2007年高考文科数学(全国)卷II

合集下载

2007年普通高等学校招生全国统一考试文科数学试卷及答案-安徽卷

2007年普通高等学校招生全国统一考试文科数学试卷及答案-安徽卷

2007年普通高等学招生全国统一考试(安徽卷)数 学(文科)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若}}{{032,122=--===x x x B x x A ,则B A ⋂=(A ){}3(B ){}1(C )Φ(D) {}1-(2)椭圆1422=-y x 的离心率为(A )23(B )43 (C )22(D )32 (3)等差数列{}x a 的前n 项和为x S 若=则432,3,1S a a == (A )12 (B )10 (C )8 (D )6(4)下列函数中,反函数是其自身的函数为 (A)),0[,)(2+∞∈=x x x f (B)),(,)(3+∞-∞∈=x x x f (C) ),(,)(3-∞+∞∈=x e x f(D) ),0(,1)(+∞∈=x xx f (5)若圆04222=--+y x y x 的圆心到直线0=+-a y x 的距离为22,则a 的值为 (A)-2或2(B)2321或 (C)2或0 (D)-2或0(6)设n m l ,,均为直线,其中n m ,在平面”“”“”“,n l m l l l a ⊥⊥⊥⊥且是是则内αα的 (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 (7)图中的图象所表示的函数的解析式为(A)|1|23-=x y (0≤x ≤2) (B) |1|2323--=x y(0≤x ≤2)(C) |1|23--=x y (0≤x ≤2)(D) |1|1--=x y (0≤x ≤2)(8)设a >1,且)2(log ),1(log )1(log 2a p a n a m a a a =-=+=,则p n m ,,的大小关系为 (A) n >m >p(B) m >p >n (C) m >n >p(D) p >m >n(9)如果点P 在平面区域⎪⎩⎪⎨⎧≥-≤-+≥+-01202022y y x y x 上,点O 在曲线的那么上||,1)2(22PQ y x =++最小值为 (A)23 (B)154- (C)122- (D)12-(10)把边长为2的正方形ABCD 沿对角线AC 折成直二面角,折成直二面角后,在A ,B ,C ,D 四点所在的球面上,B 与D 两点之间的球面距离为 (A)22π(B)π(C)2π (D)3π (11)定义在R 上的函数f (x )既是奇函数,又是周期函数,T 是它的一个正周期.若将方程f (x )=0在闭区[-T ,T ]上的根的个数记为n ,则n 可能为 (A)0 (B)1 (C)3 (D)5二、填空题:本大共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(12)已知55433221024)1(x a x a x a x a x a a x +-+++=-,则())(531420a a a a a a ++++的值等于 .(13) 在四面体O-ABC 中,D c b a ,,,===为BC 的中点,E 为AD 的中点,则= (用a ,b ,c 表示)(14)在正方体上任意选择两条棱,则这两条棱相互平行的概率为 . (15)函数)32sin(3)(π-=x x f 的图象为C ,如下结论中正确的是 (写出所有正确结论的编号). ①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称; ③函数125,12()(ππ-在区间x f )内是增函数;④由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分10分)解不等式)2)(sin |13(|---x x >0.(17) (本小题满分14分)如图,在六面体1111D C B A ABCD -中,四边形ABCD 是边 长为2的正方形,四边形1111D C B A 是边长为1的正方 形,⊥1DD 平面1111D C B A ,⊥1DD 平面ABCD ,.21=DD(Ⅰ)求证:(Ⅱ)求证:平面;1111BDD B ACC A 平面⊥(Ⅲ)求二面角C BB A --1的大小(用反三角函数值表示).第(17)题图(18)(本小题满分14分)设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:(Ⅱ)设A 、B 为势物线G 上异于原点的两点,且满足0·=,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.(19)(本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔. (Ⅰ)求笼内恰好剩下....1只果蝇的概率; (Ⅱ)求笼内至少剩下....5只果蝇的概率.(20)(本小题满分14分)设函数f (x )=-cos 2x -4t sin2x cos 2x +4t 2+t 2-3t +4,x ∈R, 其中t ≤1,将f (x )的最小值记为g (t ).(Ⅰ)求g (t )的表达式;(Ⅱ)诗论g (t )在区间(-1,1)内的单调性并求极值.(21)(本小题满分14分)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a 1,以后第年交纳的数目均比上一年增加d (d >0),因此,历年所交纳的储备金数目a 1,a 2,…是一个公差为d 的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利,这就是说,如果固定年利率为r (r >0),那么,在第n 年末,第一年所交纳的储备金就变为n (1+r )n -1,第二年所交纳的储备金就变为a 2(1+r )n -2,……,以T n 表示到第n 年末所累计的储备金总额. (Ⅰ)写出T n 与T n-1(n ≥2)的递推关系式;(Ⅱ)求证:T n =A n +B n ,其中{}n A 是一个等比数列,{}n B 是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算.每小题5分,满分55分. 1.D 2.A 3.C 4.D 5.C 6.A7.B 8.B 9.A 10.C 11.D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 12.256-13.111244a b c ++ 14.31115.①②③三、解答题16.本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力.本小题满分10分.解:因为对任意x ∈R ,sin 20x -<,所以原不等式等价于3110x --<. 即311x -<,1311x -<-<,032x <<,故解为203x <<. 所以原不等式的解集为203x x ⎧⎫<<⎨⎬⎩⎭. 17.本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.本小题满分14分. 解法1(向量法): 以D 为原点,以1DA DC DD ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -如图,则有1111(200)(220)(020)(102)(112)(012)(002)A B C A B C D ,,,,,,,,,,,,,,,,,,,,.(Ⅰ)证明:1111(110)(220)(110)(220)AC AC D B DB =-=-== ,,,,,,,,,,,∵. 111122AC AC DB D B == ,∴. AC ∴与11AC 平行,DB 与11D B 平行,于是11AC 与AC 共面,11B D 与BD 共面. (Ⅱ)证明:1(002)(220)0DD AC =-= ,,,,··,(220)(220)0DB AC =-=,,,,··, 1DD AC ⊥ ∴,DB AC ⊥.1DD 与DB 是平面11B BDD 内的两条相交直线.AC ⊥∴平面11B BDD .又平面11A ACC 过AC .∴平面11A ACC ⊥平面11B BDD .(Ⅲ)解:111(102)(112)(012)AA BB CC =-=--=- ,,,,,,,,. 设111()x y z =,,n 为平面11A ABB 的法向量,11120AA x z =-+= ·n ,111120BB x y z =--+= n ·.于是10y =,取11z =,则12x =,(201)=,,n . 设222()x y z =,,m 为平面11B BCC 的法向量,122220BB x y z =--+= m ·,12220CC y z =-+= m ·.于是20x =,取21z =,则22y =,(021)=,,m . 1cos 5==,m n m n m n ·. ∴二面角1A BB C --的大小为1πarccos 5-.解法2(综合法):(Ⅰ)证明:1D D ⊥∵平面1111A B C D ,1D D ⊥平面ABCD .1D D DA ⊥∴,1D D DC ⊥,平面1111A B C D ∥平面ABCD .于是11C D CD ∥,11D A DA ∥.设E F ,分别为DADC ,的中点,连结11EF A E C F ,,, 有111111A E D DC FD D DE DF ==,,,∥∥. ABCD1A1B1C 1D MOE F11A E C F ∴∥,于是11AC EF ∥.由1DE DF ==,得EF AC ∥, 故11AC AC ∥,11AC 与AC 共面. 过点1B 作1B O ⊥平面ABCD 于点O ,则1111B O A E B O C F , ∥∥,连结OE OF ,, 于是11OE B A ∥,11OF B C ∥,OE OF =∴. 1111B A A D ⊥∵,OE AD ⊥∴. 1111B C C D ⊥∵,OF CD ⊥∴.所以点O 在BD 上,故11D B 与DB 共面.(Ⅱ)证明:1D D ⊥∵平面ABCD ,1D D AC ⊥∴, 又BD AC ⊥(正方形的对角线互相垂直),1D D 与BD 是平面11B BDD 内的两条相交直线,AC ⊥∴平面11B BDD .又平面11A ACC 过AC ,∴平面11A ACC ⊥平面11B BDD . (Ⅲ)解:∵直线DB 是直线1B B 在平面ABCD 上的射影,AC DB ⊥, 根据三垂线定理,有1AC B B ⊥.过点A 在平面1ABB A 内作1AM B B ⊥于M ,连结MC MO ,, 则1B B ⊥平面AMC , 于是11B B MC B B MO ⊥⊥,,所以,AMC ∠是二面角1A B B C --的一个平面角.根据勾股定理,有111A A C C B B =. 1OM B B ⊥∵,有11B O OB OM B B ==·BM =AM =CM =.2221cos 25AM CM AC AMC AM CM +-∠==-·,1πarccos 5AMC ∠=-,二面角1A BB C --的大小为1πarccos5-. 18.本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力.本小题满分14分.解:(I )设切点2004x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x xy x x -=-. 即20424x x y x =-. 因为点(0)P -4,在切线上. 所以2044x -=-,2016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+. 点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,,得2440x kx --=, 由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭.2222218(1)18(2)322ABCDk S AC BD k k k +===++≥. 当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.19.本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力.本小题满分13分. 解:以k A 表示恰剩下k 只果蝇的事件(016)k = ,,,. 以m B 表示至少剩下m 只果蝇的事件(016)m = ,,,. 可以有多种不同的计算()k P A 的方法.方法1(组合模式):当事件k A 发生时,第8k -只飞出的蝇子是苍蝇,且在前7k -只飞出的蝇子中有1只是苍蝇,所以17287()28kk C k P A C --==. 方法2(排列模式):当事件k A 发生时,共飞走8k -只蝇子,其中第8k -只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前7k -只飞出的蝇子中有6k -只是果蝇,有68kC -种不同的选择可能,还需考虑这7k -只蝇子的排列顺序.所以162688(7)!7()28kk kC C k kP A A ----== . 由上式立得163()2814P A ==; 356563()()()()28P B P A A P A P A =+=+=. 20.本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力.本小题满分14分. 解:(I )我们有232()cos 4sin cos 43422x xf x x t t t t =--++-+222sin 12sin 434x t t t t =--++-+ 223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,.由此可见,()g t 在区间112⎛⎫--⎪⎝⎭,和112⎛⎫ ⎪⎝⎭,单调增加,在区间1122⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭. 21.本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力.本小题满分14分.解:(Ⅰ)我们有1(1)(2)n n n T T r a n -=++≥. (Ⅱ)11T a =,对2n ≥反复使用上述关系式,得2121(1)(1)(1)n n n n n n T T r a T r a r a ---=++=++++=12121(1)(1)(1)n n n n a r a r a r a ---=+++++++ ,①在①式两端同乘1r +,得12121(1)(1)(1)(1)(1)n n n n n r T a r a r a r a r --+=++++++++②②-①,得121(1)[(1)(1)(1)]n n n n n rT a r d r r r a --=++++++++-1[(1)1](1)n n n dr r a r a r=+--++-. 即1122(1)nn a r d a r d d T r n r r r ++=+--.如果记12(1)nn a r d A r r +=+,12n a r d d B n r r+=--,则n n n T A B =+. 其中{}n A 是以12(1)a r dr r++为首项,以1(0)r r +>为公比的等比数列;{}n B 是以景云制作第 11 页 共 11 页 12a r d d r r +--为首项,d r-为公差的等差数列.。

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ) .doc

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ) .doc

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题1.sin 210=( )AB .C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i + 4.下列四个数中最大的是( )A .2(ln 2)B .ln(ln 2)C .lnD .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞,, D .(2)(1)-∞-+∞,,7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( )A B C D 8.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3B .2C .1D .129.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )A B CD 12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2limnn S n ∞=→ .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.AEBCFSD20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x -=相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.21.(本小题满分12分)设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数. 22.(本小题满分12分) 已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B 二、填空题 13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3. 应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 18.解:(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去). (2)ξ的可能取值为012,,.若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===.1180202100C C 160(1)C 495P ξ===.2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB ∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥. 又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A =,所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角AE BCFSDH G Mtan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,,00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭,,. EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,. EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥ 又1002EA ⎛⎫=- ⎪⎝⎭,,,0EA EF EA EF =,⊥, 所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.3cos 3MD EA MD EA MD EA<>==,. 所以二面角A EF D --的大小为arccos3. 20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即 2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得2222(2)x x y -+=+,即 222x y -=. (2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…,整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一: 由(1)可知302n a <<,故0n b >.那么,221n n b b +-2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,, 因为132nn a a +-=,所以1n n b a ++==由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n nn n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32nn a a a -<.即 1n n b b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根. 记 32()23g t t at a b =-++, 则 2()66g t t at '=-6()t t a =-.当t 变化时,()()g t g t ',变化情况如下表:由()g t 的单调性,当极大值0a b +<或极小值()0b f a ->时,方程()0g t =最多有一个实数根;当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2a t t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.2007年普通高等学校招生全国统一考试数学(文史类)(北京卷)本试卷分第I 卷(选择题)和第II (非选择题)两部分,第I 卷1至2页,第II 卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知cos tan 0θθ<,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 2.函数()3(02)xf x x =<≤的反函数的定义域为( ) A.(0)+∞,B.(19],C.(01),D.[9)+∞,3.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.πC.2πD.4π4.椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤⎥⎝⎦,B.02⎛ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.1⎫⎪⎪⎣⎭5.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( ) A.()2142610CA 个 B.242610A A 个C.()2142610C 个D.242610A 个6.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a <B.7a ≥C.57a <≤D.5a <或7a ≥7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线a b a a b αβα⊂,,,∥,∥8.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①② B.①③ C.② D.③2007年普通高等学校招生全国统一考试数学(文史类)(北京卷) 第II 卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 .10.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为 .11.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是.12.在ABC △中,若1tan 3A =,150C =,1BC =,则AB = .13.2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于 .14.已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;当[()]2g f x =时,x =.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)记关于x 的不等式01x ax -<+的解集为P ,不等式11x -≤的解集为Q . (I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围. 16.(本小题共13分)数列{}n a 中,12a =1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;(II )求{}n a 的通项公式. 17.(本小题共14分)如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小.18.(本小题共12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的.求:(I )这6位乘客在其不相同的车站下车的概率; (II )这6位乘客中恰有3人在终点站下车的概率; 19.(本小题共14分) 如图,矩形ABCD 的两条对角线相交于点(20)M ,,AB 边所在直线的方程为360x y --=点(11)T -,在AD 边所在直线上. (I )求AD 边所在直线的方程; (II )求矩形ABCD 外接圆的方程;(III )若动圆P 过点(20)N -,,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的轨迹方程. 20.(本小题共14分)已知函数y kx =与22(0)y x x =+≥的图象相交于11()A x y ,,22()B x y ,,1l ,2l 分别是22(0)y x x =+≥的图象在A B ,两点的切线,M N ,分别是1l ,2l 与x 轴的交点.(I )求k 的取值范围;(II )设t 为点M 的横坐标,当12x x <时,写出t 以1x 为自变量的函数式,并求其定义域和值域;(III )试比较OM 与ON 的大小,并说明理由(O 是坐标原点).OCADB2007年普通高等学校招生全国统一考试 数学(文史类)(北京卷)参考答案一、选择题(本大题共8小题,每小题5分,共40分)1.C 2.B 3.B 4.D 5.A6.C7.D 8.C二、填空题(本大题共6小题,每小题5分,共30分)9.310.211n -11.3-12.213.72514.11三、解答题(本大题共6小题,共80分) 15.(共12分) 解:(I )由301x x -<+,得{}13P x x =-<<. (II ){}{}1102Q x x x x =-=≤≤≤.由0a >,得{}1P x x a =-<<,又Q P ⊆,所以2a >, 即a 的取值范围是(2)+∞,. 16.(共13分)解:(I )12a =,22a c =+,323a c =+, 因为1a ,2a ,3a 成等比数列, 所以2(2)2(23)c c +=+, 解得0c =或2c =.当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=. 又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,.当1n =时,上式也成立,所以22(12)n a n n n =-+=,,. 17.(共14分)解法一:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =,CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角.在Rt COE △中,2CO BO ==,112OE BO ==,CE ∴== 又12DE AO ==. ∴在Rt CDE △中,tan 3CE CDE DE ===. ∴异面直线AO 与CD 所成角的大小为. 解法二:(I )同解法一.(II )建立空间直角坐标系O xyz -,如图,则(000)O ,,,(00A ,,(200)C ,,,(01D ,(00OA ∴=,,(2CD =-,cos OA CD OA CD OA CD∴<>=,64322==. ∴异面直线AO 与CD 所成角的大小为 18.(共13分) 解:(I )这6位乘客在互不相同的车站下车的概率为OC ADBEx610661512.15121010A P ==0≥.(II )这6位乘客中恰有3人在终点站下车的概率为33666914580.014581010C P ⨯===. 19.(共14分)解:(I )因为AB 边所在直线的方程为360x y --=,且AD 与AB 垂直,所以直线AD 的斜率为3-.又因为点(11)T -,在直线AD 上,所以AD 边所在直线的方程为13(1)y x -=-+.320x y ++=.(II )由36032=0x y x y --=⎧⎨++⎩,解得点A 的坐标为(02)-,,因为矩形ABCD 两条对角线的交点为(20)M ,. 所以M 为矩形ABCD 外接圆的圆心.又AM ==从而矩形ABCD 外接圆的方程为22(2)8x y -+=.(III )因为动圆P 过点N ,所以PN 是该圆的半径,又因为动圆P 与圆M 外切,所以PM PN =+即PM PN -=故点P 的轨迹是以M N ,为焦点,实轴长为因为实半轴长a =2c =.所以虚半轴长b ==从而动圆P的圆心的轨迹方程为221(22x y x -=≤. 20.(本小题共14分) 解:(I )由方程22y kx y x =⎧⎨=+⎩,消y 得220x kx -+=. ················· ①依题意,该方程有两个正实根,故212800k x x k ⎧∆=->⎨+=>⎩,,解得k > (II )由()2f x x '=,求得切线1l 的方程为1112()y x x x y =-+,由2112y x =+,并令0y =,得1112x t x =- 1x ,2x 是方程①的两实根,且12x x <,故12k x ==,k >,1x 是关于k 的减函数,所以1x的取值范围是(0.t 是关于1x的增函数,定义域为(0,所以值域为()-∞,0,(III )当12x x <时,由(II )可知1112x OM t x ==-+. 类似可得2212x ON x =-.1212122x x x x OM ON x x ++-=-+. 由①可知122x x =. 从而0OM ON -=.当21x x <时,有相同的结果0OM ON -=. 所以OM ON =.。

2007年普通高等学校招生全国统一考试数学卷(湖北.文)含答案

2007年普通高等学校招生全国统一考试数学卷(湖北.文)含答案

2007年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷上无效. 3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.tan690°的值为( )A.D.2.如果{}|9U x x =是小于的正整数,{}1234A =,,,,{}3456B =,,,,那么U UAB =( )A.{}12,B.{}34,C.{}56,D.{}78,3.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.10B.6 C.5 D.3 4.函数21(0)21x x y x +=<-的反函数是( )A.21log (1)1x y x x +=<-- B.21log (1)1x y x x +=>-C.21log (1)1x y x x -=<-+ D.21log (1)1x y x x -=>+5.在棱长为1的正方体1111ABCD A B C D -中,E F ,分别为棱11AA BB ,的中点,G 为棱11A B 上的一点,且1(01)A G λλ=≤≤.则点G 到平面1D EF 的距离为( )1D1C本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( ) A .300 B .360 C .420 D .4507.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A .1564B .15128C .24125D .481258.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( ) A .1B.CD .39.设(43)=,a ,a 在b,b 在x 轴上的投影为2,且||14≤b ,则b 为( ) A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题: ①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件; ④p ⌝是s ⌝的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件.则正确命题的序号是( ) A .①④⑤ B .①②④ C .②③⑤ D .②④⑤二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.设变量x y ,满足约束条件300x y x y -+⎧⎪+⎨≥,≥,则目标函数2x y +的最小值为 .54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5kg )12.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN +-的值为______.13.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=____.14.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为.(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.18.(本小题满分12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(I )将一个星期的商品销售利润表示成x 的函数; (II )如何定价才能使一个星期的商品销售利润最大? 19.(本小题满分12分)设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由. 20.(本小题满分13分)已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,n b =*n ∈N ),且{}n b 是以q 为公比的等比数列.(I )证明:22n n a a q +=;(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; (III )求和:1234212111111n na a a a a a -++++++.在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点. (I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵ π12sin 23x ⎛⎫=+- ⎪⎝⎭.x又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin62a CH a ==,sin 2θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以CACB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a aVD a θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)000a aABCD a a a a ⎛⎫=-=-++= ⎪,,,,··,即AB CD ⊥.同理2211(0)tan 002222a a AB VD a a a a θ⎛⎫=-=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··nn .得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是πsin 62BC BC a θ===n n ···即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000D A B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,0tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭,,,002DC a ⎛⎫=- ⎪ ⎪⎝⎭,,,(00)AB =,,.从而(00)AB DC =,,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 0ABDV θ⎛⎫== ⎪ ⎪⎝⎭,,,·,即AB DV ⊥.又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n,得0tan 0θ=⎨+=⎪⎩,. 可取(tan 01)n θ=,,,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan π2sin 62BC BC a θθ===n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故交π4θ=时, 即直线BC 与平面VAB 所成角为π6. 18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力. 解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,. (Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算能力. 解法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,A则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,. (II )2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2h a a =.当a >时,()h a 单调增加,∴当03a <<-时,20()(32(32(17h a h <<-=-=-121617122=<+,即1(0)(1)(0)16f f f -<.解法2:(I )同解法1. (II )2(0)(1)(0)(0)(1)2f f f g ga -==,由(I )知03a <<-,1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,. (II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力. 解法1:(I )证:由1n n b q b +=n q ==,∴ 22()n n a a q n +=∈N*. (II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111n n q a a --=,222211nn q a a-=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q qq a q qq --⎛⎫⎛⎫=+++++++++⎪ ⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++⎪⎝⎭223121n q q --⎛⎫-= ⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦. 故21222223121111 1.nn n n q q a a a q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠, ,,解法2:(I )同解法1(I ). (II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a qq ---+=+=, 34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,. 2221221113(1)2n k q q a a a --+∴+++=+++.下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122AMN BCN ACN S SS p x x =+=-△△△·.12p x x =-=2p==,∴当0k =,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H , 则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵,111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴2221111()(2)44y p a y p =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =从而112222ABN S dAB p ===△···∴当0k =时,2max ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。

数学2007年高考文科试题及解析

数学2007年高考文科试题及解析

2007年普通高等学校招生全国统一考试浙江卷数 学(文史类)试题全解全析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集U ={1,3,5,6,8},A ={1,6},B ={5,6,8},则(C U A)∩B = (A){6} (B){5,8} (c){6,8} (D){3,5,6,8} (2)已知cos 22πϕ⎛⎫+=⎪⎝⎭,且2πϕ<,则tan ϕ=(A) (B)(C)(D) (3)“x >1”是“x 2>x ”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(4)直线x -2y +1=0关于直线x =1对称的直线方程是(A)x +2y -1=0 (B)2 x +y -1=0 (C )2 x +y -3=0 (D) x +2y -3=0(5)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪都能喷洒到水.假设每个水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是(A) 6 (B) 5 (C) 4 (D) 3(6)91x ⎫⎪⎭展开式中的常数项是(A) -36 (B)36 (C) -84 (D) 84(7).若P 是两条异面直线L ,M外的一点,则 (A)过点P 有且仅有一条直线与l 、m 都平行 (B)过点P 有且仅有一条直线与l 、m 都垂直 (C)过点P 有且仅有一条直线与l 、m 都相交 (D)过点P 有且仅有一条直线与l 、m 都异面(8)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 (A1 0.216 (B)0.36 (C)0.432 (D)0.648(9) 若非零向量,a b 满足-=a b b ,则( ) A.22>-b a b B.22<-b a b C.2>-2a a bD.2<-2a a b(10)已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是()C.2D.3二.填空题:本大题共7小题.每小题4分.共28分.(11)函数()221x y x R x =∈+的值域是______________.(12)若1sin cos 5θθ+=,则sin 2θ的值是________. (13)某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为___________.(14)2z x y =+中的x 、y 满足约束条件250300x y x x y -+≥⎧⎪-≥⎨⎪+≥⎩则z 的最小值是_________.(15)曲线32242y x x x =--+在点(1,一3)处的切线方程是___________(16)某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是__________(用数字作答).(17)已知点O 在二面角α-AB -β的棱上,点P 在α内,且∠POB =45°.若对于β内异于O 的任意一点Q ,都有∠POQ ≥45°,则二面角α-AB -β的取值范围是_________.三.解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.(18)(本题14分)已知△ABC 的周长为+1,且sinA +sin B =(I)求边AB 的长;(Ⅱ)若△ABC 的面积为16sin C ,求角C 的度数.(19)(本题14分)已知数列{n a }中的相邻两项21k a -、2k a 是关于x 的方程()232320k kx k x k -++⋅= 的两个根,且21k a -≤2k a (k =1,2,3,…).(I)求1357,,,a a a a 及2n a (n ≥4)(不必证明); (Ⅱ)求数列{n a }的前2n 项和S 2n .(20)(本题14分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点.(I)求证:CM ⊥EM : (Ⅱ)求DE 与平面EMC 所成角的正切值.(21)(本题14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值;(II )当2AB =,1S =时,求直线AB 的方程.(22)(本题15分)已知()221f x x x kx =-++.(I)若k =2,求方程()0f x =的解;(II)若关于x 的方程()0f x =在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明12114x x +<(第21题)2007年普通高等学校统一考试(浙江卷)数学(文)试题答案解析1.【答案】:B【分析】:由于U ={1,3,5,6,8},A ={1,6} ∴C U A={3,5,8}∴(C U A)∩B={5, 【高考考点】集合的交集及补集运算【易错点】:混淆集中运算的含义或运算不仔细出错【备考提示】:集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分。

2007年普通高等学校招生考试全国2文

2007年普通高等学校招生考试全国2文

2007年普通高等学校招生全国统一考试试题卷(全国2)文科数学(必修+选修Ⅰ)全解全析注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k n n P k C p p k n -=-=,,,…,一、选择题1.cos330=( )A .12B .12-CD .2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B =ð( )A .{2}B .{3}C .{124},,D .{14}, 3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭, 4.下列四个数中最大的是( )A .2(ln 2) B .ln(ln 2) C .D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞,C .(3)(2)-∞-+∞,, D .(2)(3)-∞-+∞,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )ABC D 8.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e xy =的图像按向量(2)=,0a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x+B .e 2x-C .2ex -D .2ex +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B C .12D 12.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF +=( )AB .CD .第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式. 18.(本小题满分12分) 在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =. (1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,求事件B :“取出的2件产品中至少有一件二等品”的概率()P B .20.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,, 分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.AEBCFSD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.22.(本小题满分12分) 已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<. (1)证明0a >;(2)若z=a+2b,求z 的取值范围。

2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国1

2007年普通高等学校招生全国统一考试文科数学试卷及答案-全国1

2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kn n P k C p p n n -=-= ,,,, 一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 (6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )1A1D1C 1BDC A。

【解析版】2007年普通高等学校招生全国统一考试(辽宁卷)文科数学 Word版含解析

【解析版】2007年普通高等学校招生全国统一考试(辽宁卷)文科数学 Word版含解析

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2007•辽宁)若集合A={1,3},B={2,3,4},则A∩B=()A.{1} B.{2} C.{3} D.{1,2,3,4}2.(5分)(2007•辽宁)若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点()A.(1,1)B.(1,5)C.(5,1)D.(5,5)【考点】反函数.【专题】计算题.【分析】原函数与反函数的图象关于y=x对称,直接求出(1,5)的对称点,就是函数y=f(x)的图象必过点.【解答】解:依据反函数定义知反函数图象过(1,5),原函数与反函数的图象关于y=x对称,(1,5)的对称点为(5,1),就是说原函数图象过点(5,1),故选C【点评】本题考查反函数与原函数图象的关系,是基础题.3.(5分)(2007•辽宁)双曲线的焦点坐标为()A.,B.,C.(﹣5,0),(5,0) D.(0,﹣5),(0,5)4.(5分)(2007•辽宁)若向量与不共线,≠0,且,则向量与的夹角为()A.0B.C.D.【考点】平面对量数量积的坐标表示、模、夹角.【分析】求两个向量的夹角有它本身的公式,条件中表现形式有点繁琐,我们可以试着先求一下要求夹角的向量的数量积,求数量积的过程有点出乎意料,一下就求出结果,数量积为零,两向量垂直,不用再做就得到结果,有些题目同学们看着不敢动手做,实际上,我们试一下,它表现得很有规律.【解答】解:∵==0∴向量a与c垂直,故选D.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,本题使用两个不共线的向量来表示第三个向量,这样解题时运算有点麻烦,但是我们应当会的.5.(5分)(2007•辽宁)设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45 C.36 D.27【考点】等差数列的性质.【分析】观看下标间的关系,知应用等差数列的性质求得.【解答】解:由等差数列性质知S3、S6﹣S3、S9﹣S6成等差数列,即9,27,S9﹣S6成等差,∴S9﹣S6=45 ∴a7+a8+a9=45故选B.【点评】本题考查等差数列的性质.6.(5分)(2007•辽宁)若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中为真命题的是()A.若m⊂β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若α⊥γ,α⊥β,则β∥γD.若m⊥β,m∥α,则α⊥β7.(5分)(2007•辽宁)若函数y=f(x)的图象按向量平移后,得到函数y=f(x+1)﹣2的图象,则向量=()A.(﹣1,﹣2)B.(1,﹣2)C.(﹣1,2)D.(1,2)【考点】函数的图象与图象变化.【专题】待定系数法.【分析】使用待定系数法,先设出平移向量,再依据其它已知条件列出方程(组),解方程(组)即可求出平移向量.【解答】解:设=(h,k)则由移公式得:函数y=f(x)的图象平移后对应的解析式为:y=f(x﹣h)+k则∴=(﹣1,﹣2),故选A【点评】利用待定系数法求平移向量的关键是:依据已知条件和多项式相等的条件构造出方程(组).8.(5分)(2007•辽宁)已知变量x,y满足约束条件,则的取值范围是()A.B.C.(﹣∞,3]∪[6,+∞)D.[3,6]【考点】简洁线性规划的应用.【专题】数形结合.【分析】本题考查的学问点是线性规划,处理的思路为:依据已知的约束条件,画出满足约束条件的可行域,分析表示的几何意义,结合图象即可给出的取值范围.【解答】解:约束条件对应的平面区域如下图示:【点评】平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.9.(5分)(2007•辽宁)函数的单调增区间为()A.B.(3,+∞)C.D.(﹣∞,2)【考点】复合函数的单调性.【分析】先求出函数的定义域,再依据复合函数的单调性﹣﹣同增异减可得答案.【解答】解:由题意知,x2﹣5x+6>0∴函数定义域为(﹣∞,2)∪(3,+∞),排解A、C,依据复合函数的单调性知的单调增区间为(﹣∞,2),故选D【点评】本题主要考查两个方面,第一求对数函数定义域,要保证真数大于0;其次复合函数的单调性问题,留意同增异减的性质.10.(5分)(2007•辽宁)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是()A.B.C.D.11.(5分)(2007•辽宁)设p,q是两个命题:,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的推断;集合的包含关系推断及应用.【专题】计算题;压轴题.【分析】首先解两个不等式,再推断不等式解的范围,推断p,q条件关系.【解答】解:p:∵0<|x|﹣3<1,∴3<|x|<4,∴﹣4<x<﹣3或3<x<4,q:,结合数轴知p是q的充分而不必要条件,故选A【点评】本题主要考查对数不等式的求解,多项式不等式的求解,以及命题的充要条件,充分条件,必要条件的推断.要认真把握.12.(5分)(2007•辽宁)将数字1,2,3,4,5,6拼成一列,记第i个数为a i(i=1,2,…,6),若a1≠1,a3≠3,a5≠5,a1<a3<a5,则不同的排列方法种数为()A.18 B.3C.36 D.48【考点】排列及排列数公式.【专题】压轴题.【分析】本题为有特殊要求的排列问题,可以从特殊位置入手考虑.由a1≠1且a1<a3<a5,故a1的取法方法只有2、3、4三种,由a1的三种状况分别考虑a3、a5的支配方式,最终考虑a2,a4,a6【解答】解:分两步:(1)先排a1,a3,a5,a1=2,有2种;a1=3有2种;a1=4有1种,共有5种;(2)再排a2,a4,a6,共有A33=6种,故不同的排列方法种数为5×6=30,选B【点评】本题考查有特殊要求的排列问题,需要较强的分析问题、解决问题的力量.第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.(4分)(2007•辽宁)已知函数y=f(x)为奇函数,若f(3)﹣f(2)=1,则f(﹣2)﹣f(﹣3)=1.【考点】函数奇偶性的性质.【分析】直接利用奇函数进行转化.14.(4分)(2007•辽宁)开放式中含x的整数次幂的项的系数之和为72(用数字作答).【考点】二项式定理.【专题】计算题.【分析】利用二项开放式的通项公式进行找寻整数次幂,留意找到全部的整数次幂,然后再求和.【解答】解:,当r=0,4,8时为含x的整数次幂的项,所以开放式中含x的整数次幂的项的系数之和为C80+C84+C88=72,填72.【点评】本题考查二项开放式的通项公式,考查转化思想和化归思想,考查同学们的运算力量.15.(4分)(2007•辽宁)若一个底面边长为,棱长为的正六棱柱的全部顶点都在一个平面上,则此球的体积为4π.【考点】球的体积和表面积.【专题】计算题;综合题;压轴题.【分析】正六棱柱的体对角线就是外接球的直径,求出即可求其体积.【解答】解:依据条件正六棱柱的最长的对角线为球的直径,由;得R=,球体积为故答案为:4【点评】本题考查球的体积,棱柱的体对角线问题,考查空间想象力量,是基础题.16.(4分)(2007•辽宁)设椭圆上一点P到左准线的距离为10,F是该椭圆的左焦点,若点M满足=(+),则=2.【考点】两点间的距离公式;中点坐标公式;椭圆的简洁性质.【专题】计算题;压轴题.【分析】依据a2﹣b2=c2求出左焦点F的坐标,依据椭圆的准线公式x=﹣求出左准线方程,然后设P的坐标(x,y),依据两点间的距离公式求出P到准线方程的距离让其等于10求出x,然后再把x的值代入到椭圆方程中得到P的坐标,由=(+)得到M为PF的中点,依据中点坐标公式求出M的坐标,利用两点间的距离公式求出即可.【解答】解:由椭圆得a=5,b=4,依据勾股定理得c=3,则左准线为,左焦点F(﹣3,0),设P(x,y),由于P到左准线的距离为10,列出=10,解得x=或x=﹣(舍去);又P在椭圆上,则将x=代入到椭圆方程中求出y=,所以点P(,);由点M满足=(+),则得M为PF中点,依据中点坐标公式求得M(﹣,±),所以=故答案为2.【点评】本题是一道综合题,考查同学把握椭圆的一些简洁性质,会利用两点间的距离公式及中点坐标公式、点到直线的距离公式化简求值,同时也考查同学把握向量的运用法则及向量模的求法,做题时要求同学学问面要宽,综合运用数学学问解决问题.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2007•辽宁)某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如下表所示:分组[500,900)[900,1100)[1100,1300)[1300,1500)[1500,1700)[1700,1900)[1900,+∞)频数48 121 208 223 193 165 42频率(1)将各组的频率填入表中;(2)依据上述统计结果,计算灯管使用寿命不足1500小时的频率;(3)该公司某办公室新安装了这种型号的灯管2支,若将上述频率作为概率,试求恰有1支灯管的使用寿命不足1500小时的概率.【考点】频率分布表.【专题】计算题.【分析】(1)由频率=,可得出各组的频率;(2)要计算灯管使用寿命不足1500小时的频率,即计算前四个小组的频率之和;(3)恰有1支灯管的使用寿命不足1500小时即1支灯管使用寿命不足1500小时,另一支灯管使用寿命超过1500小时,分为两种情形,最终求出它们的和即可.【解答】解:(I)分组[500,900)[900,1100)[1100,1300)[1300,1500)[1500,1700)[1700,1900)[1900,+∞)频数48 121 208 223 193 165 42频率0.048 0.121 0.208 0.223 0.193 0.165 0.042(4分)(II)由(I)可得0.048+0.121+0.208+0.223=0.6,所以灯管使用寿命不足1500小时的频率为0.6.(8分)(III)由(II)知,1支灯管使用寿命不足1500小时的概率P1=0.6,另一支灯管使用寿命超过1500小时的概率P2=1﹣P1=1﹣0.6=0.4,则这两支灯管中恰有1支灯管的使用寿命不足1500小时的概率是P1P2+P2P1=2×0.6×0.4=0.48.所以有2支灯管的使用寿命不足1500小时的概率是0.48.(12分)【点评】本题主要考查频率分布表的计算和频数分布直方图的应用以及概率的求法,属于基础题.18.(12分)(2007•辽宁)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=a,D,E分别为棱AB,BC 的中点,M为棱AA1上的点,二面角M﹣DE﹣A为30°.(I)证明:A1B1⊥C1D;(II)求MA的长,并求点C到平面MDE的距离.【考点】与二面角有关的立体几何综合题;棱柱的结构特征;点、线、面间的距离计算.【专题】计算题;证明题.【分析】(I)连接CD,依据三垂线定理可得AB⊥C1D,而A1B1平行AB,从而A1B1⊥C1D;(II)过点A作CE的平行线,交ED的延长线于F,连接MF,依据定义可知∠MFA为二面角M﹣DE﹣A的平面角,在Rt△GAF中,∠GFA=30°,求出A到平面MDE的距离,再依据线面平行可知C到平面MDE的距离与A到平面MDE的距离相等.【解答】解:(I)证明:连接CD,三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∴CD为C1D在平面ABC内的射影.∵△ABC中,AC=BC,D为AB中点,∴AB⊥CD,∴AB⊥C1D∵A1B1∥AB,∴A1B1⊥C1D(II)解:过点A作CE的平行线,交ED的延长线于F,连接MF∵D,E分别为AB,BC的中点,∴DE∥AC又∵AF∥CE,CE⊥AC∴AF⊥DE∵MA⊥平面ABC,∴AF为MF在平面ABC内的射影∴MF⊥DE∴∠MFA为二面角M﹣DE﹣A的平面角,∠MFA=30°在Rt△MAF中,,∠MFA=30°,∴作AG⊥MF,垂足为G,∵MF⊥DE,AF⊥DE,∴DE⊥平面AMF,∵平面MDE⊥平面AMF,∴AG⊥平面MDE在Rt△GAF中,∠GFA=30°,,∴,即A到平面MDE的距离为∵CA∥DE,∴CA∥平面MDE,∴C 到平面MDE的距离与A到平面MDE的距离相等,为.【点评】本小题主要考查空间中的线面关系,解三角形等基础学问,考查空间想象力量与思维力量,属于基础题.19.(12分)(2007•辽宁)已知函数(其中ω>0)(I)求函数f(x)的值域;(II)若函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的单调性.【专题】计算题.【分析】(I)利用两角和与差的正弦函数、二倍角公式化简不等式,然后利用两角和化简函数为,解好正弦函数的有界性,求函数f(x)的值域;(II)利用函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为,求出周期,求出ω,利用正弦函数的单调增区间,求函出数y=f(x)的单调增区间.【解答】解:(I)解:==.【点评】本小题主要考查三角函数公式,三角函数图象和性质等基础学问,考查综合运用三角函数有关学问的力量,常考题.20.(12分)(2007•辽宁)已知数列{a n},{b n}满足a1=2,b1=1,且(n≥2)(I)令c n=a n+b n,求数列{c n}的通项公式;(II)求数列{a n}的通项公式及前n项和公式S n.【考点】数列递推式;等差数列的通项公式;数列的求和.【专题】计算题.【分析】(I)依据题意可求得c n=c n﹣1+2,进而依据等差数列的定义可推断出{c n}是首项为a1+b1=3,公差为2的等差数列,进而求得其通项公式.(II)令d n=a n﹣b n,则可知进而推断出{d n}是首项为a1﹣b1=1,公比为的等比数列,则其通项公式可求,进而依据a n﹣b n和a n+b n的表达式,联立方程求得a n,进而依据等差数列和等比数列的求和公式求得答案.【解答】解:(I)由题设得a n+b n=(a n﹣1+b n﹣1)+2(n≥2),即c n=c n﹣1+2(n≥2)易知{c n}是首项为a1+b1=3,公差为2的等差数列,通项公式为c n=2n+1(II)解:由题设得,令d n=a n﹣b n,则、易知{d n}是首项为a1﹣b1=1,公比为的等比数列,通项公式为由解得,求和得【点评】本小题主要考查等差数列,等比数列等基础学问,考查基本运算力量.21.(14分)(2007•辽宁)已知正三角形OAB的三个顶点都在抛物线y2=2x上,其中O为坐标原点,设圆C是OAB 的内接圆(点C为圆心)(Ⅰ)求圆C的方程;(Ⅱ)设圆M的方程为(x﹣4﹣7cosθ)2+(y﹣7cosθ)2=1,过圆M上任意一点P分别作圆C的两条切线PE,PF,切点为E,F,求的最大值和最小值.【考点】圆的标准方程;平面对量数量积的运算;圆的切线方程.【专题】计算题;综合题;压轴题;函数思想.【分析】(Ⅰ)设出A、B的坐标(正三角形OAB的三个顶点都在抛物线y2=2x上),依据△ABO边长相等,求出A、B点的坐标,再求圆心和半径,进而求可得圆C的方程;(Ⅱ)设出∠ECF=2α,表示出数量积,数量积中有cosα,,确定|PC|的范围,可求出数量积的最值.【解答】解:(Ⅰ)解法一:设A,B两点坐标分别为,,由题设知解得y12=y22=12,所以,或,.设圆心C的坐标为(r,0),则,所以圆C的方程为(x﹣4)2+y2=16.解法二:设A,B两点坐标分别为(x1,y1),(x2,y2),由题设知x12+y12=x22+y22又由于y12=2x1,y22=2x2,可得x12+2x1=x22+2x2.即(x1﹣x2)(x1+x2+2)=0由x1>0,x2>0,可知x1=x2,故A,B两点关于x轴对称,所以圆心C在x轴上设C点的坐标为(r,0),则A点坐标为,于是有,解得r=4,所以圆C的方程为(x﹣4)2+y2=16.(Ⅱ)解:设∠ECF=2α,则.在Rt△PCE中,,由圆的几何性质得|PC|≤|MC|+1=7+1=8,|PC|≥|MC|﹣1=7﹣1=6,所以,由此可得.则的最大值为,最小值为﹣8.【点评】本小题主要考查平面对量,圆与抛物线的方程及几何性质等基本学问,考查综合运用解析几何学问解决问题的力量.22.(12分)(2007•辽宁)已知函数f(x)=x3﹣9x2cosα+48xcosβ+18sin2α,g(x)=f'(x),且对任意的实数t均有g (1+cost)≥0,g(3+sint)≤0.(I)求函数f(x)的解析式;(II)若对任意的m∈[﹣26,6],恒有f(x)≥x2﹣mx﹣11,求x的取值范围.【考点】函数解析式的求解及常用方法;函数恒成立问题.【专题】压轴题.【分析】(1)先求出f'(x),即g(x),它是关于x的二次函数,对任意的实数t均有g(1+cost)≥0,g(3+sint)≤0可先求出1+cost和3+sint的范围,转化为g(x)在某些区间上恒成立,结合二次函数的图象确定g(x)应满足的条件.(2)由题意对任意的m∈[﹣26,6]恒成立,只要把式子看成关于m的不等式恒成马上可.【解答】解:(1)g(x)=f'(x)=3x2﹣18xcosα+48cosβ对任意的实数t,1+cost∈[0,2],3+sint∈[2,4].对任意的实数t有g(1+cost)≥0,g(3+sint)≤0即对任意的实数x∈[0,2]有g(x)≥0,x∈[2,4]时有g(x)≤0∴即,解得所以f(x)=x3﹣9x2+24x(2)令g(m)=f(x)﹣x2+mx+11=xm+x3﹣10x2+24x+11由题意只要即,解得【点评】本题考查待定系数法求解析式、不等式恒成立问题,综合性强,难度较大.。

【历年经典高考】2007年文科数学试卷及答案-全国1

【历年经典高考】2007年文科数学试卷及答案-全国1

2007年普通高等学校招生全国统一·考试· 文科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.·考试·结束后,将本试卷和答题卡一并交回.

第Ⅰ卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效. 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件AB,互斥,那么 球的表面积公式

()()()PABPAPB 24πSR

如果事件AB,相互独立,那么 其中R表示球的半径 ()()()PABPAPB 球的体积公式

如果事件A在一次试验中发生的概率是P,那么 34π3VR n次独立重复试验中事件A恰好发生k次的概率 其中R表示球的半径

()(1)(012)kknknnPkCppnn,,,, 一、选择题 (1)设210Sxx,350Txx,则ST( )

A. B.12xx C.53xx D.1523xx (2)是第四象限角,12cos13,sin( ) A.513 B.513 C.512 D.512 (3)已知向量(56),a,(65),b,则a与b( ) A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向 (4)已知双曲线的离心率为2,焦点是(40),,(40),,则双曲线方程为( )

A.221412xy B.221124xy C.221106xy D.221610xy (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)文科数学(必修+选修Ⅰ)

第Ⅰ卷(选择题) 本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件AB,互斥,那么 球的表面积公式

()()()PABPAPB 24πSR

如果事件AB,相互独立,那么 其中R表示球的半径 ()()()PABPAPB 球的体积公式

如果事件A在一次试验中发生的概率是p,那么 34π3VR n次独立重复试验中事件A恰好发生k次的概率 其中R表示球的半径

()(1)(012)kknknnPkCppkn,,,…, 一、选择题 1.cos330 ( )

A.12 B.12 C.32 D.32 2.设集合{1234}{12}{24}UAB,,,,,,,,则()UABð ( ) A.{2} B.{3} C.{124},, D.{14}, 3.函数sinyx的一个单调增区间是 ( )

A., B.3, C., D.32, 4.下列四个数中最大的是( ) A.2(ln2) B.ln(ln2) C.ln2 D.ln2

5.不等式203xx的解集是 ( ) A.(32), B.(2), C.(3)(2),, D.(2)(3),, 6.在ABC△中,已知D是AB边上一点,若123ADDBCDCACB,, 则 ( ) A.23 B.13 C.13 D.23 7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( )

A.36 B.34 C.22 D.32

8.已知曲线24xy的一条切线的斜率为12,则切点的横坐标为 ( ) A.1 B.2 C.3 D.4 9.把函数exy的图像按向量(23),a平移,得到()yfx的图像,则()fx( )

A.e2x B.e2x C.2ex D.2ex 10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A.10种 B.20种 C.25种 D.32种 11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于 ( )

A.13 B.33 C.12 D.32

12.设12FF,分别是双曲线2219yx的左、右焦点.若点P在双曲线上,且120PFPF,则12PFPF ( ) A.10 B.210 C.5 D.25 第Ⅱ卷(非选择题) 本卷共10题,共90分 二、填空题:本大题共4小题,每小题5分,共20分. 13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .

14.已知数列的通项52nan,则其前n项和nS . 15.一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为 cm2.

16.821(12)1xx的展开式中常数项为 .(用数字作答) 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)

设等比数列{}na的公比1q,前n项和为nS.已知34225aSS,,求{}na的通项公式.

18.(本小题满分12分) 在ABC△中,已知内角A,边23BC.设内角Bx,周长为y.

(1)求函数()yfx的解析式和定义域; (2)求y的最大值.

19.(本小题满分12分) 从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产

品中至多有1件是二等品”的概率()0.96PA. (1)求从该批产品中任取1件是二等品的概率p; (2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一

件二等品”的概率()PB. 20.(本小题满分12分) 如图,在四棱锥SABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCDEF,,分别为ABSC,的中点. (1)证明EF∥平面SAD; (2)设2SDDC,求二面角AEFD的大小.

21.(本小题满分12分) 在直角坐标系xOy中,以O为圆心的圆与直线34xy相切. (1)求圆O的方程; (2)圆O与x轴相交于AB,两点,圆内的动点P使PAPOPB,,成等比数列,求

PAPB的取值范围.

22.(本小题满分12分) 已知函数321()(2)13fxaxbxbx

在1xx处取得极大值,在2xx处取得极小值,且12012xx. (1)证明0a; (2)若z=a+2b,求z的取值范围。

A E B

C

F S D 参考答案 评分说明: 1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则. 2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.C 2.B 3.C 4.D 5.C 6.A 7.A 8.A 9.C 10.D 11.D 12.B 二、填空题

13.120 14.252nn 15.242 15.57 三、解答题 17.解:由题设知11(1)01nnaqaSq,,

则2121412(1)5(1)11aqaqaqqq,. ② 由②得4215(1)qq,22(4)(1)0qq,(2)(2)(1)(1)0qqqq, 因为1q,解得1q或2q. 当1q时,代入①得12a,通项公式12(1)nna; 当2q时,代入①得112a,通项公式11(2)2nna. 18.解:(1)ABC△的内角和ABC,由00ABC,,得20B. 应用正弦定理,知 23sinsin4sinsinsinBCACBxxA

2sin4sinsinBCABCxA





因为yABBCAC, 所以224sin4sin2303yxxx, (2)因为14sincossin232yxxx 543sin23xx





所以,当x,即x时,y取得最大值63. 19.(1)记0A表示事件“取出的2件产品中无二等品”,

1A表示事件“取出的2件产品中恰有1件二等品”.

则01AA,互斥,且01AAA,故

01()()PAPAA 01212

2

()()(1)C(1)1PAPApppp

于是20.961p. 解得120.20.2pp,(舍去). (2)记0B表示事件“取出的2件产品中无二等品”, 则0BB. 若该批产品共100件,由(1)知其中二等品有1000.220件,故 28002

100

C316

()C495PB.00316179()()1()1495495PBPBPB

20.解法一: (1)作FGDC∥交SD于点G,则G为SD的中点.

连结12AGFGCD ∥,,又CDAB ∥,

故FGAEAEFG ∥,为平行四边形. EFAG∥,又AG平面SADEF,平面SAD.

所以EF∥平面SAD. (2)不妨设2DC,则42SDDGADG,,△为等

A E B

C

F S D H G M 腰直角三角形. 取AG中点H,连结DH,则DHAG⊥. 又AB⊥平面SAD,所以ABDH⊥,而ABAGA, 所以DH⊥面AEF. 取EF中点M,连结MH,则HMEF⊥. 连结DM,则DMEF⊥. 故DMH为二面角AEFD的平面角

2tan21DHDMHHM.

所以二面角AEFD的大小为arctan2. 解法二:(1)如图,建立空间直角坐标系Dxyz. 设(00)(00)AaSb,,,,,,则(0)(00)BaaCa,,,,,,

00222aabEaF,,,,,,

02bEFa,,.

取SD的中点002bG,,,则02bAGa,,. EFAGEFAGAG,∥,平面SADEF,平面SAD,

所以EF∥平面SAD.

(2)不妨设(100)A,,,则11(110)(010)(002)100122BCSEF,,,,,,,,,,,,,,.

EF中点111111(101)0222222MMDEFMDEFMDEF,,,,,,,,,,⊥

又1002EA,,,0EAEFEAEF,⊥, 所以向量MD和EA的夹角等于二面角AEFD的平面角. 3cos3MDEAMDEAMDEA,.

所以二面角AEFD的大小为3arccos3.

A A E B

C

F S D G M y

z

x

相关文档
最新文档