2017年全国2卷高考文科数学试题及答案解析
2017年全国高考文科数学试题及答案-全国卷2

绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2。
回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
设集合{1,2,3},{2,3,4}A B ==,则AB =A 。
{}123,4,,B. {}123,,C. {}234,,D. {}134,,2。
(1)(2)i i ++=A 。
1i -B 。
13i +C 。
3i +D 。
33i +3。
函数()sin(2)3f x x π=+的最小正周期为A.4πB.2πC 。
πD 。
2π4. 设非零向量a ,b 满足+=-b b a a 则A 。
a ⊥bB. =b aC 。
a ∥bD 。
>b a5。
若1a >,则双曲线2221x y a-=的离心率的取值范围是A. 2∞(,)B. 22(,)C. 2(1,) D 。
12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90π B 。
63π C 。
42π D 。
36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是 A. —15B 。
-9C. 1D 98. 函数2()ln(28)f x x x =-- 的单调递增区间是A 。
(—∞,—2)B. (-∞,—1) C 。
(1, +∞) D 。
(4, +∞)9。
甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A 。
(完整)2017年全国高考文科数学试题及答案-全国卷2,推荐文档

2017年普通高等学校招生全国统一考试(全国卷2)数学(文史类)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{1,2,3},{2,3,4}A B ==,则A B =UA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2. (1)(2)i i ++=A.1i -B. 13i +C. 3i +D.33i + 3. 函数()sin(2)3f x x π=+的最小正周期为 A.4π B.2π C. π D. 2π 4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若1a >,则双曲线2221x y a-=的离心率的取值范围是 A. 2+∞(,) B. 22(,) C. 2(1,) D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. 90πB. 63πC. 42πD. 36π7. 设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是A. -15B.-9C. 1 D 9 8. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A. 乙可以知道两人的成绩B. 丁可能知道两人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25 12. 过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13. 函数()2cos sin f x x x =+的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = 15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16. ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:(一)必考题:共60分。
2017年全国卷2文科数学试题及参考答案-精选.pdf

绝密★启封并使用完毕前试题类型:新课标II2017年普通高等学校招生全国统一考试文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I 卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合123234A B,,,,,,则A B=A.123,4,, B.123,, C.234,, D.134,,【答案】A 【解析】由题意{1,2,3,4}A B ,故选 A.2.12ii A.1i B. 1+3iC. 3+iD.3+3i【答案】B 【解析】由题意1213iii3.函数sin 23f xx的最小正周期为A.4B.2C.D.2【答案】C 【解析】由题意22T,故选 C.4.设非零向量a ,b 满足a ba b 则A .a bB. ab C. //a b D. ab【答案】A 【解析】由||||a b a b 平方得2222()2()()2()a ab b a ab b ,即0a b ,则a b ,故选A. 5.若1a,则双曲线2221xya的离心率的取值范围是A. 2+(,)B. 22(,)C. 2(1,)D. 12(,)【答案】C 【解析】由题意的22222221111,1,112,12c aea e aaaa6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.36【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V,故选 B.7.设x 、y 满足约束条件2+33023303x y x yy ,则2zxy 的最小值是A. -15B.-9C. 1 D 9【答案】A绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点6,3B处取得最小值12315z.故选A.8.函数2()ln(28)f x xx 的单调递增区间是A.,2B.,1C.1,D. 4,【答案】D【解析】函数有意义,则2280xx ,解得2x 或4x ,结合二次函数的单调性,对数函数的单调性和复合函数同增异减的原则可得函数的单调区间为4,9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选 D.10.执行右面的程序框图,如果输入的a=-1,则输出的S=A.2B.3C.4D.5【答案】B【解析】阅读流程图,初始化数值1,1,0a k S循环结果执行如下:第一次:1,1,2S a k;第二次:1,1,3S a k;第三次:2,1,4S a k;第四次:2,1,5S a k;第五次:3,1,6S a k;第六次:3,1,7S a k;循环结束,输出3S11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【解析】如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数总计有25种情况,满足条件的有10种所以所求概率为102255。
2017年高考全国Ⅱ文科数学试题及答案(word解析版)

2017年普通高等学校招生全国统一考试(全国II )数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年全国Ⅱ,文1,5分】设集合{1,2,3},{2,3,4}A B ==,则A B = ( )(A ){}123,4,, (B ){}123,, (C ){}234,, (D ){}134,, 【答案】A【解析】由题意{1,2,3,4}A B = ,故选A .(2)【2017年全国Ⅱ,文2,5分】()()12i i ++=( )(A )1i - (B )13i + (C )3i + (D )33i + 【答案】B【解析】由题意()()1213i i i ++=+,故选B .(3)【2017年全国Ⅱ,文3,5分】函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的最小正周期为( )(A )4π (B )2π (C )π (D )2π【答案】C【解析】由题意22T ππ==,故选C . (4)【2017年全国Ⅱ,文4,5分】设非零向量a ,b 满足a b a b +=-则( )(A )a b ⊥ (B )a b = (C )//a b (D )a b > 【答案】A【解析】由||||a b a b +=- 平方得2222()2()()2()a ab b a ab b ++=-+ ,即0ab = ,则a b ⊥,故选A . (5)【2017年全国Ⅱ,文5,5分】若1a >,则双曲线2221x y a-=的离心率的取值范围是( )(A))∞ (B)) (C)(1 (D )()12,【答案】C【解析】由题意的22222221111,1,112,1c a e a e a a a a+===+>∴<+<∴<< C .(6)【2017年全国Ⅱ,文6,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) (A )90π (B )63π (C )42π (D )36π 【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B .(7)【2017年全国Ⅱ,文7,5分】设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C )1 (D )9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值12315z =--=-,故选A .(8)【2017年全国Ⅱ,文8,5分】函数()2()ln 28f x x x =-- 的单调递增区间是( )(A )(),2-∞- (B )(),1-∞- (C )()1,+∞ (D )()4,+∞【答案】D【解析】函数有意义,则2280x x -->,解得2x <-或4x >,结合二次函数的单调性,对数函数的单调性和复合函数同增异减的原则可得函数的单调区间为()4,+∞,故选D . (9)【2017年全国Ⅱ,文9,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )(A )乙可以知道两人的成绩 (B )丁可能知道两人的成绩 (C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩 【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲丁一人优秀一人良好,乙看到丙的结果则知道自己的结果,丁看到甲的结果则知道自己的结果,故选D .(10)【2017年全国Ⅱ,文10,5分】执行右面的程序框图,如果输入的1a =-,则输出的S =( )(A )2 (B )3 (C )4 (D )5 【答案】B 【解析】阅读流程图,初始化数值1,1,0a k S =-==,循环结果执行如下:第一次:1,1,2S a k =-==;第二次:1,1,3S a k ==-=;第三次:2,1,4S a k =-==;第四次:2,1,5S a k ==-=; 第五次:3,1,6S a k =-==;第六次:3,1,7S a k ==-=;循环结束,输出3S =,故选B .(11)【2017年全国Ⅱ,文11,5分】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )(A )110 (B )15(C )310 (D )25【答案】D【解析】如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数总计有25种情况,满足条件的有10种,所以所求概率为102255=,故选D .(12)【2017年全国Ⅱ,文12,5分】过抛物线2:4C y x =的焦点F ,且斜C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ) (A(B) (C) (D)【答案】C【解析】由题意):1MF y x -,与抛物线24y x =联立得231030x x -+=,解得113x =,23x =,所以(3,M , 因为M N l ⊥,所以(1,N -,因为()1,0F,所以):1NF y x =-,所以M 到NF 的距离为=C .二、填空题:本大题共4小题,每小题5分,共20分. (13)【2017年全国Ⅱ,文13,5分】函数()=2cos sin f x x x +的最大值为______.【解析】()f x .(14)【2017年全国Ⅱ,文14,5分】已知函数()f x 是定义在R 上的奇函数,当x ()∈∞-,0时,()322f x x x =+,则()2f =__ ____.【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=. (15)【2017年全国Ⅱ,文15,5分】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O的表面积为_______. 【答案】14π【解析】球的直径是长方体的对角线,所以2414R S R ππ==∴==. (16)【2017年全国Ⅱ,文16,5分】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =_______.【答案】3π 【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 三、解答题:共70分。
2017年全国2卷高考文科数学试题及答案解析

WORD 整理版分享2016 年普通高等学校招生全统一考试文科数学24 题,共150 分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共第Ⅰ卷一、选择题:本题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2 AA9 1,2,3 Bx x B,则(1)已知集合,1,0 ,1,22, 1,0,1,2,31,2,31,2()B))C((A D)(zi 3 i z z,则)设复数满足(2 1 2i1 2i3 2i3 2i D )(A))((C)(By) y Asin( x的部分图像如图所示,则(3)函数2y2sin(2x)y2 sin(2 x)A)B)((36xπOπ-)y2sin(2x)y2 sin(2x D)((C)36 368的正方体的顶点都在同一球面上,则该球面的表面积为体积为(4)-2321284)(B)(C )D((A)3k2 (k CFC P PFx k y4x 0)y为抛物线(5)设:轴,则,交于点与的焦点,曲线x3121 C)(A())(B)D(22a8213 0 ,则的距离为的圆心到直线圆(6)2210xy1yyxax3233 D))(A ()(B)(C4(7)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表2 3面积为(A)20π4(B)24π44(C)28π(D)32π范文范例参考指导WORD 整理版分享(8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若15 秒才出现绿灯的概率为开始一名行人来到该路口遇到红灯,则至少需要等待3375)B)(A)((C)D(x,n108108输入(9执行)中国古代有计算多项式值的秦九韶算法,. 右图是实现该算法的程序框图2 n 2 x sak 0, s 0,则输出的,5依次输入的2该程序框图,若输入的,2为,,34DB)12)C)17(((A)7(lg x y 10 a的定义域和值域相同的是输入其定义域和值域分别与函数)下列函数中,(10x y x y 2y lg xy1s s x a(C)B)(D)()(Ax kk 1x)(xfxcos 2)的最大值为)函数(11否os6 c2kn(A)4(B)5(C)6(D)7是2xyR) f ( x)x) f (x) (x2x 3f (2 s,若函数(12)已知函数满足输出与mx ) , y ),,( xy f (x) (x , y ), (x , y,则图像的交点为结束i m1m221i 102m4m m D))(A)((C (B)第Ⅱ卷(13) ~(21) 题为必考题,每个试题都必须作答。
2017年高考全国II卷文科数学试题及答案

2017年普通高等学校招生全国统一考试文科数学(II 卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}123234A B ==,,, ,,, 则=ABA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若a >1,则双曲线x y a=222-1的离心率的取值范围是A. 2+∞(,)B. 22(,)C. 2(1,)D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90π B.63π C.42π D.36π7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.执行右面的程序框图,如果输入的a =-1,则输出的S= A.2 B.3 C.4 D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F ,3C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为 A.5 B.22 C.23 D.33二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为16.△ABC的内角A,B,C的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。
2017年全国2卷高考文科数学真题及详细解析(解析版,学生版,精校版,新课标Ⅱ卷)

2017年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4} 2.(5分)(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i3.(5分)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(5分)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||5.(5分)若a>1,则双曲线﹣y2=1的离心率的取值范围是()A.(,+∞)B.(,2)C.(1,)D.(1,2)6.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π7.(5分)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.98.(5分)函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)9.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩10.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.511.(5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.B.C.D.12.(5分)过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()A.B.2C.2D.3二、填空题,本题共4小题,每小题5分,共20分13.(5分)函数f(x)=2cosx+sinx的最大值为.14.(5分)已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f (x)=2x3+x2,则f(2)=.15.(5分)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.16.(5分)△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤,第17至21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.18.(12分)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.附:P(K2≥K)0.0500.0100.001K 3.841 6.63510.828K2=.20.(12分)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.21.(12分)设函数f(x)=(1﹣x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求a的取值范围.选考题:共10分。
全国卷Ⅱ2017年高考文科数学试题及答案(Word版)

全国卷Ⅱ2017年高考文科数学试题及答案(Word 版)(考试时间:120分钟 试卷满分:150分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{}{}123234A B ==,,, ,,, 则=A BA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.(1+i )(2+i )=A. 1-iB. 1+3iC. 3+iD. 3+3i 3. 函数()fx =πsin (2x+)3的最小正周期为A. 4πB. 2πC. πD. 2π4. 设非零向量a ,b 满足+=-b b a a 则A. a ⊥bB. =b aC. a ∥bD. >b a5. 若a >1,则双曲线x y a=222-1的离心率的取值范围是A. ∞)B. )C. (1D. 12(,)6. 如图,网格纸上小正方形的边长为1,粗实线画出的 是某几何体的三视图,该几何体由一平面将一圆柱截 去一部分后所得,则该几何体的体积为A. 90πB.63πC.42πD.36π7. 设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是A. -15B.-9C. 1D. 9 8. 函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A. 乙可以知道两人的成绩 B. 丁可能知道两人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩10. 执行右面的程序框图,如果输入的a = -1,则输出的S=A. 2B. 3C. 4D. 511. 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上 的数的概率为A.110 B. 15 C. 310D. 2512. 过抛物线C:y 2=4x 的焦点F的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.B.二、填空题,本题共4小题,每小题5分,共20分. 13. 函数()cos sin =2+fx x x 的最大值为 .14. 已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x,则()2=f15. 长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16. △ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B=三、解答题:共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WORD 整理版分享2016 年普通高等学校招生全统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24 题,共 150 分第Ⅰ卷一、选择题:本题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
( 1)已知集合A 1,2,3 , B x x 29 ,则 A B( A)2, 1,0,1,2,3(B)1,0 ,1,2(C)1,2,3(D)1,2( 2)设复数z满足z i 3 i ,则 z( A) 1 2i( B)1 2i(C)3 2i( D)3 2i( 3)函数y Asin( x) 的部分图像如图所示,则( A)y2sin(2x)(B)y 2 sin(2 x)63y 2( C)y2sin(2x)(D)y 2 sin(2x)63( 4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为32(A)12(B)(C)8(D)43-πOπx 63-2( 5)设F为抛物线C:y24x 的焦点,曲线y k(k0)与C交于点 P, PF x 轴,则 k x(A)1(B)1(C)3(D)2 22(6)圆x 2y22x8y13 0 的圆心到直线ax y10的距离为,则 a1(A)3( B)33(D)2(C)4( 7)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表2 3面积为(A) 20π4(B) 24π44(C) 28π(D) 32π( 8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为 40秒.若一名行人来到该路口遇到红灯,则至少需要等待15 秒才出现绿灯的概率为开始(A)7(B)5(C)3(D)3输入 x,n 108810( 9)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图. 执行该程序框图,若输入的 x 2 ,n 2 ,依次输入的a为2,2,5,则输出的s k 0, s 0(A)7(B)12( C)17(D)34( 10)下列函数中,其定义域和值域分别与函数y 10lg x的定义域和值域相同的是输入 a( A)( 11)函数y x( B)y lg x( C)y 2x( D)y1s s x ax k k 1f x)cos 2x(x)的最大值为否2k n(A)4(B)5(C)6(D) 7是( 12)已知函数f (x) (x R) 满足 f ( x) f (2x) ,若函数 y x 22x 3与输出 smy f (x) 图像的交点为 (x1 , y1 ), (x2 , y2 ),,( x m , y m ) ,则i 1x i结束(A)0(B)m( C)2m( D)4m第Ⅱ卷本卷包括必考题和选考题两部分。
第(13) ~ (21) 题为必考题,每个试题都必须作答。
第(22) ~ (24) 题为选考题,考生根据要求作答。
二、填空题:本题共 4 小题,每小题 5 分。
( 13)已知向量a(m,4),b(3,2),且∥,则 m.a bx y10,( 14)若x, y满足约束条件x y30, 则z x 2 y 的最小值为.x30,( 15)△ABC的内角A, B, C的对边分别为a, b,c ,若cosA4 , cosC 5, a 1,则b.513( 16)有三张卡片,分别写有 1 和 2, 1 和 3, 2 和 3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是 1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.三、解答题:解答应写出文字说明、证明过程或演算步骤。
等差数列a n中,且 a3a4 4 , a5a7 6 .(Ⅰ)求a n的通项公式;(Ⅱ)记 b n a n,求数列b n的前10项和,其中x表示不超过x 的最大整数,如0.90 , 2.6 2 .( 18)(本小题满分12 分)某险种的基本保费为 a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数保费012345 0.85a a 1.25a 1.5a 1.75a2a随机调查了设该险种的200 名续保人在一年内的出险情况,得到如下统计表:出险次数概数012345 605030302010(Ⅰ)记 A为事件:“一续保人本年度的保费不高于基本保费”.求P( A)的估计值;(Ⅱ)记 B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(Ⅲ)求续保人本年度平均保费的估计值.D′( 19)(本小题满分12 分)如图,菱形 ABCD 的对角线 AC 与 BD 交于点O ,点 E, F 分别在 AD,CD 上,AE CF ,EFA E交BD于点H.将△DEF 沿EF折到△D EF D的位置 .H O(Ⅰ)证明:AC H D ;BF C(Ⅱ)若 AB5, OD 2 2 ,求五棱锥 D ABCFE 的体积.5, AC 6, AE4已知函数 f ( x) ( x 1) ln x a ( x1) .(Ⅰ)当 a 4时,求曲线y f (x) 在 (1, f (1)) 处的切线方程;(Ⅱ)若当x (1, ) 时, f (x)0 ,求a的取值范围.( 21)(本小题满分12 分)x2y2的左顶点,斜率为 k(k0) 的直线交E于 A,M 两点,点 N 在E 已知 A是椭圆 E :143上, MA NA.(Ⅰ)当AM AN 时,求△ AMN 的面积;(Ⅱ)当 2 AM AN 时,证明:3k 2 .请考生在第(22)~( 24)题中任选一题作答,如果多做,则按所做的第一题计分。
( 22)(本小题满分10 分)选修4-1 :几何证明选讲如图,在正方形ABCD 中, E,G 分别在边 DA, DC 上(不与端点重合),且 DE DG,过D点作 DF CE,垂足为F.(Ⅰ)证明:B,C,G, F 四点共圆;(Ⅱ)若 AB 1, E 为 DA 的中点,求四边形BCGF 的面积.GD CE FA B( 23)(本小题满分10 分)选修4-4 :坐标系与参数方程在直角坐标系xOy 中,圆C的方程为( x 6)2y 225 .(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;(Ⅱ)直线 l 的参数方程是x t cos,10 ,求 l 的斜率. y t sin( t 为参数), l 与 C 交于 A, B 两点, AB,( 24)(本小题满分10 分)选修4-5 :不等式选讲1x 1f (x)2的解集.已知函数 f (x) x, M 为不等式22(Ⅰ)求 M ;(Ⅱ)证明:当 a,b M 时, a b 1 ab .2016 年全国卷Ⅱ高考数学(文科)答案一.选择题(1)D(2) C(3) A(4) A(5) D(6) A(7) C(8) B(9) C(10) D(11) B(12) B 二.填空题(13)6(14)521( 15)(16)1和 313三、解答题( 17) ( 本小题满分12 分)( Ⅰ) 设数列a n的公差为d,由题意有2a15d4, a15d 3 ,解得 a1 1,d 2,5所以 a n2n3的通项公式为 a n.5(Ⅱ)由 ( Ⅰ ) 知b n2n 3 ,5当 n=1,2,32n31 ;时, 152, b n当 n=4,52n32 ;时, 23,b n5当 n=6,7,82n33时, 354, b n;2n3当 n=9,10 4 ,时, 45,b n5所以数列n的前 10项和为1 32 2 334224. b( 18) ( 本小题满分12 分)( Ⅰ ) 事件 A 发生当且仅当一年内出险次数小于 2. 由所给数据知,一年内险次数小于 2 的频率为60500.55 ,200故 P(A) 的估计值为 0.55.(Ⅱ)事件 B 发生当且仅当一年内出险次数大于 1 且小于 4. 由是给数据知,一年内出险次数大于 1 且小于 4 的频率为30 300.3 ,200故 P(B) 的估计值为0.3.( Ⅲ ) 由题所求分布列为:保费0.85a a 1.25a 1.5a 1.75a2a频率0.300.250.150.150.100.05调查 200 名续保人的平均保费为0.85a 0.30 a 0.25 1.25a0.15 1.5a 0.15 1.75a0.30 2a 0.10 1.1925a ,因此,续保人本年度平均保费估计值为 1.1925 a.( 19)(本小题满分 12 分)( I )由已知得,AC BD,AD CD .又由 AE CF得AE CF,故 AC / /EF. AD CD由此得 EF HD ,EF HD ,所以AC / /HD ..(II )由EF //AC得OHAE 1 .DO AD4由 AB 5,AC6得 DO BO AB 2AO 2 4.所以 OH1,D H DH 3.于是OD2OH 2(22)2 129DH2,故OD OH .由(I)知AC HD ,又 AC BD,BD HD H ,所以 AC平面 BHD , 于是ACOD .又由 OD OH,AC OH O ,所以, OD平面 ABC.又由EF DH得EF9 . AC DO2五边形 ABCFE 的面积S 181969 623. 224所以五棱锥 D 'ABCEF 体积V169 2 223 2 .342( 20)(本小题满分 12 分)( I )f (x)的定义域为(0,) .当 a 4 时,f ( x) ( x1)ln x4( x1), f (x)ln x 1(1)2, f (1) 0. 曲线 y f (x) 在 (1, f (1)) 处3 , fx的切线方程为 2x y20.( II )当x (1,) 时, f ( x)0 等价于ln x a( x1)0. x1令 g( x) ln xa( x 1) ,则x 112ax 2 2(1 a) x 10 ,g ( x)( x 1)2x( x 2, g (1)x1)( i )当 a2 , x (1,) 时, x 22(1 a)x 1 x 22x 1 0 ,故 g (x)0, g( x) 在 x (1, )上单调递增,因此 g ( x) 0 ;( ii )当 a2 时,令 g ( x) 0 得x 1a 1(a 1)2 1, x 2a 1 (a 1)2 1 ,由 x 21 和 x 1 x2 1 得 x 1 1 ,故当 x(1, x 2 ) 时, g ( x) 0 , g( x) 在 x(1,x 2 ) 单调递减,因此g(x) 0 .综上, a 的取值范围是,2 .( 21)(本小题满分 12 分)(Ⅰ)设 M ( x 1 , y 1) ,则由题意知 y 1 0 .由已知及椭圆的对称性知,直线AM 的倾斜角为,4又 A( 2,0) ,因此直线 AM 的方程为 yx 2 .将 x y 2 代入x 2y 2 1 得 7 y 2 12 y 0 ,43解得 y或12 ,所以 y 112.y7 7因此AMN 的面积 S AMN 2 112 12 144 .27 749( II )将直线 AM 的方程 yk (x2)( k 0) 代入x 2y 241 得3(3 4k 2 ) x 2 16k 2 x 16k 212 0 .由 x 1 (2) 16 k 212得 x 1 2(3 4k 2 ),故 | AM | 1 k 2 | x 1 2 | 12 1 k 2 .3 4k 2 3 4k 23 4k 2 由题设,直线AN 的方程为 y1(x 2) ,故同理可得 | AN |12k 1 k 2 .k4 3k 2由2|AM | |AN|得3 24 k,即 4k 3 6k 2 3k 8 0 .4k 23k 2设 f (t ) 4t 36t 23t 8 ,则 k 是 f (t ) 的零点, f '(t) 12t 212t 3 3(2t 1)2 0 ,所以 f (t) 在 (0, ) 单调递增,又 f ( 3) 15 326 0, f (2)6 0 ,因此 f (t) 在 (0,) 有唯一的零点,且零点 k 在 ( 3, 2) 内,所以3 k2 .( 22)(本小题满分 10 分)(I )因为 DFEC , 所以 DEF CDF ,则有GDF DEFFCB,DF DE DG ,CFCDCB所以 DGF CBF , 由此可得 DGFCBF ,由此CGFCBF1800 ,所以 B,C,G, F 四点共圆 .( II )由 B,C,G, F 四点共圆, CG CB 知FG FB ,连结 GB ,由 G 为 Rt DFC斜边CD的中点,知GF GC, 故Rt BCG Rt BFG ,因此四边形 BCGF 的面积 S 是GCB 面积 S GCB 的 2 倍,即S2SGCB21 1 12 21.2( 23)(本小题满分 10 分)( I )由 xcos , y sin 可得 C 的极坐标方程212 cos11 0.( II )在( I )中建立的极坐标系中,直线l 的极坐标方程为 (R)由 A, B 所对应的极径分别为1,2 , 将 l 的极坐标方程代入C 的极坐标方程得212 cos11 0.于是1212cos,1 211,|AB| |12 |( 12 )241 2144cos 244,由|AB|10 得 cos23, tan15 ,83所以 l 的斜率为15 或 15 .33( 24)(本小题满分 10 分)( I )先去掉绝对值,再分x1,1 x1 x1 ;( II )采2 2 和三种情况解不等式,即可得22用平方作差法,再进行因式分解,进而可证当a , b时, a b 1 ab .2x, x1 ,2 试题解析:( I ) f ( x) 1,1x 12,22 x, x 1 .2当 x 1 2 得 2x2, 解得 x1;时,由 f ( x)2当1 1 时, f (x)2 ;2x2当 x1时,由 f (x)2 得 2x2, 解得 x 1.2所以 f ( x) 2 的解集 M { x | 1 x 1} .( II )由( I )知,当 a,bM 时,1 a1, 1 b 1,从而(a b)2 (1 ab)2 a 2 b 2 a 2b 21 (a2 1)(1 b 2 ) 0 ,因此 | a b | |1 ab |.。