高考文科数学第一轮复习学案
高考数学第一轮复习教案

高考数学第一轮复习教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学第一轮复习教案高考数学第一轮复习教案七篇高考数学第一轮复习教案都有哪些?新的数学方法和概念,常常比解决数学问题本身更重要。
高三数学一轮复习教学设计

高三数学一轮复习教学设计一、教学任务及对象1、教学任务本教学设计针对的是高三数学一轮复习。
在这一阶段,学生已经完成了高中数学的全部课程,教学任务是在有限的时间内,帮助学生系统地回顾和巩固数学知识,强化解题技能,提高分析问题和解决问题的能力,为高考做好全面准备。
复习内容涵盖《高中数学课程标准》要求的所有知识点,包括但不限于函数与极限、导数与微分、积分、立体几何、解析几何、数列、概率统计等。
2、教学对象教学对象为即将参加高考的高三学生。
他们具备一定的数学基础和逻辑思维能力,但在数学知识的深度和广度、解题技巧方面存在差异。
此外,由于面临高考的压力,学生在心理上可能存在不同程度的焦虑和紧张。
因此,在教学过程中,需要关注学生的个体差异,采取有针对性的教学策略,同时注重缓解学生的心理压力,帮助他们建立自信,以积极的态度迎接高考。
二、教学目标1、知识与技能(1)掌握高中数学课程标准要求的所有核心概念、性质、定理、公式,并能够熟练运用。
(2)提高数学运算速度和准确性,培养解题技巧,形成解题策略。
(3)具备较强的数学思维能力,能够运用逻辑推理、空间想象、数据分析等方法解决数学问题。
(4)灵活运用数学知识解决实际问题,提高数学应用能力。
2、过程与方法(1)培养学生自主学习和合作学习的能力,让学生在复习过程中学会总结、归纳、提炼知识点。
(2)通过问题驱动法、案例分析、小组讨论等形式,引导学生主动探索、发现数学规律,提高解决问题的能力。
(3)采用变式教学、一题多解等方法,培养学生的发散性思维和创新意识。
(4)结合现代信息技术,如多媒体教学、网络资源等,丰富教学手段,提高教学效果。
3、情感,态度与价值观(1)激发学生学习数学的兴趣,培养他们积极、主动、持久的学习态度。
(2)引导学生树立正确的数学观念,认识到数学在科学技术、社会发展中的重要作用,增强学习数学的使命感和责任感。
(3)通过数学学习,培养学生严谨、求实的科学态度,提高他们的逻辑思维能力和批判性思维。
2025版高考数学一轮总复习学案 第4章 第3讲 第1课时 三角函数公式的基本应用

第四章第四章 三角函数、解三角形第三讲 两角和与差的三角函数 二倍角公式第一课时 三角函数公式的基本应用知识梳理·双基自测名师讲坛·素养提升考点突破·互动探究知 识 梳 理知识点一 两角和与差的正弦、余弦和正切公式知识点二 二倍角的正弦、余弦、正切公式1.sin 2α=_________________;2.cos 2α=________________=__________-1=1-__________;2sin αcos αcos 2α-sin 2α2cos 2α2sin 2α知识点三 半角公式(不要求记忆)双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β使等式sin (α+β)=sin α+sin β成立.( )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( )√××(4)y =3sin x +4cos x 的最大值是7.( )[解析] 根据正弦、余弦和正切的和角、差角公式知(2)(3)(4)(5)是错误的,(1)是正确的.××题组二 走进教材2.(必修1P219例4改编)计算sin 43°cos 13°+sin 47°cos 103°的结A果等于( )A题组三 走向高考DD-2三角函数公式的直接应用——自主练透DBA名师点拨:1.使用两角和与差的三角函数公式,首先要记住公式的结构特征. 2.使用公式求值,应先求出相关角的函数值,再代入公式求值.三角函数公式的逆用与变形用——多维探究角度1 公式的逆用C角度2 公式的变形应用BDA名师点拨:1.注意三角函数公式逆用和变形用的2个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.2.熟记三角函数公式的2类变式(1)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β,cos αsin β+sin(α-β)=sin αcos β.tan α±tan β=tan(α±β)·(1∓tan α·tan β).(2)倍角公式变形:【变式训练】DBA.5 B.4 C.3 D.2角的变换与名的变换——师生共研BBCA.tan(α-β)=1 B.tan(α+β)=1 C.tan(α-β)=-1 D.tan(α+β)=-1名师点拨:2.名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.A。
高考数学一轮复习教案

高考数学一轮复习教案教案标题:高考数学一轮复习教案教案目标:1. 确保学生对高考数学考试的各个知识点有全面的了解和掌握。
2. 帮助学生提高解题能力,培养分析和推理的能力。
3. 强化学生的数学思维和解题策略,提高应试能力。
教学内容:本教案主要围绕高考数学考试的各个知识点展开复习,包括代数、函数、几何、概率与统计等内容。
教学步骤:第一步:复习代数知识1. 复习一元二次方程的求根公式和应用。
2. 复习指数与对数的性质和运算法则。
3. 复习不等式的性质和解法。
第二步:复习函数知识1. 复习函数的定义和性质。
2. 复习函数的图像与性质,包括一次函数、二次函数、指数函数和对数函数等。
3. 复习函数的运算法则和复合函数的求解。
第三步:复习几何知识1. 复习平面几何的基本概念和性质。
2. 复习三角函数的定义和性质,包括正弦、余弦和正切等。
3. 复习平面几何中的相似三角形和勾股定理等。
第四步:复习概率与统计知识1. 复习概率的基本概念和计算方法。
2. 复习统计学中的数据收集、整理和分析方法。
3. 复习概率与统计在实际问题中的应用。
第五步:解题技巧和策略的讲解1. 教授解题的基本思路和步骤,包括审题、分析、解答和检查等。
2. 引导学生掌握解题中常用的技巧和策略,如代入法、逆向思维和分类讨论等。
3. 提供一些典型例题和解题方法的讲解和练习。
第六步:模拟考试和反馈1. 安排模拟考试,模拟高考数学试卷的形式和要求。
2. 收集学生的答卷并进行批改,给予详细的评价和建议。
3. 针对学生的错误和不足,进行有针对性的指导和讲解。
教学评估:1. 教师对学生的参与度和理解程度进行观察和评估。
2. 模拟考试的成绩和学生的答卷质量作为评估指标。
3. 学生对教学内容的反馈和问题的解答情况作为评估依据。
教学资源:1. 高考数学教材和辅助教材。
2. 高考数学模拟试卷和真题。
3. 多媒体设备和投影仪等。
教学延伸:1. 鼓励学生进行自主学习和拓展阅读,加深对数学知识的理解和应用能力。
2025版高考数学一轮复习第2章函数导数及其应用第7节函数的图像教学案文含解析北师大版

当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图像的上、下关系问题,从而利用数形结合求解.
3.利用函数图像探讨方程根的策略
构造函数,转化为两熟识函数图像的交点个数问题,在同一)如图,函数f(x)的图像为折线ACB,则不等式f(x)≥log2(x+1)的解集是( )
►考法1 探讨函数的性质
【例3】 已知函数f(x)=x|x|-2x,则下列结论正确的是( )
A.f(x)是偶函数,递增区间是(0,+∞)
B.f(x)是偶函数,递减区间是(-∞,1)
C.f(x)是奇函数,递减区间是(-1,1)
D.f(x)是奇函数,递增区间是(-∞,0)
C[将函数f(x)=x|x|-2x去掉肯定值,得f(x)= 画出函数f(x)的图像,如图,视察图像可知,函数f(x)的图像关于原点对称,故函数f(x)为奇函数,且在(-1,1)上是削减的.]
(3)图像变换法:若函数图像可由某个基本函数的图像经过平移、伸缩、翻折、对称得到,可利用图像变换作出.
易错警示:(1)画函数的图像肯定要留意定义域.
(2)利用图像变换法时要留意变换依次,对不能干脆找到熟识的基本函数的要先变形,并应留意平移变换与伸缩变换的依次对变换单位及解析式的影响.
识图与辨图
【例2】 (1)(2024·全国卷Ⅱ)函数f(x)= 的图像大致为( )
ABC D
(1)C(2)C[(1)函数f(x)的定义域为{x|x≠0},解除A.
又f(-1)= = >0,解除B.
当x→+∞时,f(x)→0,故选C.
(2)当l从左至右移动时,一起先面积的增加速度越来越快,过了D点后面积保持匀速增加,图像呈直线改变,过了C点后面积的增加速度又渐渐减慢.故选C.]
2022高考数学文人教A版一轮复习学案:7.1-二元一次不等式(组)与简单的线性规划问题-【含解析】

第七章不等式、推理与证明7.1二元一次不等式(组)与简单的线性规划问题必备知识预案自诊知识梳理1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的.我们把直线画成虚线以表示区域边界直线.当我们在平面直角坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应边界直线,则把边界直线画成.(2)因为把直线Ax+By+C=0同一侧的所有点(x,y)代入Ax+By+C,所得的符号都,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的即可判断Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.(3)由几个不等式组成的不等式组所表示的平面区域是各个不等式所表示的平面区域的公共部分.2.线性规划的相关概念1.二元一次不等式表示的平面区域二元Ax+By+C ≥0(A>0,B>0)Ax+By+C≤0(A>0,B>0)Ax+By+C ≥0(A>0,B<0)Ax+By+C≤0(A>0,B<0)平面 区域考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)不等式x-y-1>0表示的平面区域在直线x-y-1=0的上方. ( ) (2)两点(x 1,y 1),(x 2,y 2)在直线Ax+By+C=0异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( )(3)任何一个二元一次不等式组都表示平面上的一个区域. ( ) (4)线性目标函数取得最值的点一定在可行域的顶点或边界上. ( ) (5)在目标函数z=ax+by (b ≠0)中,z 的几何意义是直线ax+by-z=0在y 轴上的截距. ( ) 2.不等式组{x -3y +6<0,x -y +2≥0表示的平面区域是( )3.(2020湖南长沙一中第三次调研)在平面直角坐标系xOy 中,M 为不等式组{2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM|的最小值是( ) A.1B.√2C.2D.2√24.(2020福建漳州二模,文14)若实数x ,y 满足{x +y ≥2,x +3y -3≤0,y ≥0,则yx 的最大值是 .5.(2020全国2,文15)若x ,y 满足约束条件{x +y ≥-1,x -y ≥-1,2x -y ≤1,则z=x+2y 的最大值是 .关键能力学案突破考点二元一次不等式(组)表示的平面【例1】(1)(2020河南天一大联考)不等式组{x -2≤0,x -2y +4≥0,-x -y +2≤0表示的平面区域的面积为 .(2)已知实数x ,y 满足{x ≥1,x -2y +1≤0,x +y ≤m ,若此不等式组所表示的平面区域形状为三角形,则m的取值范围为 .(组)表示的平面区域的方法是什么?求平面区域的面积的技巧是什么?解题心得1.确定二元一次不等式(组)表示的平面区域的方法:(1)“直线定界,特殊点定域”,即先作直线,再取特殊点并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就表示直线与特殊点异侧的那部分区域.当不等式中带等号时,边界画为实线,不带等号时,边界应画为虚线,特殊点常取原点.(2)也常利用“同号上,异号下”判断二元一次不等式表示的平面区域:对于Ax+By+C>0或Ax+By+C<0,则①当B (Ax+By+C )>0时,区域为直线Ax+By+C=0的上方;②当B (Ax+By+C )<0时,区域为直线Ax+By+C=0的下方.2.求平面区域的面积的方法:(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高;若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解;若为不规则四边形,则可分割成几个三角形分别求解再求和.(3)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.对点训练1(1)已知不等式组{x ≥0,x -√3y ≤0,x +√3y -2√3≤0,表示的可行域为D ,则可行域D 的面积为( )A.2√3B.2C.√3D.√32(2)设命题p :实数x ,y 满足{x -y ≤0,x +2y ≤2,x ≥-2,命题q :实数x ,y 满足(x+1)2+y 2≤m ,若p 是q 的必要不充分条件,则正实数m 的取值范围是 .考点求目标函数的最值问题 (多考向探究)考向1 求线性目标函数的最值【例2】(1)(2020全国1,文13)若x ,y 满足约束条件{2x +y -2≤0,x -y -1≥0,y +1≥0,则z=x+7y 的最大值为 .(2)(2020福建福州模拟,理13)设x ,y 满足约束条件{2x +y -2≥0,x -2y +4≥0,x ≤2,则z=x-3y 的最小值?求非线性目标函数的最值【例3】(1)(2020河南郑州质检)已知变量x ,y 满足{x -2y +4≤0,x ≥2,x +y -6≥0,则k=y+1x -3的取值范围是( )A.(-∞,-5]∪12,+∞B.-5,12C.(-∞,-5)∪12,+∞D.-5,12(2)(2020安徽马鞍山模拟)已知实数x ,y 满足{x ≤1,y ≤x +1,y ≥1-x ,则x 2+y 2的最大值与最小值之和?求参数值或取值范围【例4】(1)设x ,y 满足不等式组{x +y -6≤0,2x -y -1≤0,3x -y -2≥0,若z=ax+y 的最大值为2a+4,最小值为a+1,则实数a 的取值范围为( )A .[-1,2]B .[-2,1]C .[-3,-2]D .[-3,1](2)(2020江西南昌十中月考)若实数x ,y 满足不等式组{x +y -1≥0,x -y +1≥0,x ≤a ,若目标函数z=ax-2y的最大值为13,则实数a 的值是( )B.4C.5D.6?4 最优解不唯一的条件下求参数的值【例5】已知x ,y 满足约束条件{x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z=y-ax 取得最大值的最优解不唯一,则实数a 的值为 .,目标函数有什么特点?解题心得1.利用可行域求线性目标函数最值的方法:利用约束条件作出可行域,根据目标函数找到最优解时的点,解得点的坐标代入求解即可.2.利用可行域及最优解求参数及其范围的方法:(1)若限制条件中含参数,依据参数的不同范围将各种情况下的可行域画出来,寻求最优解,确定参数的值;(2)若线性目标函数中含有参数,可对线性目标函数的斜率分类讨论,以此来确定线性目标函数经过哪个顶点取得最值,从而求出参数的值;也可以直接求出线性目标函数经过各顶点时对应的参数的值,然后进行检验,找出符合题意的参数值.3.利用可行域求非线性目标函数最值的方法:画出可行域,分析目标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得最值.对点训练2(1)(2020山西太原五中二模,理5)若x ,y 满足约束条件{x -2y -2≤0,x -y +1≥0,y ≤0,则z=3x+2y的最大值为( )A.4B.5C.6D.7(2)(2020浙江衢州二中检测)若实数x,y满足约束条件{x-y+1≥0,2x+3y≤6,y+1≥0,则z=2|x|-y的最小值是()A.-25B.5C.-1D.-2(3)(2020江西高三月考,文7)已知{x-y+1≥0,7x-y-7≤0,x≥0,y≥0表示的平面区域为D,若“∃(x,y),2x+y>a”为假命题,则实数a的取值范围是()A.[5,+∞)B.[2,+∞)C.[1,+∞)D.[0,+∞)(4)(2020重庆一中模拟,文15)已知实数x,y满足{x-y-2≤0,x+2y-5≥0,y-2≤0,则函数z=4x·(18)y的最小值为.考点线性规划的实际应用【例6】某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张书桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少???其注意事项是什么?解题心得利用线性规划求解实际问题的一般步骤(1)认真分析并掌握实际问题的背景,收集有关数据;(2)将影响该问题的各项主要因素作为决策量,设未知量;(3)根据问题的特点,写出约束条件;(4)根据问题的特点,写出目标函数,并求出最优解或其他要求的解.对点训练3(2020河北张家口二模,理9)某市政府投入资金帮扶某农户种植蔬菜大棚脱贫致富,若该农户计划种植冬瓜和茄子,总面积不超过15亩,帮扶资金不超过4万元,冬瓜每亩产量10 000斤,成本2 000元,每斤售价0.5元,茄子每亩产量5 000斤,成本3 000元,每斤售价1.4元,则该农户种植冬瓜和茄子利润的最大值为()A.4万元B.5.5万元C.6.5万元D.10万元1.非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.2.线性目标函数最值问题的常见类型及解题策略:(1)求线性目标函数的最值.线性目标函数的最优解一般在平面区域的顶点或边界处取得,因此对于一般的线性规划问题,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.(2)由目标函数的最值求参数.求解线性规划中含参问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参数的式子所满足的条件,确定最优解的位置,从而求出参数的值.第七章不等式、推理与证明7.1二元一次不等式(组)与简单的线性规划问题必备知识·预案自诊知识梳理1.(1)平面区域不包括包括实线(2)相同符号2.线性约束条件 可行解 最大值 最小值 最大值 最小值考点自诊1.(1)× (2)√ (3)× (4)√ (5)×2.C3.B 作出不等式组表示的可行域,如图中阴影部分所示,因此|OM|的最小值为点O 到直线x+y-2=0的距离,所以|OM|min =√2=√2.4.13 作出不等式组表示的可行域,如图阴影部分,设y x =k OP ,P 为可行域上一点,其中O (0,0),P (x ,y ),由{x +y =2,x +3y -3=0,得A32,12,所以由图可知,当P 位于A 时,(y x )max =k OA =13.5.8 作出可行域如图所示(阴影部分).因为z=x+2y ,所以y=-12x+z2.作出直线y=-12x ,平移直线可知,当直线过点A 时,z2最大,即z 最大. 由{2x -y =1,x -y =-1,解得{x =2,y =3,故A (2,3).所以z max =2+2×3=8.关键能力·学案突破例1(1)3 (2)(2,+∞) (1)作出不等式组表示的可行域,如图阴影部分所示,平面区域为△ABC 及其内部,其中A (2,0),B (0,2),C (2,3), 所以所求面积为12×2×|AC|=3.(2)如图所示,{x ≥1,x -2y +1≤0所表示的平面区域为图中的阴影部分,易知直线x=1与x-2y+1=0的交点坐标为A (1,1),不等式组所表示的平面区域形状为三角形,则点A 位于直线x+y=m 下方,据此有1+1<m ,即m 的取值范围为(2,+∞).对点训练1(1)C (2)0,12 (1)作出不等式组{x ≥0,x -√3y ≤0,x +√3y -2√3≤0对应的可行域如图,由{x =0,x -√3y =0,得A (0,0),由{x -√3y =0,x +√3y -2√3=0,得C (√3,1),由{x =0,x +√3y -2√3=0,得B (0,2),则区域D 的面积S=12×2×√3=√3.故选C. (2)根据题意,m 为正实数,所以满足q 的点(x ,y )在以(-1,0)为圆心,以√m 为半径的圆周及其内部,记作Q ,满足条件p 的点构成的集合记作P ,因为p 是q 的必要不充分条件,所以Q ⫋P.如图,设直线x=-2和直线x+2y=2的交点为A ,直线x-y=0和直线x+2y=2的交点为B ,直线x=-2和直线y-x=0的交点为C , 则点(-1,0)到直线AC 的距离d 1=1, 点(-1,0)到直线BC 的距离d 2=√1+1=√22,点(-1,0)到直线AB 的距离d 3=√12+22=3√55, 所以点(-1,0)到三角形ABC 边界的最小距离为√22.所以√m ≤√22,即m ∈0,12.例2(1)1 (2)-7 (1)画出不等式组表示的平面区域,如图(阴影部分)所示,将目标函数z=x+7y 变形可得y=-17x+17z ,平移直线y=-17x.由图可得z 在点A 处取得最大值. 由{x -y -1=0,2x +y -2=0,得{x =1,y =0,所以A (1,0),所以z max =1+7×0=1.(2)在坐标系中画出x ,y 满足约束条件{2x +y -2≥0,x -2y +4≥0,x ≤2的可行域,如图所示,由z=x-3y 可得y=13x-13z ,则-13z 表示直线z=x-3y 在y 轴上的截距,截距越大,z 越小,平移直线x-3y=0,经过点A 时,z 最小,由{x =2,x -2y +4=0,可得A (2,3),此时z min =2-3×3=-7.例3(1)A (2)112 (1)作不等式组表示的可行域,如图所示.由于k=y+1x -3表示动点M (x ,y )与定点P (3,-1)连线的斜率.又k PA =4-(-1)2-3=-5,且直线x-2y+4=0的斜率为12.所以k 的取值范围为(-∞,-5]∪12,+∞.(2)作出不等式组{x ≤1,y ≤x +1,y ≥1-x 表示的可行域,如图阴影部分所示,x 2+y 2的几何意义是原点O 到可行域内点的距离的平方,由图可知,点O 到直线x+y-1=0的距离最小,为√22.可行域内的点B 与坐标原点的距离最大,为√22+12=√5. 所以x 2+y 2的最大值与最小值之和为5+12=112.例4(1)B (2)A (1)由z=ax+y 得y=-ax+z ,如图,作出不等式组对应的可行域(阴影部分),则A (1,1),B (2,4).由题意和图可知,直线z=ax+y 过点B 时,取得最大值为2a+4,过点A 时,取得最小值为a+1,若a=0,则y=z ,此时满足条件,若a>0,k=-a<0,则目标函数的斜率满足-a ≥k BC =-1,即0<a ≤1,若a<0,k=-a>0,则目标函数的斜率满足-a ≤k AC =2,即-2≤a<0.综上,a 的取值范围是[-2,].(2)画出满足条件{x +y -1≥0,x -y +1≥0,x ≤a 的可行域,如下图所示,根据图象可得a>0,目标函数化为y=a2x-z2,当目标函数过A (a ,-a+1)时取得最大值,所以a 2+2a-2=13,a 2+2a-15=0,解得a=3,或a=-5(舍去).故选A.例5-1或2 作出不等式组表示的可行域,如图.目标函数z=y-ax 可化为y=ax+z ,令l 0:y=ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a=-1或a=2.对点训练2(1)C (2)C (3)A (4)116 (1)作出不等式组表示的可行域,如图所示,由z=3x+2y ,得y=-32x+z 2,根据图象可知,当过M 点时,z 取最大值, 联立{x -2y -2=0,y =0,解得x=2,y=0,所以M (2,0),则z 的最大值为6.故选C.(2)作不等式组表示的可行域如图,由z=2|x|-y 可得y=2|x|-z ,作y=2|x|图象,由图象可知,当向上平移y=2|x|过点A 时,-z 最大,即z 最小,令x=0,由y=x+1可得A (0,1),所以z min =2×0-1=-1,故选C.(3)作出不等式组表示的可行域如图中阴影部分(含边界)所示,令Z=2x+y ,得y=-2x+Z ,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程{x -y +1=0,7x -y -7=0,得点A 43,73,所以Z=2x+y 的最大值为5,因为“∃(x ,y )∈R ,2x+y>a ”为假命题,所以“∀(x ,y ),2x+y ≤a ”为真命题,所以实数a 的取值范围是[5,+∞),故选A.(4)作出不等式组所表示的可行域如下,因为z=4x ·(18)y=22x-3y ,令t=2x-3y ,则y=23x-t3,当直线y=23x-t 3过点M 时,在y 轴截距最大,此时t 取最小值,则z=2t 最小. 由{y =2,x +2y -5=0,得M (1,2),所以t min =2-3×2=-4,则z min =116. 例6解由题意可画表格如下(1)设只生产书桌x 个,可获得利润z 元, 则{0.1x ≤90,2x ≤600,解得{x ≤900,x ≤300,则x ≤300. 因为z=80x ,所以当x=300时,z max =80×300=24000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24000元. (2)设生产书桌x 张,书橱y 个,利润总额为z 元. 由题可得{x +2y ≤900,2x +y ≤600,x ≥0,y ≥0,z=80x+120y.在直角坐标平面内作出不等式组所表示的可行域,如图.作直线l :80x+120y=0,即直线l :2x+3y=0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M (100,400), 此时z=80x+120y 取得最大值. 所以当x=100,y=400时,z max =80×100+120×400=56000(元), 即生产书桌100张、书橱400个,可使所得利润最大.对点训练3B 设冬瓜和茄子的种植面积分别为x ,y 亩,总利润z 万元,则目标函数z=(0.5x ×10000-2000x )+(1.4y ×5000-3000y ) =3000x+4000y=1000(3x+4y ),由题可得{x +y ≤15,2000x +3000y ≤40000,x ≥0,y ≥0,即{x +y ≤15,2x +3y ≤40,x ≥0,y ≥0,作出可行域如图,由{x +y =15,2x +3y =40,可得{x =5,y =10,即A (5,10),平移直线l :3x+4y=0,可知直线l 经过点A (5,10)时,即x=5,y=10时,z 取得最大值5.5万元,即该农户种植冬瓜和茄子利润的最大值为5.5万元.。
高三数学一轮复习教案

高三数学一轮复习教案高三数学一轮复习教案作为一名教师,编写教案是必不可少的,教案有助于学生理解并掌握系统的知识。
那么问题来了,教案应该怎么写?下面是小编精心整理的高三数学一轮复习教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
高三数学一轮复习教案1教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一、基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题。
二、问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论。
思维点拨::三角形中的三角变换,应灵活运用正、余弦定理。
在求值时,要利用三角函数的有关性质。
例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增加,问几小时后该城市开始受到台风的侵袭。
一、小结:1、利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的'对角,求另一边的对角(从而进一步求出其他的边和角);2、利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。
3、边角互化是解三角形问题常用的手段。
高三数学一轮复习教案2(一)引入:(1)情景1王老汉的疑惑:秋收过后,村中拥入了不少生意人,收购大豆与红薯,精明的王老汉上了心,一打听,顿时喜上眉梢.村中大豆的收购价是5元/千克,红薯的收购价是2元/千克,而送到县城每千克大豆可获利1.2元,每千克红薯可获利0.6元,王老汉决定明天就带上家中仅有的1000元现金,踏着可载重350千克的三轮车开始自己的发财大计,可明天应该收购多少大豆与红薯呢?王老汉决定与家人合计.回家一讨论,问题来了.孙女说:“收购大豆每千克获利多故应收购大豆”,孙子说:“收购红薯每元成本获利多故应收购红薯”,王老汉一听,好像都对,可谁说得更有理呢?精明的王老汉心中更糊涂了。
高三数学第一轮复习教学设计

高三数学第一轮复习教学设计一、教学任务及对象1、教学任务本教学设计针对的是高三数学第一轮复习,旨在帮助学生全面回顾和巩固高中数学课程内容,为高考做好充分的准备。
教学内容主要包括:函数与极限、导数与微分、积分、立体几何、解析几何、数列、概率与统计等模块。
通过本轮复习,使学生能够熟练掌握各模块的基本概念、原理和方法,形成完整的知识体系,提高解题能力和数学思维能力。
2、教学对象本教学设计的教学对象为高三学生,他们已经完成了高中数学课程的学习,具有一定的数学基础和解决问题的能力。
但由于学生的个体差异,他们在知识掌握程度、学习方法和兴趣上存在一定差异。
因此,在教学过程中,需要关注每个学生的学习情况,因材施教,提高复习效果。
在教学过程中,教师将充分调动学生的积极性,引导他们主动参与课堂讨论和练习,培养良好的学习习惯和团队合作精神。
同时,针对学生的薄弱环节,进行有针对性的辅导和训练,提高他们的数学素养和应试能力。
二、教学目标1、知识与技能(1)熟练掌握高中数学各模块的基本概念、原理和方法,形成完整的知识体系。
(2)提高数学解题能力,特别是综合应用能力的提升,能够灵活运用所学知识解决实际问题。
(3)培养数学思维能力,包括逻辑推理、空间想象、数据分析等,提高学生的数学素养。
(4)掌握一定的数学研究方法,能够对数学问题进行深入探讨和拓展。
2、过程与方法(1)通过课堂讲解、讨论、练习等多种教学活动,让学生在复习过程中主动参与,提高学习积极性。
(2)采用问题驱动的教学方法,引导学生发现问题、分析问题、解决问题,培养学生的探究精神。
(3)运用案例教学,将数学知识与实际应用相结合,提高学生的应用意识。
(4)鼓励学生进行合作学习,发挥团队协作精神,共同解决问题,提高沟通与协作能力。
3、情感,态度与价值观(1)培养学生对数学的兴趣和热情,使他们认识到数学在生活中的重要作用,增强学习数学的自信心。
(2)引导学生树立正确的价值观,将数学学习与个人发展、国家利益和社会进步相结合,激发学生的社会责任感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20XX 届高三数学(文)复习学案:同角三角函数的基本关系与诱导
公式
一、课前准备: 【自主梳理】
1.同角三角函数的基本关系式:
平方关系:
商数关系:
【自我检测】
1.cos210︒= . 2.α为第二象限角,8
tan 15
α=-
,则sin α= . 3.2
sin ()cos()cos()1παπαα+-+⋅-+= . 4.1sin ,5α=
则cos()2
π
α+= .
5= . 6.已知1tan ,2α=
则sin 3cos sin cos αα
αα
-=+ .
二、课堂活动: 【例1】填空题: (1)已知8
cos ,17
α=-则tan α=________.
(2)已知1
cos(75),3
α︒
+=且18090,α-︒<<-︒则cos(15)α︒-= .
(3)已知sin()cos(2)tan()
()tan()sin()
f παπααπααππα---+=-----,则化简()f α= .
(4)若tan 3,α=则
221
sin sin cos 2cos αααα=-- ,
sin cos αα=______________.
【例2】(1)已知sin cos αα+=
sin cos αα及44sin cos αα+的值;
(2)已知1
sin cos (0)5
αααπ+=<<,求tan α的值.
【例3】(1)化简:⋅;
(2)设
()sin()cos()f x a x b x παπα=+++,其中,,a b R α∈,且
0,().ab k k Z απ≠≠∈若(2009)5,f =求(2012)f 的值.
课堂小结
三、课后作业
1.已知3
(,
),tan 2,2
αππα∈=则cos α= . 2.记cos(80),k -︒=则tan100︒= .
3.已知角α终边上一点22(sin ,cos ),33
P ππ
则角α的最小正值为 . 4.若sin cos 2,sin cos αααα+=-则3sin(5)sin()2
παπα-⋅-= .
5.cos(
)6
3π
α-=
则5cos()6
π
α+= . 6.已知角α终边上一点(3,4)(0)P a a a <,则cos(540)α︒-= .
7
=_________.
8.已知A 为锐角,1
lg(1cos ),lg ,1cos A m n A
+==-则lgsin A = ______________.
9.已知1cos()2
πα+=-,且α是第四象限角,计算: (1)sin(2)πα-;
(2)[][]
sin (21)sin (21)()sin(2)cos(2)
n n n Z n n απαπαπαπ+++-+∈+⋅-.
10.已知α是三角形的内角,且1sin cos 5
αα+=
. (1)求tan α的值; (2)把22
1
cos sin αα
-用tan α表示出来,并求值.
四、纠错分析
同角三角函数的基本关系与诱导公式参考答案
一、课前准备: 【自主梳理】 1.2
2sin cos 1αα+= sin tan cos α
αα
=
【自我检测】 1.-
2.817 3.2 4.15- 5.cos40︒ 6.53
- 二、课堂活动: 【例1】(1)151588-或 (2)3- (3)cos α- (4)52 3
10
【例2】
解:(1)由题意,2
2
2
(sin cos )sin 2sin cos cos 12sin cos 2αααααααα+=++=+=,
∴ 1
sin cos 2
αα=
∴ 4
4
2
2
2
2
2
11sin cos (sin cos )2sin cos 1242
αααααα+=+-=-⨯=; (
2
)
由
题
意
,
2221(sin cos )sin 2sin cos cos 12sin cos 25
αααααααα+=++=+=
, ∴ 12
sin cos 025
αα=-
< ∵0απ<< ∴sin 0α> ∴cos 0α< ∴sin cos 0αα->
又2
49(sin cos )12sin cos 25αααα-=-= ∴7sin cos 5
αα-=
又1sin cos 5αα+= ∴43sin ,cos 55
αα==- ∴4tan 3
α=-
. 【例3】解:(1
=
1sin 1sin cos αα
α+--==
(1sin )(1sin )2sin cos cos ααα
αα
+--=
=
=(1cos )(1cos )2cos sin sin ααα
αα
+--=
=
∴原式4-4αα⎧=⎨⎩
为第一、三象限角
为第二、四象限角.
(2)由题意(2009)sin(2009)cos(2009)=sin cos 5f a b a b παπααα=+++--=,
∴(2012)sin(2012)cos(2012)=sin cos 5f a b a b παπααα=++++=-. 三、课后作业
1
. 2
.k - 3.53π 4.310 5
. 6.35 7.1 8.2
m n
-
9. 解:由已知1cos()cos 2παα+=-=-
,∴1
cos 2
α=,又α
是第四象限角,∴sin α= (1
)sin(2)sin 2
παα-=-= (2)原式sin()sin()sin sin 2
4sin cos sin cos cos απαπααααααα
++---=
==-=-⋅⋅.
10. 解:(1)4
tan 3
α=-
(2)222222221cos sin 1tan cos sin cos sin 1tan ααα
ααααα
++==---
∴
22125
cos sin 7
αα=-
-.。