制动盘铸造

制动盘铸造
制动盘铸造

摘要

目前,国内汽车(主要是轿车)刹车盘的出口市场已经形成一定规模,仅就铸件来说,年产量(出口量)估计在 20万吨左右。由于刹车盘出口主要针对的是配件市场,外商定货品种繁杂,而每个品种生产,批量不大。另一方面,刹车盘铸件属薄壁小件,技术要求高,而国内生产出口刹车盘的企业,大多采用手工造型,粘土砂湿型,冲天炉熔炼铁液,成分变化较大,给生产技术管理和铸件质量控制带来一定难度,个别厂家铸件废品率居高不下,直接影响企业的经济效益和出口业务。本文主要对金属型覆砂铸造刹车盘的工艺及工艺装备进行设计。

通过对零件图的详细分析,明确了各项技术指标。拟定铸造工艺方案,包括选择铸造和造型方法等。完成砂芯设计、浇冒口设计和射砂工艺装备设计。绘制零件图、装配图、工艺流程图等。

关键词:金属型覆砂砂芯模板刹车盘

Abstract

Currently, domestic vehicles (mostly cars) Brake export market, market has formed a certain scale, just from the casting, the annual production (exports) is estimated at 20 million tons. As the brake disc main export market for the parts, foreign orders is complex variety and every variety of production is not volume. On the other hand, small pieces of brake disc casting is thin, technically demanding, while domestic production and export enterprises brake disc, mostly by hand modeling, Green Sand, cupola melting iron, composition changed greatly, to the production technology casting quality control management and bring some degree of difficulty, the high rejection rate for individual manufacturers to cast a direct impact on economic efficiency of enterprises and export business. In this paper, the metal brake discs with Sand Casting design process and technical equipment.

Through detailed analysis of the parts diagram, defines the technical indicators. Developed casting process, including the choice of casting and modeling methods. Complete sand core design, casting riser design and the design Shooting technical equipment. Drawing parts and assembly drawings, process flow diagrams .

Key words: Metallic Sand Sand core Template Brake Disc

目录

摘要┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈Ⅰ

Abstract┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈Ⅱ

第1章绪论┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈ 1

1.1 立项背景┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈1

1.2 刹车盘铸造要求及现状┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈1

1.3 本文设计内容┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈1

第2章金属型及芯砂的选择┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈ 1

2.1 对设计任务的了解┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈2

2.2 金属型材料选择┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3

2.2.1 性能比较┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3

2.3 铁型覆砂工艺┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈3

2.4 芯砂选择┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈4

第3章铸造工艺设计┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈ 6

3.1 零件结构的铸造工艺性分析┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈6

3.1.1 铸造工艺性分析┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈6

3.1.2 实际生产工艺┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈6

3.1.3 拟定铸造工艺┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈7

3.2 铸造工艺参数┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈

9

3.3 浇注系统设计┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈10

3.3.1 浇注系统计算┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈10

3.3.2 实用冒口设计┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈11

第4章工艺装备设计┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈12

4.1 金属型模样的结构设计┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈12

4.2 模板和模板框设计┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈12

4.3 金属型砂箱┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈13

4.4 金属性准备┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈15

结论(总结)┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈ 16 致谢┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈17

参考文献┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈18

附录┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈19

第1章绪论

近年来随着汽车工业的飞速发展,汽车需求量也在逐年提高。2007 年全球汽车产量已突破 7310万辆,我国汽车产量排世界第三位,产量突破850万辆,且每年仍以近12%的速度增长。汽车工业已成为国民经济的支柱产业,汽车工业的发展为汽车零部件特别是铸造企业的发展提供了巨大的发展空间。刹车盘作为汽车制动系中的主要磨损消耗件,市场需求量很大,每年需求量大约为6亿只。因此,从汽车刹车盘产品的铸造生产工艺及铸件质量的分析情况中可以看到刹车盘产品专业铸造的发展

趋势。

1.1 立项背景

在这种需求下,刹车盘的铸造工艺发生了翻天覆地的改变。刹车盘铸件属薄壁小件 , 技术要求高 , 而国内生产出口刹车盘的企业 , 大多采用手工造型 , 粘土砂湿型 , 冲天炉熔炼铁液 , 成分变化较大 , 给生产技术管理和铸件质量控制带来一定难度 ,个别厂家铸件废品率居高不下 , 直接影响企业的经济效益和出口业务,急需有新的工艺取代。其中运用的铸造方法—金属型覆砂铸造,已在许多铸造领域采用,并得到广大厂家及工厂的认可。故此本毕业设计也采用金属型覆砂铸造刹车盘,以保证铸件质量及出品率。

1.2 刹车盘铸造要求及现状

一、生产技术状况:刹车盘种类繁多,特点是壁薄,盘片及中心处由砂芯形成。不同种类刹车盘,在盘径、盘片厚度及两片间隙尺寸上存在差异,盘毂的厚度和高度也各不相同。单层盘片的刹车盘结构比较简单。铸件重量多为 6-18kg。

二、技术要求:铸件外轮廓全部加工,精加工后不得有任何缩松、气孔、砂眼等铸造缺陷。金相组织为中等片状型,石墨型,组织均匀,断面敏感性小(特别是硬度差小)。

三、力学性能: σb ≥250MPa , HB180~240 , 相当于国际 HT250 牌号。

四、有些外商对铸件的化学成分也作要求,本毕业设计不作详细介绍。

1.3 本文设计内容

用金属型覆砂技术克服上述局限性,解决当前所遇到的铸造问题,保证工艺出品率。即在金属型与铸件外形间覆薄砂层,形成砂型胶。优点是同时具备金属型和砂型铸造的特点,金属型与熔体不直接接触,冷却速度和金相组织易于控制,同时提高金属型寿命,铸件形状可较复杂。铸件可保证致密无气孔、缩孔、缩松等缺陷,工艺出口率高。

第2章铸造内容分析

2.1 对设计任务的整体了解

名称:刹车盘

材料:HT250

类型:成批生产

重量:约3.5kg

本铸件属于盘状薄壁件,盘面上的风道利于空气对流,达到散热的目的。如下图所示。采用金属型覆砂工艺,需考虑金属型材料及芯砂材料。

2.2金属型材料选择

根据以往金属型设计经验,选择常用的HT200作为金属型材料,参数如下:牌号:HT200

标准:GB 9439-88

特性:珠光体类型的灰铸铁。其强度、耐磨性、耐热性均较好,减振性良好,铸造性能较优,需进行人工时效处理,其原理是把铸件重新加热到530-620℃,目的在于消除铸件内应力,减少变形、开裂的缺陷。

化学成分:碳 C :3.16~3.30

硅 Si:1.79~1.93

锰 Mn:0.89~1.04

硫 S :0.094~0.125

磷 P :0.120~0.170

力学性能:抗拉强度σb (MPa):200

硬度:(RH=1时)209HB

试样尺寸:试棒直径:30mm

金相组织:片状石墨+珠光体

2.2.1性能比较

2.3铁型覆砂工艺

覆膜砂:在造型、制芯前砂粒表面上已覆盖有一层固态树脂膜的型砂、芯砂称为覆膜砂。他是最早的一种热固性树脂砂,由德国克罗宁博士于1944年发明。其基本工艺过程是利用射芯在加热的铁型上填上一层覆膜砂,以形成精密的型腔来生产

覆膜砂基本配比

2.4芯砂选择

造型材料性能的基本要求:

?具有一定强度,保证在合型、搬运和浇注过程中不变形、不损坏。

?良好的透气性。

?对铸件收缩的可退让性。

?一定的耐火度和化学稳定性。

树脂自硬砂是指原砂(或再生砂)以合成树脂为粘结剂,在相应的固化剂作用下,在室温下自行硬化成形的一类芯砂,其基本特点是:

?型砂加热无需加热烘干,更节省资源,同时可以采用木质或塑料芯盒和模板。

?铸件质量高,铸铁件的尺寸精度可达CT8~CT10。铸铁件的表面粗糙度为=25~50μm,比粘土砂、水玻璃砂好。

R

a

?型砂容易紧实,易溃散,好清理,旧砂容易再生回用,因而大大减轻劳动强度,改善车间劳动环境,使单间小批量生产实现机械化。

?树脂价格较高,同时要求使用优质原砂,因而型砂成本比粘土砂水玻璃砂高。

?混砂、造型、浇注时,有刺激性的气味,应注意劳动保护。

?砂芯如下图:

第3章铸造工艺设计3.1 零件结构的铸造工艺性分析

刹车盘产品模拟图

(1)产品质量要求较高 ,不仅需要较高的精度 ,还要有足够的强度、硬度 ,尤其是上、下制动盘面不允许出现任何铸造缺陷 ,更不允许使用焊补等方法进行修复。

(2)产品表面积相对较大 ,且结构造成的铸造热节 ,容易形成缩孔、缩松缺陷。

(3)产品平面较大且较厚 ,在保证有足够的强度、硬度等性能外 ,还要防止气孔、缩松、夹渣等铸造缺陷的产生。

3.1.1铸造工艺分析

覆砂金属型铸造工艺是一种新型的铸造方法, 它是在粗成形的金属型(铁型)内腔上覆上一层 5~ 8mm的覆砂层而形成铸型的一种先进铸造工艺。该工艺克服了金属型铸造无退让性的缺点, 使冷却条件得到很好的改善; 该工艺不仅提高了铸件的成品率和工艺出品率, 对铸件的表面质量和力学性能也有了很大的提高。

铸件凝固过程是一个非常复杂的过程, 基本上可视为一个不稳定的导热过程, 它同铁液成份、浇注温度、浇注速度及浇注系统、金属型壁厚、覆砂层厚度等

有着很大的关系。经过大量的试验, 根据铸件不同的壁厚、不同的铁液成份, 摸索出一整套合理的金属型壁厚和覆砂层厚度的经验数据及计算公式, 在实际生产中发挥了重要作用。由于计算机技术的飞跃发展, 一些数值模拟软件的应用 ( 如 ANSYS 软件) , 为覆砂金属型工艺在铸造其它零件获得成功提供了可靠的保障。根据铸件温度场模拟可以得出铸件的凝固顺序, 就可以制定合理的浇注工艺和设计合理的浇注系统。

首先对铁水浇入铁型覆砂铸型以后,铸件—覆砂层—铁型不稳定热交换情况分析如下图1。

3.1.2实际生产工艺

大批量生产中的铁型覆砂铸造,其覆砂造型方法如图3所示。覆砂造型是铁型背面的一组射砂孔,经铁型和模样合模后形成的间隙(缝隙宽度等于覆砂层厚度)射入流动性较好的型砂,再经固化,起模后即形成铁型覆砂的铸型(即覆砂铁型)。一般铁型覆砂铸造的生产流程如图4所示。

图3 机械造型

3.1.3 拟定铸造工艺

从铸件凝固技术的角度看,水平造型生产盘类铸件较垂直造型更易获得致密无缺陷的优质铸件。刹车盘是一种径向尺寸大于纵向高度的均匀盘类铸件,采用水平造型分型面处于水平方向,分型面设置在刹车面处,即产品的径向处于水平位置,而铸件其他部位大部分处在下型腔,在此处设置浇注系统向型腔填充铁液,浇注完成后,铸件上部铁液温度高于下部温度,符合铸件凝固从下到上,从外到中心的凝固顺序,浇注系统能够形成对铸件最后凝固部位液体收缩的补给,有利于消除铸件的缩松缺陷,提高了铸件的致密度。同时,采用水平造型,顺应了刹车盘这种铸件径向尺寸大,纵向高度小的特点,在同样浇注温度下,易使铁液中的气体夹杂物和由浇注系统卷入型腔的气体渣子,在铸件凝固前向上漂浮到铸件的顶部,通过设计铸件顶部稍大的加工余量加工掉,减少废品的产生。故本设计采用水平分型如下图:

3.2 铸造工艺参数

铸造工艺参数包括以下几点:

1.查表可知,尺寸公差为CT10,铸件机械加工余量为5.0mm(2—4)

2.最小铸出孔直径15~30mm(表2—5)

3.起模斜度:外表面1.5%,内表面8%

4.铸造圆角R5mm

5.铸造收缩率1.0%

6.最小铸出槽尺寸b=20mm,t=10mm

3.3 浇注系统设计

本毕业设计采用顶注式浇注系统,有利于薄壁铸件的充型。

3.3.1 浇注系统计算

选择封闭式浇注系统,设A1、A2、A3为直浇道、横浇道、内浇道总截面积,系统组元截面比为:A1:A2:A3=1.15:1.1:1

查表得:

G=mg=20×9.8=196N

μ=0.6

S

1

=1.85

t=26s

查表得采用顶部注入

H p =H

o

,P=0则H

p

=100mm

综上所得:F

=8cm2

F

=8.4cm2

查表得内浇道总断面积1.6cm2直浇口棒D=35mm

内浇道A=14mm、B=12mm、C=6mm

3.3.2 实用冒口设计

铸件在凝固后期有“奥氏体+石墨”的共晶转变,析出石墨并发生体积膨胀,从而可部分或全部地抵消凝固前期所发生的体积收缩,即具备有“自补缩的能力”。因此,

在铸型刚性足够大时,逐渐可以不设冒口或采用较小的冒口进行补缩。

求铸件模数M c=

D=10mm、c=6mm、b=53mm,求得M c=0.44cm

由于此灰铸铁件模数小于0.75cm,适宜采用浇注系统当冒口。故不单设冒口。

第4章工艺装备设计

4.1 金属模样的结构设计

模样的设计原则是在满足铸造工艺、保证铸件质量的前提下,是摸样的结构便

于加工制造。

模样在模底板上的装配偏差:单面模样≤0.7mm,内浇道模尺寸偏差,有箱造型为±0.3mm,其余部分为±0.7mm。

4.2 模板和模板框设计

由于在射砂过程中,需要一定温度,故模板上要设置管状加热元件。采用水平分型的单面快换模板。为了简化工艺,采用直接定位法即模板直接与砂箱定位。如下图所示,分别为上加热模板和下加热模板,定位采用双头螺钉。

4.3 金属型砂箱

由于铸件壁厚小于10mm,灰铸铁件金属型壁厚为20~25mm。

型腔表面至金属型边缘距离不小于20mm。

定位销孔至铸件边缘距离不小于10mm。

直浇道至铸件间距离10~25mm。

吃砂量的最小值为35mm。所设计砂箱尺寸为600×600×100mm。

上金属型

下金属型

4.4 金属型的准备

1、金属型的清理

2、金属型的预热

金属型在射砂前需先预热,预热温度为300℃,射砂完后还需进一步预热,

其目的是:

?避免金属液冷却速度太快,造成铸件产生气孔、缩松等缺陷。

?防止铸件表面产生白口。

?保护金属型,避免急冷、急热而引起金属型剧烈收缩膨胀,延长其寿命。

?减少铸件包紧力,有利于脱型。

?确保操作者安全。

结论(总结)

通过本设计,是我对所学知识有了进一步了解,以上内容对当今刹车盘铸造的新工艺有一定的体现,也使金属型覆砂工艺在刹车盘铸造方面有了进一步的应用。该方法解决了金属型铸造冷却快、金相组织难以控制和金属型寿命短等常见问题,降低了生产成本,提高了工艺出品率。对于铸件出现的气孔、缩松等缺陷可以通过此工艺去解决。但由于金属型覆砂工艺设计和实际生产较为复杂,故需要谨慎进行。新工艺的应用会产生这样或那样的问题,所以需要在生产中去完善和发展。

致谢

当结束这篇论文写作的时候,我的大学生活也已进入了倒计时。四年来,我见证了华航的飞速以展,而发展中的华航也给予了我以丰富的知识,赋予我无穷的欢乐,扶我走过了一段难忘的人生路。在这里有诸多让我尊重的老师,他们的学识和为人是我永远的典范。能够顺利完成此篇论文得益于他们殷切的教诲和无私的帮助,因此,我要对他们致以深深的谢意。

首先,我要感谢我的指导老师——张巨成老师。从论文的选题、拟定提纲、任务内容的修改直至最出图的过程中,张老师不厌其烦地为我修改工艺,提供宝贵的参考意见,给我很大启发。

大学里,能在金属材料专业学习生活,是我最大荣幸。感谢金属材料教研室的老师们在大学四年给我的教育,以及给我学习生活的无私关心与指导。感谢耐心教给我专业知识的老师们,正是在你们的指引下,才使我对金属材料的知识有了新的领悟和体会。

我还要感谢我的室友和同学,感谢他们给予的帮助,感谢他们无私的关怀,感谢他们四年来风雨同舟的情谊。最后,我要感谢我的家人和朋友,他们默默的支持是我永不枯竭的精神源泉和永远的心灵港湾。

感谢所有曾经给予我关心和帮助的人,愿他(她)们永远平安幸福!

参考文献

[1]铸造手册. 第1卷,铸铁/中国机械工程学会铸造分会编. —2版. —北京:机械工业出版社,2002.1

[2]材料成型工艺/周述积等主编.—北京:机械工业出版社,2005.7

[3] 机械制图/马兰主编.—北京:机械工业出版社,2006.5

[4] 铸造实用数据速查手册/刘瑞玲,范金辉主编.—北京:机械工业出版社,2006.8

[5] 铸造手册. 第5卷,铸造工艺/中国机械工程学会铸造分会编. —2版. —北京:机械工业出版社,2003.1

[6] 铸造手册. 第6卷,特种铸造/中国机械工程学会铸造分会编. —2版. —北京:

泵盖铸造工艺设计说明书

课程设计说明书 泵盖铸造工艺设计 院系:机械工程学院 专业:材料成型及控制工程 班级: 姓名: 学号: 指导老师: 时间:

目录 1.铸造工艺分析 (1) 1.1零件介绍 (1) 1.2零件生产方式选择 (1) 1.3技术要求分析 (1) 1.4 合金铸造性能分析 (2) 2.确定铸造工艺方案 (2) 2.1确定铸造方法 (2) 2.2确定浇注位置和分型面 (2) 2.3确定型内铸件数目 (3) 2.4不铸出孔及槽的确定 (3) 2.5机械加工余量和铸造圆角的确定 (3) 2.6起模斜度和分型负数的确定 (5) 2.7砂芯的确定 (7) 2.8铸造收缩率的确定 (7) 2.9冒口的确定 (7) 2.10浇注系统的确定 (8) 3.芯盒的设计 (9) 3.1芯盒材质和分盒方式的确定 (9) 4.总结 (9) 参考资料 (10)

1.铸造工艺分析 零件简介: 1.1零件介绍: 零件名称:泵盖 零件材料:HT200 1.2零件生产方式选择: 大批量生产,零件图如下:

1.3技术要求分析 按照国家标准,对于HT200,其抗拉强度应达到200Mpa。铸件在使用时工作条件较好,但此铸件需起隔爆作用,按照技术要求,需在粗加工后进行时效处理及相应的热处理工艺。另外,铸件清砂后,焖火铲除毛刺喷砂后喷G04-6铁红过氯乙烯底漆。除此外无特殊技术要求。 注:其中φ21H7内孔为重要加工面,不允许存在气孔、夹砂等铸造缺陷。 1.4 合金铸造性能分析 灰铸铁具有良好的铸造性能: (1)流动性。灰铸铁的熔点较低,结晶温度范围较小,在适宜的浇注温度下,具有良好的流动性,容易填充形状复杂的薄壁铸件,且不易产生气孔、浇不足、冷隔等缺陷。 (2)收缩性。灰铸铁的浇注温度较低,凝固中发生共析石墨化转变,使其线收缩小,产生的铸造应力也较小,所以铸件出现翘曲变形和开裂的倾向以及形成缩孔、缩松的倾向都较小。 (3)灰铁充型能力好,强度较高,耐磨、耐热性好,减振性良好,铸造性较好,但需人工时效。 2.确定铸造工艺方案 2.1确定铸造方法 铸件材质为HT200,,其轮廓尺寸25×φ110,属中小件,联结结构合理,符合灰铸铁铸造要求,可以进行铸造工艺设计。采用湿砂型机器造型大批量生产。 采用湿砂型机器脱箱造型,热芯盒水玻璃砂射芯机制芯。 2.2确定浇注位置和分型面 浇注位置选择原则: (1)重要加工面应朝下或呈直立状态; (2)铸件的大平面应朝下; (3)应有利于铸件的补缩; (4)应保证铸件有良好的金属液导入位置,保证铸件能充满; (5)应尽量少用或不用砂芯; (6)应使合型、浇注和补缩位置一致。

刘南陔 载重汽车用制动鼓生产工艺 for 百铸网

载重汽车用制动鼓生产工艺 一拖集团铸造公司刘南陔制动鼓是保安件,它涉及到人的生命财产安全,同时它又是易损易耗件。市场需求量特别大。目前国内的年产量大约在千万只以上。因产品结构相对简单,机器造型、手工造型都容易上马,几乎全国各地都有铸造厂在生产制动鼓。我去过的几家大型企业,机械化流水线生产制动鼓,年产量都在一百万只左右。我也去过一些小企业年产量几万只。也有像河北隆尧县某镇的一个工业园区,就密集着一百来家铸造厂,都在生产汽车制动鼓;其整个区的制动鼓产量也应在百万只以上。只不过大型企业生产的制动鼓,一般都是供给国内的车桥厂或是出口国外,而小型企业生产的制动鼓大部分供给零件及售后配件市场。其产品质量和信誉度难以被正规车桥厂所接受,根据我看到和了解到的这些企业,由于产品结构不同,供货对象不同,因而生产工艺各异,但从总体来讲,质量问题还是有很多,达不到车用制动鼓的质量要求,因此我想有必要和大家在一起对制动鼓的生产工艺进行讨论和研究,互相交流经验,下面就根据我的经历和了解的情况,借这次机会和大家交换意见,不对的地方请大家指正。 一、载重汽车制动鼓的质量要求 由于灰铸铁具有良好的导热性、减震性、耐磨性以及优良的铸造性能和低的制造成本,因此机动车辆的制动鼓几乎都采用灰铸铁件,其牌号为HT200和HT250。 我国只有一个灰铸铁件标准那就是JB/T9439-2010,并没有专用的汽车制动鼓用灰铸铁件标准。在机标内也没有特殊灰铸铁的说明。全世界只有美国材料试验学会ASTMA159-83(1993年重审)专门制订有汽车专用灰铸铁件标准。对制动鼓依其载重量列有3个铸铁牌号。同时美国汽车工程师学会SAEJ431的动力机械灰铸铁标准内对制动鼓的质量要求,基本上和ASTMA159-83一致。目前我国和国外大都参照美国制动鼓标准。在图纸上或验收标准上给出了自己的厂标,一个标准的高低,反映了其工艺水平和质量水平,高水平的标准才能生产出高质量的产品。 下面简要的将上述美国标准和国外的一些好的公司对制动鼓的质量要求,介绍如下供大家参考 1.

刹车盘铸造说明书

摘要 目前,国内汽车(主要是轿车)刹车盘的出口市场已经形成一定规模,仅就铸件来说,年产量(出口量)估计在 20万吨左右。由于刹车盘出口主要针对的是配件市场,外商定货品种繁杂,而每个品种生产,批量不大。另一方面,刹车盘铸件属薄壁小件,技术要求高,而国内生产出口刹车盘的企业,大多采用手工造型,粘土砂湿型,冲天炉熔炼铁液,成分变化较大,给生产技术管理和铸件质量控制带来一定难度,个别厂家铸件废品率居高不下,直接影响企业的经济效益和出口业务。本文主要对金属型覆砂铸造刹车盘的工艺及工艺装备进行设计。 通过对零件图的详细分析,明确了各项技术指标。拟定铸造工艺方案,包括选择铸造和造型方法等。完成砂芯设计、浇冒口设计和射砂工艺装备设计。绘制零件图、装配图、工艺流程图等。 关键词:金属型覆砂砂芯模板刹车盘

Abstract Currently, domestic vehicles (mostly cars) Brake export market, market has formed a certain scale, just from the casting, the annual production (exports) is estimated at 20 million tons. As the brake disc main export market for the parts, foreign orders is complex variety and every variety of production is not volume. On the other hand, small pieces of brake disc casting is thin, technically demanding, while domestic production and export enterprises brake disc, mostly by hand modeling, Green Sand, cupola melting iron, composition changed greatly, to the production technology casting quality control management and bring some degree of difficulty, the high rejection rate for individual manufacturers to cast a direct impact on economic efficiency of enterprises and export business. In this paper, the metal brake discs with Sand Casting design process and technical equipment. Through detailed analysis of the parts diagram, defines the technical indicators. Developed casting process, including the choice of casting and modeling methods. Complete sand core design, casting riser design and the design Shooting technical equipment. Drawing parts and assembly drawings, process flow diagrams . Key words: Metallic Sand Sand core Template Brake Disc

铸造工艺学设计说明书

铸造工艺设计说明书 零件名称:联轴器 指导老师:范宏训 设计人:邱满元 学号:T833-1-34

目录 1零件概述 (1) 1.1零件信息 (1) 1.2技术要求 (2) 2铸造工艺方案拟定 (2) 2.1 分型面选择 (3) 2.2浇注位置选择 (4) 3铸造主要参数 (4) 4 浇注系统设计计算 (4) 5 冒口设计 (5) 6砂芯设计 (6) 7模板 (7) 8 参考文献 (9) 9总结 (9)

1零件概述 1.1零件信息 名称:联轴器材料:球墨铸铁 外形尺寸:φ120X80 体积: 298.4cm2 质量: 2.16kg 生产批量:大批量生产零件二位图如下图所示 零件三维图如图1.1所示 图1.1 联轴器三维图

1.2技术要求 (1)铸件加工后,加工面不得有任何的铸造缺陷,非加工表面不得有明显 的夹渣、凹陷、砂眼和裂纹;。 (2)该零件配合方式为过盈配合; (3)保证该件受力较大的工作部分的力学性能。 2铸造工艺方案拟定 1 、铸造工艺图如图所示,分型面、加工余量、拔模斜度如图所示 对于单个零件,其冒口及浇注系统初步定为如下图所示,浇注位置和冒 口正好选在热节最大的地方 冒口 浇注系统

选择分型面的理由:1、保证铸件大部分位于下箱,温度分布较为合理,冒口 位置设计较为方便,便于补缩; 2、有要求的加工面都位于下型腔,其质量得到保证 3、铸件主要工艺参数的选择 加工余量——根据零件服役条件及加工部位精度要求,该零件主要工作面及尺寸有配合要求的部位是零件中间的连接孔,取加工余量3mm ,其他部位无; 收缩率——球墨铸铁,查表得收缩率为0.8%-1.2%,取ε=1.0% 拔模斜度——便于铸件从型腔中取出,取各处拔模斜度为1° 铸件质量——在增加铸件拔模斜度等工艺参数后计算的铸件体积为 298.4cm2,质量为2.16kg 4 浇注系统设计计算 铁液经球化,孕育处理后,温度下降,易氧化。因此要求浇注系统能大流量输送铁液,又有一定的挡渣能力。故薄壁小型球墨铸铁常用的封闭式浇注方式,它充型速度较快,又有挡渣能力,充型平稳。 用奥赞公式如公式4.1可计算阻流截面积: p L g H ut A 31.0G =∑ Gl 为浇注重量,该铸件质量Gc ≈2.16kg 出品率 %75~60=η,估算Gl=Gc/η≈2.5kg u 浇注系统流量损耗因素,查表得干型中小铸型阻力5.0≈u t 浇注时间 ,由 t=s √Gl 取=t 3s p H 为平均静压力头高度。 该方案可近似认为是中间浇注式,Hp ≈Ho-C/8。 式中C 为零件高度C ≈80cm ,0H 取140mm 得p H =130mm 。 故最小面积: 21335.031.0.5x82411.9cm A g ==???∑

翻砂铸造生产工艺

翻砂铸造生产工艺 翻砂是用粘土粘结砂作造型材料生产铸件,是历史悠久的工艺方法,也是应用范围最广的工艺方法。说起历史悠久,可追溯到几千年以前;论其应用范围,则可说世界各地无一处不用。 值得注意的是,在各种化学粘结砂蓬勃发展的今天,粘土湿型砂仍是最重要的造型材料,其适用范围之广,耗用量之大,是任何其他造型材料都不能与之比拟的。 “砂型铸造”时先将下半型放在平板上,放砂箱填型砂紧实刮平,下型造完,翻砂铸造将造好的砂型翻转180度,放上半型,撒分型剂,放上砂箱,填型砂并紧实、刮平,将上砂箱翻转180度,分别取出上、下半型,再将上型翻转180度和下型合好,砂型造完,等待浇注。这套工艺俗称--“翻砂”。 翻砂是将熔化的金属浇灌入铸型空腔中,冷却凝固后而获得产品的生产方法。在汽车制造过程中,采用铸铁制成毛坯的零件很多,约占全车重量的60%左右,如气缸体、变速器箱体、转向器壳体、后桥壳体、制动鼓、各种支架等。制造铸铁件通常采用砂型。砂型的原料以砂子为主,并与粘结剂、水等混合而成。砂型材料必须具有一定的粘合强度,以便被塑成所需的形状并能抵御高温铁水的冲刷而不会崩塌。为了使砂型内塑成与铸件形状相符的空腔,必须先用木材制成模型,称为木模。炽热的铁水冷却后体积会缩小,因此,木模的尺寸需要在铸件原尺寸的基础上按收缩率加大,需要切削加工的表面相应加厚。空心的铸件需要制成砂芯子和相应的芯子木模(芯盒)。有了木模,就可以翻制空腔砂型。在制造砂型时,要考虑上下砂箱怎样分开才能把木模取出,还要考虑铁水从什么地方流入,怎样灌满空腔以便得到优质的铸件。翻砂铸造制成后,就可以浇注,也就是将铁水灌入砂型的空腔中。浇注时,铁水温度在1250―1350度,熔炼时温度更高。然后还要经过除砂、修复、打磨等过程,才能够成为一件合格铸件。(end)文章内容仅供参考() (2012-5-16) 1/ 1

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

制动盘铸造工艺设计

1.结合所学知识,查找相应资料,对所给零件或铸件原铸造工艺进行分析(工艺图设计,参数选取,砂芯设计,冒口设计,模板设计等)谈谈你的体会,及对教材、课堂教学的建议。 2.查资料,完成所指定锻件的生产过程,锻件图设计、相应的计算过程、下料、加热、锻造及热处理工艺进行分析。 3.结合汽车零件生产。阐述埋弧焊原理、工艺特点、质量保证措施。 1.结合所学知识,查找相应资料,对所给零件或铸件原铸造工艺进行分析(工艺图设计,参数选取,砂芯设计,冒口设计,模板设计等)。

1.1 制动盘铸造要求及现状 一、生产技术状况:制动盘种类繁多,特点是壁薄,盘片及中心处由砂芯形成。不同种类制动盘,在盘径、盘片厚度及两片间隙尺寸上存在差异,盘毂的厚度和高度也各不相同。单层盘片的制动盘结构比较简单。铸件重量多为6-18kg。 二、技术要求:铸件外轮廓全部加工,精加工后不得有任何缩松、气孔、砂眼等铸造缺陷。金相组织为中等片状型,石墨型,组织均匀,断面敏感性小(特别是硬度差小)。 三、力学性能: σb ≥250MPa , HB180~240 , 相当于国际 HT250 牌号。 四、有些外商对铸件的化学成分也作要求,本设计不作详细介绍。 1.2 设计内容 用金属型覆砂技术克服上述局限性,解决当前所遇到的铸造问题,保证工艺出品率。即在金属型与铸件外形间覆薄砂层,形成砂型胶。优点是同时具备金属型和砂型铸造的特点,金属型与熔体不直接接触,冷却速度和金相组织易于控制,同时提高金属型寿命,铸件形状可较复杂。铸件可保证致密无气孔、缩孔、缩松等缺陷,工艺出口率高。 2.1 设计任务要求 名称:制动盘 材料:HT220 类型:成批生产 本铸件属于盘状薄壁件,盘面上的风道利于空气对流,达到散热的目的。如下图所示。采用金属型覆砂工艺,需考虑金属型材料及芯砂材料。 2.2金属型材料选择 根据以往金属型设计经验,选择常用的HT200作为金属型材料,参数如下:牌号:HT200 标准:GB 9439-88

铸造工艺设计说明书

铸造工艺设计说明书 课程设计:机械工艺课程设计 设计题目:底座铸造工艺设计 班级:机自1103 设计人: 学号: 指导教师:张锁梅、贾志新

前言 学生通过设计能获得综合运用过去所学过的全部课程进行机械制造工艺及结构设计的基本能力,为以后做好毕业设计、走上工作岗位进行一次综合训练和准备。它要求学生全面地综合运用本课程及有关选修课程的理论和实践知识,进行零件加工工艺规程的设计和机床夹具的设计。其目的是: (1)培养学生综合运用机械制造工程原理课程及专业课程的理论知识,结合金工实习、生产实习中学到的实践知识,独立地分析和解决机械加工工艺问题,初步具备设计中等复杂程度零件工艺规程的能力。 (2)培养学生能根据被加工零件的技术要求,运用夹具设计的基本原理和方法,学会拟订夹具设计方案,完成夹具结构设计,进一步提高结构设计能力。 (3)培养学生熟悉并运用有关手册、图表、规范等有关技术资料的能力。 (4)进一步培养学生识图、制图、运算和编写技术文件的基本技能。 (5)培养学生独立思考和独立工作的能力,为毕业后走向社会从事相关技术工作打下良好的基础。

目录 一、工艺审核 (1) 1.数量与材料 (1) 2.图样 (1) 3.零件的结构性 (1) 二、成形工艺设计 (1) 1.确定工艺方案 (1) (1)浇注位置的选择 (2) (2)分型面的选择 (2) 2.确定铸造工艺参数 (4) (1)机械加工余量和铸出孔 (4) (2)浇注位置的选择 (5) (3)拔模斜度 (5) (4)铸造收缩率 (6) 3.砂芯设计 (6) 4.浇注系统的设计 (6) 5. 冷铁的设置 (6) 三、心得体会 (7)

零件结构的铸造工艺性分析

零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表1-1~表1-5

表1-1 砂型铸造时铸件最小允许壁厚(单位:㎜) 表1-2 熔模铸件的最小壁厚(单位:㎜)

表1-3 金属型铸件的最小壁厚(单位:㎜) 表1-4 压铸件的最小壁厚(单位:㎜) (2)铸件的临界壁厚 在铸件结构设计时,为了充分发挥金属的潜力,节约金属,必须考虑铸造合金的力学性能对铸件壁厚的敏感性。厚壁铸件容易产生缩孔、缩松、晶粒粗大、偏析和松软等缺陷,从而使铸件的力学性能下降。从这个方面考虑,各种铸造合金都存在一个临界壁厚。铸件的壁厚超过临界壁厚后,铸件的力学性能并不按比例地随着铸件壁厚的增加而增加,而是显著下降。因此,铸件的结构设计应科学

铸造工艺设计说明书

目录 一、工艺分析 (1) 1、审阅零件图 (1) 2、零件的技术要求 (1) 3、零件的技术要求 (1) 4、确定毛坯的具体生产方法 (1) 5、审查铸件的结构工艺性 (1) 二、工艺方案的确定 (1) 1、铸造方法的选择 (1) 2、造型、造芯方法的选择 (2) 3、浇注位置的确定 (2) 4、确定毛坯的具体生产方法 (2) 5、砂箱中铸件数目的确定 (2) 三、砂芯设计 (2) 1、水平砂芯设计 (3) 2、凹槽处采用自带型芯 (3) 四、工艺参数的确定 (3) 1. 加工余量 (3) 2.起模斜度 (4) 3. 铸造圆角 (4) 4. 铸造收缩率 (4) 5. 最小铸出孔 (4) 6、机械加工余量的选取 (4) 五、浇注系统设计 (4) 六、冒口及冷铁设计 (5) 七、铸造工艺图和铸件图 (6) 八、小结 (7) 九、参考文献 (8)

一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 套筒座 工艺方法:铸造 零件材料:HT250 零件重量:3.1955kg 毛坯重量:4.3303kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:未铸造圆角半径:R=2~3 mm;时效处理。 3、选材的合理性 套筒座选用的材料是HT250,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,选择材料HT250可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属中型零件小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造,采用砂型铸造具有生产周期短,灵活性大、成本低的优点。 5、审查铸件的结构工艺性 铸件轮廓尺寸为162x134x133mm,查表得砂型铸造的最小壁厚为6mm,套筒座的壁厚符合其要求。在套筒座中最小壁厚为6mm,最大铸造壁厚为15mm。 二、工艺方案的确定 1、铸造方法的选择 由于套筒座的年产量为100件,属小批量生产,且零件结构简单,所以确定毛坯的生产方法为砂型铸造,由于铸件的高度为133mm,浇注位置上没有较大的壁厚、材料为HT250不需要冷铁。所以砂型种类为湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。

框架铸造工艺说明书

“永冠杯”第二届中国大学生铸造工艺设计大赛 参赛作品 铸件名称:F件--框架 自编代码: 方案编号:

目录 摘要 (Ⅲ) 1 零件简介 (1) 1.1 零件介绍 (1) 1.2生产方式的选择 (3) 2 铸造工艺设计 (4) 2.1 工艺方案的选择 (4) 2.1.1分型面的选择 (4) 2.1.2浇注位置的选择 (4) 2.2 铸造工艺参数的确定 (6) 2.2.1 最小铸出孔 (6) 2.2.2加工余量与铸造圆角 (6) 2.2.3 铸造缩尺 (7) 2.2.4 铸造斜度与分型负数 (7) 2.2.5 浇冒口的切割余量 (9) 2.2.6 铸件在砂型中的冷却时间 (9) 2.2.7砂芯设计 (9) 3 浇注系统设计 (10) 3.1 浇注系统的选择原则 (10)

3.2浇注系统的尺寸确定 (10) 4 冒口的尺寸计算…………………………………………………………13. 4.1铸件冒口补缩设计原理 (13) 4.1.1基本条件 (13) 4.1.2选择冒口位置的原则 (13) 4.1.3补缩压力 (14) 4.2铝合金框架冒口设计方法 (14) 4.2.1 冒口有效补缩距离的确定 (14) 5 冷铁设计 (17) 6 砂箱设计 (17) 7 工艺模拟 (17) 7.1软件简介 (18) 7.2工艺模拟 (18) 参考文献 (20) 附图 (21)

框架零件的铸造工艺设计 摘要 本文主要介绍了该铝合金框架零件的结构特点,并通过工艺分析选择了恰当的砂型铸造生产方式进行小批量铸造生产。通过计算机铸造工艺模拟,验证了铸造工艺参数的合理性与铸造工艺方案的可行性。 关键字:铝合金框架砂型铸造铸造工艺工艺模拟

带轮铸造工艺设计说明书

带轮铸造工艺设计说明书、工艺分析 1、审阅零件图仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细审查图样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺的要求。 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避免。 零件名称:带轮 零件材料:HT150 生产批量:大批量生产 2、零件技术要求铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等,参考常 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的种类、 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性铸件壁厚不小于最小壁厚5-6 又在临界壁厚20-25 以下。 、工艺方案的确定 1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择根据手工造型和机器造型的特点,选择手工造型(2)铸造方法的选择根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4 条主要规则,选择铸件最大截面,即底面处。

3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面 三、工艺参数查询 1、加工余量的确定根据造型方法、材料类型进行查询。查得加工余量等级为 11~13,取加工余量等级为12。 根据零件基本尺寸、加工余量等级进行查询。查得铸件尺寸公差数值为10 根据零件尺寸公差、公差等级进行查询。查得机械加工余量为5.5 。 2、起模斜度的确定 根据所属的表面类型查得测量面高140,起模角度为0度25分(0.42 °) 3、铸造圆角的确定根据铸造方法和材料,查得最小铸造圆角半径为3。 4、铸造收缩率的确定根据铸件种类查得:阻碍收缩率为0.8~1.0 ,自由收缩率为0.9~1.1 。 5、最小铸造孔的选择根据孔的深度、铸件孔的壁厚查得最小铸孔的直径是80mm. 四、浇注系统设计 (一)、浇注位置的确定根据内浇道的位置选择底注式,(二)、浇注系统类型选择 根据各浇注系统的特点及铸件的大小选用封闭式浇注系统 三)、浇注系统尺寸的确定

制动盘铸造工艺设计样本

1.结合所学知识, 查找相应资料, 对所给零件或铸件原铸造工艺进行分析( 工艺图设计, 参数选取, 砂芯设计, 冒口设计, 模板设计等) 谈谈你的体会, 及对教材、课堂教学的建议。2.查资料, 完成所指定锻件的生产过程, 锻件图设计、相应的计算过程、下料、加热、锻造及热处理工艺进行分析。 3.结合汽车零件生产。阐述埋弧焊原理、工艺特点、质量保证措施。 1.结合所学知识, 查找相应资料, 对所给零件或铸件原铸造工艺进行分析( 工艺图设计, 参数选取, 砂芯设计, 冒口设计, 模板设计等) 。 1.1 制动盘铸造要求及现状

一、生产技术状况 : 制动盘种类繁多, 特点是壁薄, 盘片及中心处由砂芯形成。不同种类制动盘, 在盘径、盘片厚度及两片间隙尺寸上存在差异, 盘毂的厚度和高度也各不相同。单层盘片的制动盘结构比较简单。铸件重量多为 6-18kg。 二、技术要求 : 铸件外轮廓全部加工, 精加工后不得有任何缩松、气孔、砂眼等铸造缺陷。金相组织为中等片状型, 石墨型, 组织均匀, 断面敏感性小( 特别是硬度差小) 。 三、力学性能: σb ≥250MPa , HB180~240 , 相当于国际HT250 牌号。 四、有些外商对铸件的化学成分也作要求, 本设计不作详细介绍。 1.2 设计内容 用金属型覆砂技术克服上述局限性, 解决当前所遇到的铸造问题, 保证工艺出品率。即在金属型与铸件外形间覆薄砂层, 形成砂型胶。优点是同时具备金属型和砂型铸造的特点, 金属型与熔体不直接接触, 冷却速度和金相组织易于控制, 同时提高金属型寿命, 铸件形状可较复杂。铸件可保证致密无气孔、缩孔、缩松等缺陷, 工艺出口率高。 2.1 设计任务要求 名称:制动盘

铸造工艺设计说明书(1)

材料成型过程控制 院系:材料科学与工程学院 专业:材料成型与控制工程 姓名: 学号: 指导老师: 日期:2012.9.19至2012.10.15

目录 一、铸造工艺分析 (1) 二、砂芯设计 (3) 三、冒口设计 (5) 四、浇注系统的设计及计算 (7) 五、沙箱铸件数量的确定 (10) 六、参考数目、资料 (11)

图1所示的事U型座,主要用于拆卸主轴上的皮带轮。 材料为ZG25(主要元素含量:W C%=0.22~0.32%,W Mn%=0.5~0.8%,W Si%=0.2~0.45%)。 技术要求:①未标示的铸造圆角半径R=3~5。②未标铸造倾斜度按工厂规格H59~21。③铸件应仔细地清理去掉毛刺及不平处。 图1

一、铸造工艺分析 1.确定铸型种类和造型、制芯方法 此铸件是铸钢件,铸件最大三维尺寸270x110x220 mm,为中小型铸件,铸件结构简单,仅有两个加工面,其他非加工面表面光洁度要求不高,采用温型普通机器造型,砂芯外形简单,采用热芯盒射芯机制芯。 2.确定浇注位置和分型面 方案1:将铸件放置于下箱,分型面选取如图2所示,采用顶注式浇注,此方案浇注系统简单,不用翻箱操作;但是浇注时金属液对型腔冲刷力大,难以下芯,不便设置冒口进行补缩。容易产生夹砂、结疤类缺陷,补缩困难会形成缩孔、缩松结晶等缺陷。 方案2:将铸件放于上箱,分型面选取如图3所示,采用底注式浇注,此方案浇注系统相对复杂,下芯方便,可以将冒口设计在顶部,补缩效果好。 综合以上两种方案考虑,选择方案2较为合理。 图2 图3 铸件全部位于上箱,下表面为分型面 上 下 上 下

高效切削加工制动鼓的刀具材料

一、制动鼓的加工工艺 目前,市场上面制动鼓的主要材料还是灰铸铁占多数,灰铸铁具有良好的减震性和耐磨型,并且噪音小,加工工艺简单。一般加工工艺是铸造—粗加工—半精加工—精加工—钻孔—检验。 (1)铸造:制动鼓在进行铸造时,需控制炉料质量,铁水化学成分进行控制,还有就是控制好浇注温度,配料的正确,如控制不好,可能就会出现铸造缺陷,如夹砂,气孔,白口等,出现以上铸造缺陷会对后面的加工带来困难。 (2)粗加工:铸造之后进入机械加工车间。目前,加工制动鼓常采用数控车床,原因1是降低工件的废品率,原因2是提高加工效率。粗加工制动鼓需留有大概0.5mm的余量,以便以后半精加工和精加工保证光洁度要求。 (3)半精加工:为了使制动鼓获得较高的光洁度,一般在粗加工之后进行半精加工,留有0.1- 0.2mm的余量,方面后面的精加工工序。 (4)精加工:为了获得较高的表面光洁度,一般会在半精加工之后再精加工一刀,加工至图纸要求尺寸,和Ra1.6的光洁度。 (5)钻孔:在图纸要求部位钻相应尺寸的孔。 (6)检验入库:检验制动鼓表面光洁度,和尺寸公差是否满足图纸要求,合格之后如可或装配。 二、车加工制动鼓时的刀具选择 由于车加工制动鼓需三道工序,粗加工时一般要加工3mm左右的余量,并且制动鼓的需求量大,一般采用数控车床批量加工制动鼓。在加工过程中,既要保证加工尺寸,又要提高加工效率,选择的刀具材料

要求:一是对线速度不敏感,可高速切削;二是加工余量大的能一刀完成就一刀完成,减少加工时间,提高加工效率。 刚开始选择硬质合金刀具,但硬质合金刀具对线速度敏感,只能低速切削制动鼓,生产节拍变长,影响加工效率,如小批量或少量车加工制动鼓,在不影响整体加工效益的基础上可选择合适的硬质合金刀具,对于大批量制动鼓,机械厂家会选择CBN刀片加工,其中更多的会选择华菱超硬CBN刀片BN-S30牌号和BN-K20牌号车加工制动鼓效果更明显。 华菱超硬前身是河南超硬材料研究所,是专业生产CBN刀片等超硬材料制品的高新技术企业,目前被广泛应用于高硬度材料,热处理后的高硬度工件,和其他难切削材料的零件领域,产品范围主要是车刀,铣刀和数控刀片等系列,并适应当代“高速,精密加工”等切削要求,广泛应用于汽车,航空航天,电力设备,矿山机械等行业。在超硬刀具学术界享有很高声誉。 其中华菱超硬CBN刀片BN-S30牌号属于整体聚晶CBN刀片,适合粗加工工序,BN-S20牌号属于焊接 式CBN刀片,适合精加工工序。由于工序不同,加工余量不同,选择的刀具牌号也不同,下面就针对制动鼓简单介绍一下华菱超硬CBN刀片的方案。 华菱超硬针对制动鼓研制出两款刀具牌号,分别是BN-S30牌号和BN-K20牌号,针对不同工序选择合适的刀具牌号。下面就针对制动鼓不同工序,选择最合适的华菱超硬CBN刀片。 三、针对不同工序选择合适的华菱超硬CBN刀片牌号 (1)粗加工工序:余量一般在3mm左右,选择华菱超硬CBN刀片BN-S30牌号,此牌号采用非金属(陶瓷)作为粘合剂,与传统CBN刀片相比增加了韧性,不仅高硬度高强度,而且具有良好的耐磨性和抗冲击性,可大余量车削制动鼓,制动鼓余量3mm可一刀完成。下图为华菱超硬CBN刀片BN-S30牌号车加 工制动鼓图片。

昆明理工大学-扁叉铸造工艺设计说明书

扁叉铸造工艺设计说明书 一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 扁叉 工艺方法:铸造 零件材料:HT150 零件重量:0.4066kg 毛坯重量:0.6720kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:铸造圆角半径不得超过1mm;在铸造时不允许有气孔、砂眼、缩孔、缩松和夹杂等缺陷;铸件应进行时效处理;铸件应进行清理,保证表面平整;零件加工完后所有棱边应去除毛刺;不加工表面先涂以防锈漆,再涂以绿色油漆。 3、选材的合理性 扁叉选用的材料是HT150,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,又是中等静载,选择材料HT150可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造。 5、审查铸件的结构工艺性 铸件轮廓尺寸为159*59.5*24,查表得砂型铸造的最小壁厚为6mm,扁叉的壁厚符合其要求。铸件质量为0.6720kg,材料为HT150,查表得砂型铸造铸件的临界壁厚为

18mm。壁厚越大,圆角尺寸也相应增大。 二、工艺方案的确定 1、铸造方法的选择 由于扁叉的年产量为100件,属小批量生产,且零件结构简单,所以确定毛坯的生产方法为砂型铸造,砂型种类为湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。 3、浇注位置的确定 根据计算机辅助铸造工艺设计中关于浇注位置的确定原则(浇注位置应选在铸件最大截面处,应使合箱位置、浇注位置和位置相一政),所以确定浇注位置为铸件中间对称的最大截面--此截面为最大截面、上下对称、且便于充型和起模。 4、分型面的确定 根据计算机辅助铸造工艺设计中关于分型面的确定原则(分型面应选在铸件最大截面处;分型面应尽量选用平面),所以确定分型面为铸件中间对称的最大截面--以便于起模、下芯和检验;分模面与分型面一致。 5、砂箱中铸件数目的确定 扁叉的重量为0.6720 kg,"铸件质量"选择≤5kg,对应的"砂箱尺寸"为"≤ 400mm","最小吃砂量"分别为"a=20mm,b=30mm,c=40mm,d或e=30mm,f=30mm,g=20mm"。铸件本身的尺寸为159*59.5*24mm,因此在"400mm"的砂箱中只能放置二个铸件(如图所示)(注:砂箱尺寸=(A+B)/2, A、B分别为砂箱内框长宽及宽度)。

拨叉铸造工艺设计说明书

拨叉铸造工艺设计说明书 一、工艺分析 1、审阅零件图 查看零件图的具体尺寸与图纸绘制是否正确。 零件名称: 拨叉 工艺方法:铸造 零件材料:HT200 零件重量:2.5kg 毛坯重量:2.85kg 生产批量: 100件/年,为小批量生产 2、零件的技术要求 零件在铸造方面的技术要求:未注圆角为R5-R10; 倒顿锐边; 铸件应进行时效处理; 在铸造时不允许有气孔、砂眼、缩孔、缩松和夹杂等缺陷。 3、选材的合理性 拨叉选用的材料是HT200,为灰铸铁。灰铸铁铸件的壁厚不应太薄,边角处应适当加厚,防止出现白口组织使该处既硬又难于加工。此零件用于支承,只要求能够承受抗压即可,又是中等静载,选择材料HT200可以满足要求。 4、确定毛坯的具体生产方法 根据以上信息可知,由于零件属小批量生产,形状比较简单、壁厚比较均匀,且该材料为灰铸铁,所以确定毛坯的生产方法为砂型铸造。 5、审查铸件的结构工艺性 铸件轮廓尺寸为325*140*130,查表得砂型铸造的最小壁厚为6mm。铸件质量为2.85kg,材料为HT200,查表得砂型铸造铸件的临界壁厚为18mm。壁厚越大,圆角尺寸也相应增大。

二、工艺方案的确定 点击软件中铸造工艺设计→铸造工艺方案的确定→点击最右边的下拉菜单可查询如下内容。 1、铸造方法的选择 由于拨叉的年产量为100件,属小批量生产,且零件结构简单,所以毛坯的生产方法选择砂型铸造,砂型种类选择湿型。 2、造型、造芯方法的选择 选择造型方法为手工造型,造芯方法为手工刮板造芯。 3、浇注位置的确定 拨叉是小型零件,且结构简单,确定浇注位置为其上表面,此位置便于充型、起模和下芯。 4、分型面的确定 拨叉表面结构简单,确定分型面为其上表面,以便于起模、下芯和检验。 5、砂箱中铸件数目的确定 选择"铸件质量"小于5 kg,点击查询,对应的"砂箱尺寸"为"≤400mm","最小吃砂量"分别为"a=20mm,b=30mm,c=40mm,d或e=30mm,f=30mm,g=20mm"。铸件本身的尺寸为325*140*130mm,因此在"400mm"的砂箱中只能放置二个铸件(如图所示)(注:砂箱尺寸=(A+B)/2, A、B分别为砂箱内框长宽及宽度)。

《铸造工艺》课程设计说明书

目录 1绪言················································2铸造工艺设计··············· 2.1铸件结构的铸造工艺性·········2. 2铸造工艺方案的确定·················2.3参数的选择工艺 2. 4砂芯设计 2. 5浇注系统设计············· 3铸造的工艺装备设计······ 3. 1模样设计······· 3. 2模底板的设计·······················3. 3模样在模底板上的装配············4结束语······· 参考文献

1绪言 我本次课程设计的任务是对灰铸铁支承座进行铸造工艺及工装设计。 灰铸铁具有良好的铸造性能良好的减振性、良好的耐磨性能良好的切削加工性能、低的缺口敏感性。灰铸铁的抗拉强度、塑性和韧性远低于钢,力学性能较差,但抗压强度与钢相当。 铸造是指将液态合金注入铸型中使其冷却、凝固,并进行后处理,最终成为金属制品的一种生产方法。铸件的生产过程,也就是从零件图开始,一直到铸件成品检验合格入库为止,要经过很多道工序,铸件的生产过程称为铸造生产工艺过程。 本次设计采用砂型铸造,其最大优点就是生产成本低,为机械制造行业中广泛应用的毛坯生产工艺方法。在砂型铸造的过程中,考虑到铸件的结构,生产条件以及加工批量等因素,要对铸件工艺的设计作全面分析,为避免铸件的缺陷,我们要根据标准选择合理的工艺设计方法。 由于每个铸件的生产任务和要求不同,生产条件不同,因此铸造工艺及工装设计的内容也不同。一般情况下,铸造工艺设计包括以下几种技术文件:铸造工艺图,铸造工艺卡,铸型装配图,铸件图,模样图,‘芯盒图,砂箱图,模板图。 铸造工艺及工装设计的过程如下: (1)对零件图纸进行审查和进行铸造工艺性分析 (2)选择铸造方法,确定铸造工艺方法 (3)绘制铸造工艺图 (4)绘制铸件图 (5)绘制铸型装配图 (6)绘制各种铸造工艺装配图 工装图要以铸造工艺图为主要设计依据。 2铸造工艺设计 2. 1铸件结构的铸造工艺性 生产铸件,不仅需要采用先进的合理的铸造工艺和设备,而且还要使零件结构本身符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。这种对于铸造工艺过程来说的铸件结构的合理性,称为铸件的“铸造工艺性’,它和铸造合金的种类,产量的多少,铸造方法和生产条件等有密切的关系。 2. 1 .1审查铸件结构 (一)铸件应有合适的壁厚 避免浇不到、冷隔等缺陷,铸件不应太薄。本次设计的铸件材料为HT200,最大尺寸为194 X 155mm。

铸造工艺说明书

1 铸造工艺设计 1.1 铸造工艺方案的确定 1.1.1浇注位置的确定 铸件的浇注位置是指浇筑时铸件在铸型中所处的位置。浇注位置是根据铸件的结构特点、尺寸、重量、技术要求、铸造合金特性、铸造方法以及生产车间的条件决定的。个人收集整理勿做商业用途 正确的浇注位置应能保证获得健全的铸件,并使造型、制芯和清理方便。 该铸件浇注位置应在铸件边缘,内浇道应在分型面上。 1.1.2 分型面的确定 铸造分型面是指铸型组元间的接合面。合理地选择分型面,对简化铸造工艺、提高生产率、降低成本、提高铸件质量等都有直接关系。分型面的选择应尽量与浇注位置一致,尽量使两者协调起来,使铸造工艺简便,并易于保证铸件质量。个人收集整理勿做商业用途 1.应使铸件全部或大部置于同一半型内; 2.应尽量减少分型面的数目; 3.分型面应尽量选用平面; 4.便于下芯、合箱和检查型腔尺寸; 5.不使砂箱过高; 6.受力件的分型面的选择不应削弱铸件的结构强度; 7.注意减轻铸件清理和机械加工量。 该铸件的分型面的选择如图1-1所示 图1-1 铸件的分型面 1.2 工艺参数 1.2.1 机械加工余量 GB/T6414-1999《铸件尺寸公差与机械加工余量》中规定,要求的机械加工余量适用于整个毛坯铸件,且该值应根据最终机械加工成品铸件的最大轮廓尺寸和相应的尺寸范围选取。个人收集整理勿做商业用途 要求的机械加工余量等级有10级,称之为A、B、C、D、E、F、G、H、J和

K级共10个等级。 查表,可知灰铸铁加工余量等级E~G级,可知,加工余量为3.0mm。 1.2.2 铸件线收缩率与模样放大率 铸件线收缩率又称为铸件收缩率或铸造收缩率,是指铸件从线收缩开始温度(从液相中析出枝晶搭成的骨架开始具有固态性质时的温度)冷却到室温时的相对线收缩量,以模样与铸件的长度差除以模样长度的百分比表示:个人收集整理勿做商业用途 式中1L:模样长度; L:铸件长度。 2 铸件的线收缩率ε是考虑了各种影响因素之后的铸件的实际收缩率,它不仅与铸造金属的收缩率和线收缩起始温度有关,而且还与铸件的结构、铸型种类、浇冒口系统结构、砂型和砂芯的退让性等因素有关。个人收集整理勿做商业用途综合考虑:可选灰铸铁线收缩率1.0%。 1.2.3 起模斜度 当铸件本身没有足够的结构斜度,应在铸件设计或铸造工艺实际是给出铸件的起模斜度,以保证铸件的起模。起模斜度可采取增加铸件壁厚的方式来形成。在铸件上加起模斜度,原则上不应超出铸件的壁厚公差要求。个人收集整理勿做商业用途 α。 根据零件要求,起模斜度? =2 1.2.4 最小铸出孔槽 机械零件上往往有很多孔、槽和台阶,一般应尽可能在铸造时铸出。这样既可节约金属、减少机械加工量、降低成本,又可使铸件壁厚比较均匀,减少形成缩孔、缩松等铸造缺陷的倾向。但是当铸件上的孔、槽尺寸太小,而铸件的壁厚又较厚和金属压力较高时,反而会使铸件产生粘砂,造成清理和机械加工困难。有的孔、槽必须采用复杂而难度较大的工艺措施才能铸出,而实现这些措施还不如用机械加工的方法制出更为方便和经济。有时由于孔距要求很精确,铸出的孔如有偏心,就很难保证加工精度。因此在确定零件上的孔和槽是否铸出时,必须既考虑到铸出这些孔和槽的可能性,又要考虑到铸出这些孔和槽的必要性和经济

相关文档
最新文档