集成电路运算放大器的术语
集成运算放大电路

uA741 (单运放)是高增益运算放大器,用于军 事,工业和商业应用 .这类单片硅集成电路器件提 供输出短路保护和闭锁自由运作。
这些类型还具有广泛的共同模式,差模信号范围和 低失调电压调零能力与使用适当的电位。 uA741 芯片引脚和工作说明: 1和5 为偏置 (调零端) ,2 为正向输入端, 3为反向输入端,4 接地, 6为输出, 7接电源 8空脚
集成运放的输出电压与输入电压(即同相输入端与反相输入端之 间的差值电压)之间的关系曲线称为电压传输特性。对于正、负两 路电源供电的集成运放,其电压传输特性如图3 -4(a)所示。 曲线分线性区(图中斜线部分)和非线性区(图中斜线以外的部 分)。在线性区,输出电压随输入电压(Up - UN)的变化而变化; 但在非线性区,只有两种可能:或是正饱和,或是负饱和。
低输入偏置电流:100nA最大值(LM324A)
每个封装有4个放大器 内部补偿 共模范围扩展至负电源 行业标准的引脚分配 输入端的ESD钳位提高了可靠性,且不影响器件工作 提供无铅封装
特性(Features):
· 内部频率补偿
· 直流电压增益高(约100dB) · 单位增益频带宽(约1MHz)
· 电源电压范围宽:单电源(3—30V);
· 双电源(±1.5 一±15V) · 低功耗电流,适合于电池供电 · 低输入偏流 · 低输入失调电压和失调电流 · 共模输入电压范围宽,包括接地 · 差模输入电压范围宽,等于电源电压范围 · 输出电压摆幅大(0 至Vcc-1.5V)
由于外电路没有引入负反馈,集成运放的开环增益非常高,只要加 很微小的输入电压,输出电压就会达到最大值所以集成运放电压传 输特性中的线性区非常窄,如图3 -4(a)所示。理想运放传输特性无 线性区,只有正、负饱和区,如图3 -4(b)所示。
集成电路运算放大器的定义

集成电路运算放大器的定义1. 引言集成电路运算放大器是当今电子电路中最重要的基本器件之一。
它是一种高增益、差分放大器,广泛应用于模拟电路、信号处理、自动控制等领域。
本文将介绍集成电路运算放大器的定义、基本原理、特性以及应用。
2. 定义集成电路运算放大器,简称运放(Op-Amp, Operational Amplifier),是一种差分放大器,它能够将输入信号放大到较高的增益水平。
运放通常由差动输入级、差动放大级、输出级和电源级组成。
它的输入有两个端口:非反馈输入端(inverting input)和反馈输入端(non-inverting input),输出端则以电压方式输出。
3. 基本原理3.1 差分放大器运放的核心是差分放大器,它是由两个晶体管组成的差分对(differential pair)。
差分放大器具有高增益、高输入阻抗和低输出阻抗等特点。
当在非反馈输入端和反馈输入端施加电压时,差分放大器将两个输入信号进行差分放大,并输出差分放大的结果。
3.2 负反馈运放的一个重要特点是负反馈(negative feedback)。
负反馈通过将输出信号的一部分反馈到输入端,使得运放的输出与输入之间达到稳定的关系。
负反馈降低了运放的增益,但提高了稳定性和线性度。
4.1 增益运放具有非常高的开环增益,通常在105到106范围内。
通过负反馈可以调节运放的增益,使其适应不同的应用需求。
4.2 输入阻抗和输出阻抗运放的输入阻抗非常高,通常在105到1012欧姆之间,使其能够接受较小的输入信号。
输出阻抗通常比输入阻抗小得多,可以提供较低的输出阻抗。
4.3 带宽运放的带宽指的是它能够工作的最大频率范围。
通常,在低频时运放的增益较高,而在高频时增益会逐渐降低。
带宽取决于运放的内部结构和电容等元件。
运放的工作温度和环境温度对其性能有一定影响。
温度变化会引起运放增益的变化,这种现象称为温漂。
通过合适的补偿电路和工艺可以减小温漂的影响。
集成运算放大器相关知识

集成运算放大器相关知识集成运算放大器(Operational Amplifier,简称Op Amp)是一种电子设备,可以放大输入信号并输出放大后的信号。
它在电子电路中广泛应用,是现代电子技术的重要组成部分。
本文将介绍集成运算放大器的基本原理、特性和应用。
一、基本原理集成运算放大器是由多个晶体管和其他电子元件组成的集成电路芯片。
它的核心部分是差分放大器,由输入级、中间级和输出级组成。
差分放大器能够将输入信号放大并进行相位反转,使得放大后的信号与输入信号之间具有特定的幅度和相位关系。
集成运算放大器具有两个输入端和一个输出端。
其中,一个输入端称为非反相输入端(+),另一个输入端称为反相输入端(-)。
通过调节输入端的电压,可以控制输出端的电压。
当输入端的电压差为零时,输出端的电压为零;当输入端的电压差增大时,输出端的电压也相应增大。
二、特性1. 增益:集成运算放大器具有很高的增益。
通常情况下,它的增益可达几万甚至几十万倍。
这使得它能够将微弱的输入信号放大到足够大的幅度,以便进行后续处理或驱动其他设备。
2. 输入阻抗:集成运算放大器的输入阻抗很大,通常为几兆欧姆。
这意味着它可以接受来自外部电路的信号而对其产生很小的影响,从而保持信号的稳定性。
3. 输出阻抗:集成运算放大器的输出阻抗很小,通常为几十欧姆。
这意味着它能够提供足够大的输出电流,以驱动其他负载电路。
4. 带宽:集成运算放大器的带宽是指它能够放大的频率范围。
一般来说,带宽越大,放大器能够处理的高频信号越多。
常见的集成运算放大器的带宽在几百千赫至几百兆赫之间。
5. 偏置电压:集成运算放大器的输入端存在一个偏置电压。
当输入信号为零时,输出信号也不为零,而是存在一个偏置电压。
这是由于集成运算放大器内部元件的不匹配造成的。
三、应用1. 模拟电路:集成运算放大器常用于模拟电路中,如滤波器、放大器、振荡器等。
它可以对信号进行放大、滤波、调制等处理,使得信号能够适应不同的应用场景。
电工电子学_集成运算放大器

24
9.3 集成运放在信号运算方面的应用
由于开环电压放大倍数Auo很高,集成运放开环工作时线性区很 窄。因此,为了保证运放处于线性工作区,通常都要引入深度负反馈。 集成运放引入适当的负反馈,可以使输出和输入之间满足某种特定的 函数关系,实现特定的模拟运算。当反馈电路为线性电路时,可以实 现比例、加法、减法、积分、微分等运算。
图9.2.1 反馈放大电路框图
电路中的反馈是指将电路的输出信号(电压或电流)的一部分或全部 通过一定的电路(反馈电路)送回到输入回路,与输入信号一同控制 电路的输出。可用图9.2.1所示的方框图来表示。
16
2. 反馈的分类
(1)正反馈和负反馈 根据反馈极性的不同,可以分为正反馈和负反馈。 (2)直流反馈和交流反馈 根据反馈信号的交直流性质,可以将反馈分为直流反馈和交流反馈。 (3)电压反馈和电流反馈 根据输出端反馈采样信息的不同,可以将反馈分为电压反馈和电流反 馈。 (4)串联反馈和并联反馈 根据反馈信号与输入信号在放大电路输入端联结方式的不同,可以将 反馈分为串联反馈和并联反馈。
9
3. 输入和输出方式
差放电路有双端输入和单端输入两种输入方式。同样也有双端 输出和单端输出两种输出方式。因此,差动放大电路共有四种输入输 出方式。 (1)双端输入双端输出 (2)双端输入单端输出 (3)单端输入双端输出 (4)单端输入单端输出
10
4. 共模抑制比
差动放大电路对差模信号和共模信号都有放大作用,但对差动 放大电路来说,差模信号是有用信号,共模信号则是需要抑制的。因 此要求差放电路的差模放大倍数尽可能大,而共模放大倍数尽可能小。 为了衡量差放电路放大差模信号和抑制共模干扰的能力,引入共模抑 制比作为技术指标,用KCMR表示。其定义为差模电压放大倍数与共 模电压放大倍数之比,即 A (9.1.11) K ud
集成电路运算放大器实验教案

集成电路运算放大器实验教案0. 前言集成电路运算放大器(Operational Amplifier,简称Op Amp)是一种非常重要的电子元器件,由于其方便的使用和高性能,成为学习电子技术的必备件之一。
在工程实践中,Op Amp被广泛应用于斯密特触发器、积分与微分电路、滤波器等电路中,因此掌握Op Amp的基础知识和实验技能对于电子信息专业的学生非常重要。
本次实验的目的是帮助学生掌握Op Amp的基本操作,理解阻容耦合放大器、反相放大器、非反相放大器、比例放大器和积分放大器等Op Amp的基础电路,并通过实际的电路组装和测试来加深对Op Amp的理解和应用。
1.实验名称集成电路运算放大器实验教案2.实验目的(1) 了解Op Amp的原理与基本电路。
(2) 掌握Op Amp放大电路的组装方法。
(3) 掌握Op Amp放大电路的测试与分析方法。
(4) 提高学生实验操作能力和实践能力。
3.实验器材(1)直流电源(5V、+12V、-12V)(2)信号发生器(正弦波、矩形波、三角波)(3)万用表(4)面包板及连线(5)集成电路运算放大器(OP27、LM741、TL081等)(6)小型陶瓷电容(0.1μF、0.22μF等)(7)小型金属膜电阻(1kΩ、10kΩ等)4.实验步骤(1) 实验前准备:将面包板上的信号发生器、万用表、电源及Op Amp等器件连通,保证电源正极与电源标记对应,信号输入口与信号发生器对应,输出端口与万用表对应,Op Amp的正负电源和信号输入和输出对应。
(2) 阻容耦合放大器:阻容耦合放大器是指由Op Amp和若干个电阻、电容组成的电路。
将Op Amp的正电源连接到+12V,负电源连接到-12V,电容C1连接到Op Amp的负输入端,C2连接到Op Amp的输出端,R1连接到Op Amp的正输入端和电源的+12V端,R2连接到Op Amp的正输入端和C1的另一端。
分别通过正弦波和矩形波输入信号,观察输出信号。
集成电路运算放大器的术语

集成电路运算放大器的术语引言集成电路运算放大器(Operational Amplifier,简称Op Amp)是一种广泛应用于电子电路中的基本器件。
它具有高增益、高输入阻抗、低输出阻抗等特点,能够在模拟电路中起到放大、滤波、比较等作用。
本文将介绍一些与集成电路运算放大器相关的术语,帮助读者更好地理解和应用该器件。
1. 基本术语•运算放大器(Operational Amplifier):是一种具有高增益、高输入阻抗、低输出阻抗等特点的电子放大器,可用于放大、滤波、比较、积分、微分等各种功能。
•输入端(Input):运算放大器的输入端包括非反馈输入端(非反相输入端)和反馈输入端(反相输入端)。
•输出端(Output):运算放大器的输出端是放大的信号输出端。
•开环增益(Open-loop Gain):运算放大器在无反馈情况下的增益。
•反馈(Feedback):将输出信号的一部分馈入到输入端的过程,用来控制运放的放大特性。
•共模电压(Common Mode Voltage):在运放的非反向和反向输入端之间的电压差。
•差模电压(Differential Mode Voltage):在运放的非反向和反向输入端之间的电压差。
•共模信号(Common Mode Signal):施加在运放输入端的电压信号。
•差模信号(Differential Mode Signal):施加在运放输入端的差分电压信号。
2. 输入和输出特性•输入偏置电压(Input Offset Voltage):在输入端没有任何输入信号时,输出电压不为零的电压差。
•输入偏置电流(Input Bias Current):在输入端没有任何输入信号时,进入输入端的漏电流。
•输入失调电流(Input Offset Current):在输入端没有任何输入信号时,进入输入端的漏电流之间的差异。
•输入电压范围(Input Voltage Range):运算放大器正常工作的输入电压范围。
什么是集成运算放大器 如何正确使用

什么是集成运算放大器如何正确使用集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。
自从1964年美国仙童公司研制出第一个单片集成运算放大器μA702以来,集成运算放大器得到了广泛的应用,它已成为线性集成电路中品种和数量最多的一类。
国标统一命名法规定,集成运算放大器各个品种的型号有字母和阿拉伯数字两大部分组成。
字母在首部,统一采用CF两个字母,C表示国标,F表示线性放大器,其后的数字表示集成运算放大器的类型。
它的增益高(可达60~180dB),输入电阻大(几十千欧至百万兆欧),输出电阻低(几十欧),共模抑制比高(60~170dB),失调与飘移小,而且还具有输入电压为零时输出电压亦为零的特点,适用于正,负两种极性信号的输入和输出。
模拟集成电路一般是由一块厚约0.2~0.25mm的P型硅片制成,这种硅片是集成电路的基片。
基片上可以做出包含有数十个或更多的BJT或FET、电阻和连接导线的电路。
运算放大器除具有+、-输入端和输出端外,还有+、-电源供电端、外接补偿电路端、调零端、相位补偿端、公共接地端及其他附加端等。
它的闭环放大倍数取决于外接反馈电阻,这给使用带来很大方便[1] 。
集成运算放大器是一种具有高电压放大倍数的直接耦合放大器,主要由输入、中间、输出三部分组成。
输入部分是差动放大电路,有同相和反相两个输入端;前者的电压变化和输出端的电压变化方向一致,后者则相反。
中间部分提供高电压放大倍数,经输出部分传到负载。
它的引出端子和功能如图所示。
其中调零端外接电位器,用来调节使输入端对地电压为零(或某一预定值)时,输出端对地电压也为零(或另一个预定值)。
补偿端外接电容器或阻容电路,以防止工作时产生自激振荡(有些集成运算放大器不需要调零或补偿)。
供电电源通常接成对地为正或对地为负的形式,而以地作为输入、输出和电源的公共端。
集成运算放大器简称集成运放

集成运算放大器简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。
它的增益高(可达60~180dB ),输入电阻大(几十千欧至百万兆欧),输出电阻低(几十欧),共模抑制比高(60~170dB ),失调与飘移小,而且还具有输入电压为零时输出电压亦为零的特点,适用于正,负两种极性信号的输入和输出。
模拟集成电路一样是由一块厚约0.2~0.25mm的P 型硅片制成,这种硅片是集成电路的基片。
基片上能够做出包括有数十个或更多的BJT 或FET 、电阻和连接导线的电路。
运算放大器除具有十、一输人端和输出端外,还有十、一电源供电端、外接补偿电路端、调零端、相位补偿端、公共接地端及其他附加端等。
它的放大倍数取决于外接反馈电阻,这给利用带来专门大方便.依照集成运算放大器的参数来分,集成运算放大器可分为如下几类。
1)、通用型运算放大器通用型运算放大器确实是以通用为目的而设计的。
这种器件的要紧特点是价钱低廉、产品量大面广,其性能指标能适合于一样性利用。
例mA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356 都属于此种。
它们是目前应用最为普遍的集成运算放大器。
2)、高阻型运算放大器这种集成运算放大器的特点是差模输入阻抗超级高,输入偏置电流超级小,一样rid >(109~1012)W,IIB 为几皮安到几十皮安。
实现这些指标的要紧方法是利用处效应管高输入阻抗的特点,用处效应管组成运算放大器的差分输入级。
用FET 作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优势,但输入失调电压较大。
常见的集成器件有LF35六、LF35五、LF347(四运放)及更高输入阻抗的CA3130、CA3140 等。
3)、低温漂型运算放大器在周密仪器、弱信号检测等自动操纵仪表中,老是希望运算放大器的失调电压要小且不随温度的转变而变化。
低温漂型运算放大器确实是为此而设计的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章集成运算放大电路第一节学习要求第二节集成运算放大器中的恒流源第三节差分式放大电路第四节集成电路运算放大器第五节集成电路运算放大器的主要参数第六节场效应管简介第一节学习要求1. 掌握基本镜象电流源、比例电流源、微电流源电路结构及基本特性。
2. 掌握差模信号、共模信号的定义与特点。
3. 掌握基本型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。
4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。
会计算A VD、R id、 R ic、 R od、 R oc、K CMR。
5.熟悉运放的主要技术指标及集成运算放大电路的一般电路结构。
学习重点:掌握集成运放的基本电路的分析方法学习难点:集成运放内部电路的分析集成电路简介集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。
集成电路在结构上的特点:1. 采用直接耦合方式。
2. 为克服直接耦合方式带来的温漂现象,采用了温度补偿的手段 ----输入级是差放电路。
3. 大量采用BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。
4. 采用复合管接法以改进单管性能。
集成电路分为数字和模拟两大部分。
返回第二节集成运算放大器中的恒流源一、基本镜象电流源电路如图6.1所示。
T1,T2参数完全相同,即β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2当β>>2时,式中I R=I REF称为基准电流,由上式可以看出,当R确定后,I R就确定,I C2也随之而定,我们把I C2看作是I R的镜像,所以称图6.1为镜像恒流源。
改进电路一:图6.2是带有缓冲级的基本镜象电流源,它是针对基本镜象电流源缺点进行的改进,两者不同之处在于增加了三极管T3,其目的是减少三极管T1、T2的I B对I R的分流作用,提高镜象精度,减少β值不够大带来的影响。
改进电路二:图6.3是带有发射极电阻的镜象电流源,其中R e1=R e2,两管的输入仍有对称性,所以若此电路R e1不等于R e2,则I C2与(R e1、R e2)的比值成比例,因此,此电流源又称为比例电流源。
二、微电流源电路如图6.4所示,当I R一定时,I C2可确定为:可见,利用两管基-射电压差 V BE可以控制I0。
由于 V BE的数值小,用阻值不大的R e2即可得微小的工作电流--微电流源。
例:电路如图6.5所示,已知:BJT的参数相同,求各电流源与参考电流的关系。
三、电流源的主要应用-有源负载前面曾提到,增大R c可以提高共射放大电路的电压增益。
但是,R c不能很大,因为在集成工艺中制造大电阻的代价太高,而且,在电源电压不变的情况下,R c越大,导致输出幅度越小。
那么,能否找到一种元件代替R C,其动态电阻大,使得电压增益增大,但静态电阻较小。
因而不致于减小输出幅度呢?自然地,我们可以考虑晶体管恒流源。
由于电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作负载使用--有源负载,如图6.6所示。
返回第三节差分式放大电路基本概念:图6.7表示一个线性放大器,它有两个输入端,分别接有信号v i1和v i2;输出端的信号为v o。
在电路完全对称的理想情况下,输出信号电压可表示为式中A VD是差分放大器的差模电压增益。
可见电路的两个输入端所共有的任何信号对输出电压都不会有影响。
但在一般情况下,实际的输出电压不仅取决于两个输入信号的差模信号v id,而且还与两个输入信号的共模信号v ic有关,它们分别是当用差模信号和共模信号表示两个输入信号时,有在差模信号和共模信号同时存在时,对于线性放大器而言,可以利用叠加原理来求出总的输出电压,即式中为差模电压放大倍数,称为共模电压放大倍数。
一、基本差分放大电路1. 基本电路基本差动式放大器如图6.8所示。
图中 T1,T2 是特性相同的晶体管,电路对称,参数也对称。
如:V BE1=V BE2,R c1=R c2=R c, R b1=R b2= R b,β1=β2=β。
电路有两个输入端和两个输出端。
2. 工作原理(1)当v i1=v i2=0时,即静态时,由于电路完全对称:I c1 = I c2= I0/2, R c1I c1 = R c2I c2,V o = V c1-V c2 = 0 即输入为0时,输出也为0。
(2)加入差模信号时,即v s1=-v s2=v sd/2,从电路看v B1增大使得i B1增大,使i c1增大,使得v c1减小v B2减小使得i B2减小,又使得i c2减小,使得v c2增大.由此可推出:v o=v c1 -v c2=2v c1,每个变化量v不等于0,所以有信号输出。
若在输入端加共模信号,即v s1=v s2,由于电路的对称性和恒流源偏置,理想情况下v o=0,无输出。
这就是所谓"差动"的意思;即两个输入端之间有差别,输出端才有变动。
3、抑制零点漂移的原理在差分电路中,无论是温度的变化,还是电流源的波动都会引起两个三极管的i C及v C的变化。
这个效果相当于在两个输入端加入了共模信号,在理想情况下, v o不变,从而抑制了零漂。
凡是对差放两管基极作用相同的信号都是共模信号。
常见的有:(1)v i1不等于 -v i2,信号中含有共模信号;(2)干扰信号(通常是同时作用于输入端);(3)零漂。
实际情况下,要做到两管完全对称和理想恒流源是比较困难的,但输出漂移电压也将大为减小。
综上分析,放大差模信号,抑制共模信号是差放的基本特征。
通常情况下,我们感兴趣的是差模输入信号,对于这部分有用信号,希望得到尽可能大的放大倍数;而共模输入信号可能反映由于温度变化产生的漂移信号或随输入信号一起进入放大电路的某种干扰信号。
对于这样的共模输入信号我们希望尽量地加以抑制,不予放大传送。
4、主要技术指标的计算(1)静态工作点的估算I C1=I C2=I c=I O/2V C1=V C2=V cc-I c R cI B1=I B2=I c/β=I B=I/2β(2)差摸电压增益和输入、输出电阻差放电路有两个输入端和两个输出端。
同样,输出也分双端输出和单端输出方式。
组合起来,有四种连接方式:双端输入双端输出、双端输入单端输出,单端输入双端输出,单端输入单端输出。
(a)双入双出电路差模输入: v i1=-v i2=v id/2,则i C1上升时, i C2下降。
若电路完全对称时,则△i C1=△i C2,因为I O不变,因此v e=0,电路可以用图6.9表示。
由上面的计算可见,负载在电路完全对称,双入双出的情况下,A VD= A V1,可见该电路使用成倍的元器件换取抑制零漂的能力。
差模输入电阻R i:从两个输入端看进去的等效电阻R i=2r be差模输出电阻R0:从两个输出端看进去的等效电阻R0=2R CR0, R i是单管的两倍。
(b)双入单出电路对于差模信号:由于另一三极管的C极没有利用,因此V0只有双出的一半。
差模输入电阻:由于输入回路没变,所以R i=2r be,差模输出电阻: R0=R c1。
(c)单端输入电路对于单端输入,相当与图6.10的b2接地。
当v i>0时,i c1增大,使i e1也增大,v e增大。
由于T2的b极通过接地,则v BE2=0-v e= -v e,所以有v BE2减小,i c2也减小。
整个过程,在单端输入v i的作用下,两个BJT的电流为i c1增大,i c2减少。
所以单端输入时,差分放大的T1、T2仍然工作在差分状态。
单端输入与双端输入是一致的。
小结:① 只要是双端出,不管是单入还是双入,其A VD、R i、R o都是一样的。
② 只要是单端出,不管是单入还是双入,其A VD、R i、R o也是一样的。
(3)共模电压增益① 双端输出的A VC。
因为v i1=v i2,此时变化量相等,即v C1=v C2,因此实际上,电路完全对称是不容易的,但即使这样,A VC也很小,放大电路的抑制共模能力还是很强的。
② 单端输出的A VC对于共模信号,因为两边电流同时增大或同时减小.因此在e极处得到的是两倍的i e。
v e=2i e R e,这相当于每个BJT的发射极分别接2R e电阻,如图6.11所示。
(这里的R e就是恒流源交流等效电阻)因此有(4)共模抑制比K CMRK CMR是衡量差放抑制共模信号能力的一项技术指标。
定义为:A VD越大,A VC越小.则共模抑制能力越强,放大器的性能越优良,所以K CMR越大越好。
理想情况下:双端输出的K CMR=∞单端输出的共模抑制比为:双端输出电路的总输出电压:单端输出电路的总输出电压:例1:集成运放BG305的输入级如图6.12所示,各BJT的β1= β2=30,β3=β4=β5=β6=50,各BJT的V BE=0.7V,R b=100K,R c=50K, R w=10K(滑动端调至中点),R e=1K,R L即第二级的R i为23.2K。
求:(1)该放大级的静态工点; (2)差动放大倍数A VD;(3)差动输入电阻R i,差动输电阻 R o。
解(1)求放大级的静态工点解(2)差动放大倍数A VD解(3)差动输入、出电阻R i、R o返回第四节集成电路运算放大器模拟集成电路的分类模拟集成电路按功能大致可分为:线性放大器、功率放大器、比较器、乘法器、稳压器、(D/A 、A/D)转换器、锁相环器件等。
其中线性放大器按性能可分为通用型和专用型。
线性放大器中,发展最早、应用最广的是集成运算放大电路。
图6.13示出部分运放的实物图。
一、简单集成电路运算放大器1、集成运放的基本组成框图和符号(如图6.14所示)2、一个简单的集成运放(如图6.15所示)(1)直流分析:(2)放大电路总增益的计算返回第五节集成电路运算放大器的主要参数1、输入失调电压V IO2、输入偏置电流I IB3、输入失调电流I IO4、温度漂移5、最大差摸输入电压V idmax6、最大共摸输入电压V iCmax7、最大输出电流I Omax8、开环电压增益A VO运放在无外加反馈情况下对差模信号的电压增益。
9、开环带宽BW(f H)10、单位增益带宽BW(f T)11、转换速率S R返回第六节场效应管(FET)简介一、结型场效应管(一) JFET的结构和特点1、结构场效应管的结构如图6.18所示,它是在一块N型半导体的两边利用杂质扩散出高浓度的P型区域,用P+表示,形成两个P+N结。
N型半导体的两端引出两个电极,分别称为漏极D和源极S。
把两边的P区引出电极并连在一起称为栅极G。