空间直角坐标系的定义求解.【详解】因为点(2,1,4)A -与(2,1,4)A '两点的横坐标互为相反数,其余坐标相等, 所以两点则关于yOz 平面对称, 故选:B .5.若x ,y 满足约束条件580?2310032110x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .11,3⎡⎤-⎢⎥⎣⎦B .1,43⎡⎤⎢⎥⎣⎦C .(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭D .[]1,4-【答案】C【分析】根据约束条件画出可行域,利用目标函数的几何意义即可求解. 【详解】画出可行域如图,()1,4A ,()2,2B -,()3,1C ,y x 表示点(),x y 与()0,0O 连线的斜率,13OC k =,1OB k =-, ∴y x 的取值范围是(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭, 故选:C.6.某程序框图如图所示,则输出的S =( )A .8B .27C .85D .260【答案】C【分析】直接运行程序框图即可求解. 【详解】由图可知,初始值2,1S k ==;第一次循环,112,3228k S =+==⨯+=,23k =>不成立; 第二次循环,213,38327k S =+==⨯+=,33k =>不成立; 第三次循环,314,327485k S =+==⨯+=,43k =>成立; 退出循环,输出S 的值为85. 故选:C.7.已知命题p :直线340ax y +-=与()220x a y +++=平行,命题:3q a =-,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B【分析】判断命题p 与命题q 间关系可得答案.【详解】直线340ax y +-=与()220x a y +++=平行,则()233a a a +=⇒=-或1a =, 又当1a =或3a =-时,两直线均不重合,即命题p 等价于3a =-或1a =, 则由命题p 不能得到命题q ,但由命题q 可得命题p ,则p 是q 的必要不充分条件. 故选:B.8.下列命题是真命题的是( )A .“若x ,y 互为相反数,则0x y +=”的逆否命题B .“偶函数的图象关于y 轴对称”是特称命题C .“1x >且1y >”是”2x y +>”的充要条件D .若0xy ≠,则x ,y 只有一个不为0 【答案】A【分析】根据命题的定义一一判断即可求解. 【详解】A 选项,原命题与逆否命题等价,原命题“若x ,y 互为相反数,则0x y +=”为真命题, 则逆否命题为真命题,A 正确;B 选项,原命题可改写为“所有偶函数的图象关于y 轴对称”是全称命题,B 错误;C 选项,x >且1y >可得到2x y +>,但2x y +>,如取1,4x y =-=得不到x >且1y >,所以“1x >且1y >”是”2x y +>”的充分不必要条件,C 错误; D 选项,若0xy ≠,则x ,y 都不为0,D 错误. 故选:A.9.若直线20x y m -+=与椭圆22152x y +=交于,A B 两点,且AM MB =,则点M 的坐标可能是( )A .11,210⎛⎫- ⎪⎝⎭B .(5,1)-C .11,210⎛⎫⎪⎝⎭D .(5,1)【答案】A【分析】利用中点弦问题的点差法求解. 【详解】因为AM MB =,所以M 为AB 中点, 设112200(,),(,),(,)A x y B x y M x y ,因为,A B 在椭圆上,所以22112222152152x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得12121212()()()()052x x x x y y y y +-+-+=,即()()()()1212121225y y y y x x x x +-=-+-,即25OM AB k k ⋅=-,因为直线20x y m -+=过点,A B ,所以2AB k =, 所以0015OM y k x ==-,经检验C 、D 不满足0015y x =-, A 、B 选项均满足0015y x =-,但(5,1)-在椭圆外,不符合条件,故选:A.10.已知直线()100,0x my n m n ++-=>>与圆()2219x y +-=相交于A ,B 两点,且AB 的长度始终为6,则4n mmn+的最小值为( ) A .2 B .4 C .8 D .9【答案】D【分析】由题知,直线恒过圆心()0,1,则1m n +=,结合基本不等式即可求解. 【详解】圆()2219x y +-=的圆心()0,1,半径为3,由题知,直线恒过圆心()0,1,则1m n +=,而0,0m n >>,所以()4141441559n m m n m n mn m n m n n m +⎛⎫⎛⎫=+⨯=+⨯+=++≥= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4m nn m=且1m n +=,即12,33m n ==时等号成立.故选:D.11.已知动点P 在双曲线22215x y a -=的右支上,过点P 作圆22:1C x y +=的切线,切点为M ,切线长|PM | )A .32B .52C D 2【答案】A【分析】由勾股定理知,切线长|PM |取得最小值可转化为|OP |取得最小值,即可求出,a c 进而求出离心率.【详解】解:由勾股定理知,切线长|PM |取得最小值可转化为|OP |取得最小值,当|OP |取得最小值时,P 为双曲线右顶点(a ,0),则2a =,则2223459,3,2c c a b c e a =+=+====. 故选:A.12.已知直线1x my =+与抛物线C :24y x =交于A ,B 两点,M 为抛物线上一动点,OM 与线段AB 交于点N ,且3OM ON =,则ABM 面积的最小值为( ) A .4 B .6 C .8 D .10【答案】A【分析】联立直线与抛物线方程,结合韦达定理求得弦长AB ,进而求出ABOS,由3OM ON =,得2ABMABO SS =△,根据表达式求出最值即可.【详解】由214x my y x=+⎧⎨=⎩得2440y my --=,2(4)160m ∆=-+>设1122(,),(,)A x y B x y ,则12124,4y y y y m =-+=,()241AB m =+,O 到直线1x my =+的距离d =,∴12ABO S AB d =⨯⨯=△∵3OM ON =,∴2ABM ABO S S ==△△ ∴当0m =时,ABM S △取最小值4. 故选:A .二、填空题13.双曲线22152x y -=的实半轴长为___________.【分析】根据实半轴定义求解.【详解】由题可得25a =,所以a =所以实半轴长为a =故答案为:14.粮食安全是国之大者,解决吃饭问题,根本出路在科技.某科技公司改良试种了A ,B ,C 三类稻谷品种,今年秋天分别收获了A 类稻谷1200株,B 类稻谷1500株,C 类稻谷2100株.现用分层抽样的方法从上述所有稻谷中抽取一个容量为320株的样本进行检测,则从B 类稻谷中应抽取的株数为___________. 【答案】100【分析】先求出A 、B 、C 株数之比,然后按比例抽取.【详解】A 、B 、C 株数之比为457::,则B 类抽取的株数为532010016⨯=. 故答案为:10015.天府绿道是成都人民朋友圈的热门打卡地,经统计,天府绿道旅游人数x (单位:万人)与天府绿道周边商家经济收入y (单位:万元)之间具有线性相关关系,且满足回归直线方程为ˆ12.60.6yx =+,对近五个月天府绿道旅游人数和周边商家经济收入统计如下表:则表中a 的值为___________. 【答案】88【分析】根据样本平均值满足回归直线方程求解. 【详解】样本平均值满足回归直线方程,x 的平均值为23 3.5 4.5745++++=,则y 的平均值2638436012.640.65a++++=⨯+,解得88a =,故答案为:88.三、双空题16.已知()2,0A -,()2,0B ,动点M 满足2MB MA -=,(N ,则MNB 周长的最小值为______,此时点M 的坐标为______.【答案】 10 54⎛- ⎝⎭【分析】由题意得动点M 的轨迹是以,A B 为焦点,实轴长为2的双曲线的左支,求出轨迹方程,根据双曲线定义及三点共线求得MNB 周长的最小值,将直线AN 的方程代入双曲线方程可求得M 的坐标.【详解】由题意得动点M 的轨迹是以,A B 为焦点,实轴长为2的双曲线的左支,则2,1,c a b ===M 的轨迹方程为()22103y x x -=<,∵4NB =,∴MNB 的周长最小时,MN MB +最小,2MN MB MN MA +=++,又4MN MA AN +≥=,当且仅当N ,M ,A 三点共线且M 在线段AN 上时,等号成立, ∴MNB 的周长为24610MN MB NB MN MA AN ++=+++≥+=,直线AN 的方程为)2y x =+,将其代入到2213y x -=,化简得:441x --=,54x =-,则524y ⎫-+=⎪⎭,M 的坐标为54⎛- ⎝⎭.故答案为:10,54⎛- ⎝⎭.四、解答题17.已知直线1:20l x y -+=和2:0l x y +=相交于点P .(1)若直线l 经过点P 且与3:220l x y +-=垂直,求直线l 的方程; (2)若直线l '经过点P 且与4:2310l x y --=平行,求直线l '的方程. 【答案】(1)230x y -+= (2)2350x y -+=【分析】(1)联立两直线方程,求出交点坐标,设l 的方程为20x y m -+=,将()1,1P -代入方程,求出参数m 的值,即可得解;(2)依题意设l '的方程为230x y n -+=,将()1,1P -代入方程,求出参数n 的值,即可得解;【详解】(1)解:由200x y x y -+=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,所以1:20l x y -+=与2:0l x y +=的交点P 为()1,1- 设与3:220l x y +-=垂直的直线l 的方程为20x y m -+=, 将()1,1P -代入20x y m -+=,即()2110m ⨯--+=解得3m =, 则l 的方程为230x y -+=;(2)解:依题意设l '的方程为230x y n -+=,将()1,1P -代入230x y n -+=,即()21310n ⨯--⨯+=解得5n =, ∴l '的方程为2350x y -+=.18.成都电视台在全市范围内开展创建全国文明典范城市知识竞赛,随机抽取n 名参赛者的成绩统计如下表:成绩分组 频数 频率[)50,60 10 0.10[)60,70 25a[)70,80 35 0.35[)80,90b0.20[]90,100100.10(1)请求出n ,a ,b 的值,并画出频率分布直方图;(2)请估计这n 名参赛者成绩的中位数和平均值(结果均保留一位小数) 【答案】(1)100n =,0.25a =,20b =,频率分布直方图见解析 (2)中位数为74.3,平均值为74.5【分析】(1)根据频率计算公式求出n ,a ,b 的值,进而画出频率分布直方图;(2)由中位数左边和右边的直方图的面积相等,求出中位数;由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均值. 【详解】(1)由[)70,80组数据可得:351000.35n ==, 则250.25100a ==,1000.220b =⨯=, 画出频率分布直方图如图,(2)设中位数为x ,则()0.10.250.035700.5x ++⨯-=,解得74.3x ≈, 平均值为550.1650.25750.35850.2950.174.5⨯+⨯+⨯+⨯+⨯=.19.已知m ∈R ,命题p :[]0,2x ∀∈,22m x x ≤-,命题q :()0,x ∃∈+∞,使得方程4x m x+=成立. (1)若p 是真命题,求m 的取值范围;(2)若p q ∨为真命题,p q ∧为假命题,求m 的取值范围. 【答案】(1)1m ≤- (2)(][),14,-∞-⋃+∞【分析】(1)根据恒成立的思想可知()2min 2m x x ≤-,由二次函数最值可求得结果;(2)根据基本不等式可求得44x x+≥,由能成立的思想可知4m ≥时;由题意可知,p q 一真一假,分别讨论p 真q 假和p 假q 真两种情况即可.【详解】(1)若p 是真命题,则22m x x ≤-在[]0,2上恒成立, ∵()22211x x x -=--,[]0,2x ∈,∴当1x =时,()2min 21x x -=-,∴1m ≤-;(2)对于q ,当0x >时,4424x x x x +≥⋅=,当且仅当2x =时取等号, 若()0,x ∃∈+∞,使得方程4x m x+=成立,只需4m ≥即可,若p q ∨为真命题,p q ∧为假命题,则p 和q 一真一假,当p 真q 假时,114? m m m ≤-⎧⇒≤-⎨<⎩, 当p 假q 真时,144? m m m >-⎧⇒≥⎨≥⎩综上,m 的取值范围为(][),14,-∞-⋃+∞.20.已知直线:30l x y λλ+--=和圆22:6210C x y x y +--+=(1)证明:无论λ取何值,直线l 始终与圆C 有两个公共点;(2)若l 与圆C 交于A ,B 两点,求弦长|AB |的最小值.【答案】(1)证明见解析(2)2【分析】(1)注意到直线l 过定点,再证该定点在圆C 内部即可;(2)当l 与CM 垂直的时,弦长|AB |取得最小值,即可得答案.【详解】(1)()130:l λx y -+-=,恒过点M (1,3),22:6210C x y x y +--+=化简为()()22319:C x y -+-= 将M (1,3)代入圆的方程得()()2213319-+-<,则M (1,3)在圆内,∴无论λ取何值,直线l 始终与圆C 有两个公共点;..(2)当l 与CM 垂直的时,弦长|AB |取得最小值,则CM ==C 半径r 为3,得22AB ==⨯=.21.已知动点M 到点()1,0F 的距离等于它到直线=1x -的距离,记动点M 的轨迹为曲线C .(1)求动点M 的轨迹方程C ;(2)已知()2,0A -,()0,1B ,过点B 的直线l 与曲线C 有且只有一个公共点P ,求PAB 的面积.【答案】(1)24y x =(2)1或18或12【分析】(1)根据抛物线定义得动点M 的轨迹是以()1,0F 为焦点,直线=1x -为准线的抛物线,则2p =,即可得出答案;(2)分三种情况讨论:①当l 斜率不存在时;②当l 斜率为0时;③当l 斜率存在且不为0时,根据题意求出点P 坐标,即可得出PAB 的面积.【详解】(1)根据抛物线定义得动点M 的轨迹是以()1,0F 为焦点,直线=1x -为准线的抛物线,故2p =,动点M 的轨迹方程C :24y x =;(2)①当l 斜率不存在时,点P 与原点()0,0O 重合,12112PABS =⨯⨯=; ②当l 斜率为0时,直线l :1y =与抛物线C :24y x =交于点1,14P ⎛⎫ ⎪⎝⎭,1111248PAB S =⨯⨯=△; ③当l 斜率存在且不为0时,设l :()10y kx k =+≠,由214y kx y x=+⎧⎨=⎩,得:()222410k x k x +-+=,① 因为直线l 与曲线C 有且只有一个公共点P ,则()22Δ24416160k k k =--=-=,解得1k =,将1k =代入①可得2210x x -+=,解得1x =,此时解得()1,2P , 直线AP :()20212y x -=++,即()223y x =+, 则直线AP 与y 轴交于点40,3Q ⎛⎫ ⎪⎝⎭, 故111112123232PAB BQA BQP S S S =+=⨯⨯+⨯⨯=△△△. 综上,PAB 的面积为:1或18或12. 22.已知1F ,2F 分别为椭圆C :()222210x y a b a b+=>>的左、右焦点,椭圆C 的上顶点到右焦点的距离为2,右焦点2F 与抛物线24y x =的焦点重合.(1)求椭圆C 的标准方程;(2)已知点()2,0A -,斜率为k 的动直线l 与椭圆C 交于P ,Q 两点(P ,Q 均异于点A ),且满足()3AP AQ k k k +=-,设点A 到直线l 的距离为d ,若d λ<恒成立,求实数λ的最小值.【答案】(1)22143x y += (2)1【分析】(1)根据题意求出,,a b c ,写出椭圆方程即可;(2)设直线l 的方程为y kx m =+,与椭圆方程联立,结合韦达定理与()3AP AQ k k k +=-得,m k 的关系,可得直线l 恒过点()1,0B -,则1d AB <=,即可得出答案.【详解】(1)由题意得抛物线的焦点为()21,0F ,∴1c =,∵椭圆C 的上顶点到右焦点的距离为2,∴2a =,∴b =∴椭圆C 的标准方程为:22143x y +=. (2)设直线l 的方程为y kx m =+, 联立22143y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得:()()222438430k mk m x x +++-=, 设()11,P x y ,()22,Q x y ,则122843mk x x k -+=+,()21224343m x x k -=+ ()121212122222AP AQ y y kx m kx m k k k k k x x x x ⎛⎫⎛⎫++∴+=+=+ ⎪ ⎪++++⎝⎭⎝⎭()()()1212121222424kx x k m x x m k x x x x ++++=+++()()()2222224382244343438244343m mk k k m m k k k m mk k k --⋅+++++=--+⋅+++2221224341616mk k m mk k -==--+, 化简得:22032m mk k -+=,即()()20m k m k --=,则2m k =或m k =, 当2m k =时,()22y kx k k x =+=+,直线l 恒过点()2,0A -,不合题意, 当m k =时,()1y kx k k x =+=+,直线l 恒过点()1,0B -,此时点A 到直线l 的距离1d AB <=,∵d λ<恒成立,∴λ的最小值为1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N MD 1C 1B 1A 1DCA学年第一学期高二年级期末质量抽测 数 学 试 卷(理科)(满分150分,考试时间 120分钟)考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D)330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD ===a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =± (7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+ ( B)2( C)4+ ( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C 上且满足1223MF MF += 则12MF F ∆的面积为(A)3(B) 2(C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅=,则1BC 与BM 的夹角的最大值为 (A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BAD 1C 1B 1A 1D第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11B C A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,ACBD O =,11AB AA ==.(I)求证:111//OC AB D 平面;N MDCBAP(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且经过点(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,底面ABCD 为直角梯形,//,90,AD BC BAD ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.高二年级期末质量抽测数学试卷参考答案及评分标准 (理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2.…2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为所以点C 到直线l 的距离为11d ==. ……10分 即11d ==. …………12分所以34a =-. …………14分O 1ABCDA 1B 1C 1D 1O(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O =,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分 因为1111AA AC A =,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =, 所以1b =. ……1分由c e a ===,解得2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBCADNM MN ⊂=平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PAAB A =,所以DA PAB ⊥平面. 所以PB DA ⊥. ……7分 因为AMDA A =,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分 设平面PDN 的法向量为(,,)x y z =n 因为(2,1,2)PC =-,(0,2,2)PD =-, 所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩.令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,622BP BP BP⋅〈〉===n n n .所以二面角P DN A --的余弦值为6. ……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC =………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分 所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分 所以2231k -<.所以213k >.即21113k >.所以2103k <<.…12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分。