较短弹簧的设计与选用
弹簧设计步骤详解

弹簧设计步骤详解弹簧设计是机械设计中的一个非常重要的部分,弹簧在工程中有广泛的应用,如汽车悬挂系统、电器设备、工具、家具等。
弹簧设计的目的是根据所需的力学性能以及工作环境条件来选择适合的材料、形状和尺寸,并确保其具有合适的弹性性能和寿命。
下面是弹簧设计的详细步骤:1.确定设计要求:根据应用场景和使用要求,确定所需的弹簧的负载条件、工作温度、运动方式等。
这些要求将直接影响到弹簧的材料和几何参数的选择。
2.选择材料:根据所需的弹簧性能指标,如弹性模量、屈服强度、疲劳寿命等,选择合适的弹簧材料。
常用的弹簧材料有钢丝、高碳钢、不锈钢、钛合金等。
不同的材料有不同的力学性能和耐腐蚀性,需要根据具体情况进行选择。
3.计算负载条件:根据设计要求和所选材料,计算所需的弹簧负载条件,包括最大负载、工作位移范围、应力、挠度等。
这些参数将决定弹簧的尺寸和形状。
4.选择弹簧类型:根据负载条件和运动方式,选择合适的弹簧类型,包括压缩弹簧、拉伸弹簧、扭转弹簧等。
不同类型的弹簧适用于不同的负载和运动方式,需要根据实际情况进行选择。
5.确定弹簧形状:根据所选的弹簧类型和负载条件,确定弹簧的几何形状和尺寸。
弹簧的形状直接影响到其弹性性能和负载能力,需要根据实际需要进行选择,如圆柱形弹簧、圆锥形弹簧、卷曲弹簧等。
6.估计弹簧寿命:通过应力分析和疲劳计算,估计弹簧的寿命。
弹簧在工作中可能会受到重复载荷的作用,而导致疲劳破坏,需要通过合适的疲劳分析方法来评估寿命。
7.弹簧制造工艺:根据所选的弹簧形状和尺寸,确定适合的制造工艺,包括卷制、切割、热处理、表面处理等。
弹簧的制造工艺对于其质量和性能有直接影响,需要进行合理的选择。
8.弹簧的安装和使用:在设计过程中考虑弹簧的安装和使用条件,如安装方式、运动方式、周围环境等。
这些因素将影响弹簧的实际工作性能和寿命,需要充分考虑。
以上是弹簧设计的详细步骤,这些步骤涵盖了弹簧设计中的关键要点,通过合理的设计和选择,可以确保弹簧在工程中具有良好的弹性性能和寿命,满足工程要求。
弹簧设计方案

弹簧设计方案弹簧是一种具有储能性能的机械零件,广泛应用于各种工业领域。
本文将针对弹簧的设计方案进行探讨,以提供一个高效可靠的弹簧设计方案。
一、设计原则1. 负载条件:首先需要确定所设计弹簧所承受的负载条件,包括负载类型、大小和周期等。
这将有助于确定合适的弹簧类型和尺寸。
2. 弹簧材料选择:根据所需的负载条件和工作环境,选择合适的弹簧材料。
常见的材料包括弹簧钢和不锈钢等。
3. 弹簧类型:根据应用需求,选择适合的弹簧类型,如压缩弹簧、拉伸弹簧、扭转弹簧等。
4. 尺寸计算:根据负载条件和所选材料,进行弹簧尺寸计算。
这包括弹簧直径、线径、圈数等参数的确定。
5. 弹簧刚度:根据所需的弹簧刚度,进行刚度计算,以确保弹簧在工作条件下具有适当的变形和回弹性能。
6. 弹簧周期寿命:通过计算弹簧的应力和变形情况,评估其在设计寿命范围内的使用情况。
二、设计流程1. 确定需求:明确弹簧的使用需求和工作条件。
2. 材料选择:根据工作环境和负载条件选择适合的弹簧材料。
3. 弹簧类型选择:根据需求选择合适的弹簧类型。
4. 弹簧尺寸计算:根据负载条件、材料和弹簧类型,计算弹簧的尺寸参数。
5. 弹簧刚度计算:根据需求,计算弹簧的刚度,并根据需要进行调整。
6. 弹簧周期寿命评估:通过应力和变形计算,评估弹簧在设计寿命范围内的使用情况。
7. 样品制作:根据设计结果,制作弹簧的样品,并进行测试验证。
8. 优化调整:根据测试结果,对设计进行优化调整,以提高弹簧的性能和寿命。
9. 批量生产:根据优化后的设计方案,进行弹簧的批量生产。
三、设计案例以压缩弹簧为例,假设需设计一款承受500N负载的压缩弹簧,工作环境为常温下。
1. 确定需求:压缩弹簧承受500N负载,工作环境为常温下。
2. 材料选择:选择弹簧钢作为材料,具有优良的力学性能和耐腐蚀性能。
3. 弹簧类型选择:选择圆截面弹簧,适用于承受压缩负载。
4. 弹簧尺寸计算:根据负载条件和材料弹性模量,计算出弹簧直径、线径和圈数等参数。
弹簧设计规范(全)

弹簧设计规范(全)弹簧是一种弹性元件,具有多次重复地随外部载荷而做相应的弹性变形,卸载后立即恢复原状的特性。
它在很多机械中都发挥着重要的作用,主要包括减振和缓冲、测力、储存及输出能量、控制运动等功能。
根据所承受的载荷和形状的不同,弹簧可以分为拉伸弹簧、压缩弹簧、扭转弹簧和弯曲弹簧等四种类型,以及螺旋弹簧、碟形弹簧、环形弹簧、盘形弹簧和板弹簧等不同形状。
根据使用材料的不同,弹簧可以分为金属弹簧和非金属弹簧。
在不同的应用场合中,各种弹簧都有其独特的特点和应用。
弹簧钢的主要性能要求是高强度、高屈服极限和疲劳极限,因此通常使用含碳量较高的钢材。
对于截面较大的弹簧,需要使用合金钢来增强钢材的淬透性和屈强比。
主要的合金元素是硅和锰。
在各种弹簧中,圆柱螺旋弹簧是最常用的,因此本章将主要介绍这类弹簧的结构形式、设计理论和计算方法。
通过合理的设计和选择合适的材料,可以使弹簧发挥最佳的性能,满足各种特殊要求。
弹簧材料中,最广泛使用的是弹簧钢(SUP)。
碳素钢用于直径较小的弹簧,工艺多为冷拔成型,如65#、75#、85#。
直径稍大,需要用热成型工艺生产的弹簧多采用60Si2Mn,例如汽车板簧、铁路车辆的缓冲簧。
对于高应力的重要弹簧,可以采用50CrV,常用于高级轿车板簧、发动机气门弹簧等。
其他弹簧钢材料还有65Mn、50CrMn、30W4Cr2V等。
制造弹簧时,常向钢中加入矽、锰、铬、钒及钼等金属元素,以增加弹簧的弹性和疲劳限度,并使其耐冲击。
大型弹簧多用热作加工,即将弹簧材料高温轧成棒,再高温加工成形后,淬火于780度~850度左右的油或水中,再施以400度~500度的温度回火。
小型弹簧则先经过退火,再用冷作加工,捲成后再经硬化回火,例如钢丝、琴钢丝或钢带。
琴钢丝是属于高炭钢材(0.65~0.95%)制造,杂质少,直径常小于1/4时经过轫化处理后在常温抽成线。
其机械性质佳,抗拉强度及轫性大,是优良的螺旋弹簧材料。
不锈钢丝用于易受腐蚀处,承受高温可用高速钢及不锈钢。
弹簧的选用及步骤

弹簧的选用及步骤
1. 卸料力Q和冲模结构初定弹簧个数n,求出分配在每根弹簧上的力P o=Q/n,此力应
等于预压量F o下的预压力
2. 计算弹簧总压缩量F:
F=F O+F I+F2
式中:F i—卸料板的工作行程,一般取F i=t+1mm F2—凸模总修模量,一般取F2=3〜8mm
根据弹簧压力与压缩量成正比的特性有:
F o=P o F/P
式中:P o—弹簧的预压力
P—弹簧的总压力
3.根据弹簧预压力P o和总压缩量F预选弹簧,选用的弹簧必须满足
①弹簧的最大许可压缩量F1应大于弹簧在工作中的总压缩量F
②弹簧最大工作负荷P i应大于弹簧在总压缩量F时的弹簧总压力P
弹簧号数最大压缩量
预压量
F o=P o F/P
总压缩量
F=F O+F I+F2
总压力
P=P o F/F o
模具弹簧的合理使用
1.应合理选择载荷设计点
建议一般选在标准的规定值,确有性能达不到使用要求,而使用次数不大,可选在标准的最大值
2. 合理设计模具弹簧安装孔和芯轴
当弹簧的高径比三2.6时,在设计时应有弹簧窝或加装轴孔或两者并用;在能满足压缩量的情况下,要保证有足够的窝孔深度和芯轴长度
3. 不要任意组合和改制弹簧
4. 弹簧装在模具中要有一定的预压量
5. 注意高温或腐蚀对弹簧性能的影响
6. 弹簧外径与窝座保持0.5〜3mm的间隙。
弹簧的设计方法范文

弹簧的设计方法范文1.确定应用需求:首先,需要明确设计弹簧的具体用途和性能要求。
这可能包括负荷、变形、工作环境和寿命等方面的要求。
同时,还要考虑到弹簧将如何与其他零件和系统进行配合。
2.确定弹簧类型:根据应用需求,可以选择不同类型的弹簧,如压缩弹簧、拉伸弹簧、扭转弹簧或扁平弹簧等。
每种类型的弹簧都有其特定的优势和限制。
3.材料选择:选择适合的材料对于弹簧的性能十分关键。
一般来说,常用的弹簧材料包括钢材、不锈钢、合金钢和钛合金等。
每种材料都有其自身的特性,如强度、韧性、耐腐蚀性和导热性等。
因此,在选择材料时,需要综合考虑这些因素。
4.确定几何形状和尺寸:根据应用需求和材料特性,可以确定弹簧的几何形状和尺寸。
这包括弹簧的长度、直径、圈数、线径以及线圈之间的间距等。
这些参数将直接影响弹簧的刚度、变形能力和负荷能力。
5.计算和模拟分析:使用合适的数学模型和计算方法来估算弹簧的性能。
这可能包括刚度、最大负荷、变形量和寿命等方面的计算。
同时,可以使用计算机辅助设计(CAD)软件来进行模拟和分析,以确定设计方案的可行性。
6.执行实验验证:设计弹簧后,需要进行实验验证以确保其性能和可靠性。
这可能包括拉伸和压缩测试、负荷和变形测量以及疲劳寿命测试等。
通过实验,可以验证设计的准确性,并对需要进行修改的地方进行调整。
7.最后优化:通过实验验证和测试结果,可以对弹簧设计进行进一步的优化。
这可能包括微调几何参数、材料选择和热处理等方面的调整。
最终目标是满足应用要求,并最大程度地提高弹簧的性能。
总结:弹簧的设计是一项复杂而关键的工程任务,需要考虑到多种因素,如用途、性能要求、材料选择、几何形状、尺寸和实验验证等。
通过综合考虑这些因素,并使用适当的计算和分析方法,可以设计出满足应用需求的高性能弹簧。
弹簧设计标准

弹簧设计标准弹簧是一种常见的机械零部件,广泛应用于各种机械设备中,如汽车、家电、工业设备等。
弹簧的设计标准对于产品的质量和性能起着至关重要的作用。
在设计弹簧时,需要考虑到材料的选择、弹簧的形状、尺寸和工艺等多个方面。
本文将从这些方面分别进行介绍和讨论。
首先,材料的选择是设计弹簧时需要优先考虑的因素之一。
弹簧所使用的材料应具有良好的弹性和耐久性,能够承受长期的变形和恢复。
常见的弹簧材料包括优质碳素钢、不锈钢、合金钢等。
不同的材料具有不同的弹性模量和屈服强度,因此在设计弹簧时需要根据具体的工作环境和要求来选择合适的材料。
其次,弹簧的形状和尺寸对于其性能和使用效果也有着重要的影响。
弹簧的形状可以分为压缩弹簧、拉伸弹簧和扭转弹簧等多种类型,不同形状的弹簧适用于不同的工作环境和载荷要求。
在确定弹簧的形状和尺寸时,需要考虑到其在工作过程中的变形量、变形率、应变能量等参数,以确保弹簧在使用过程中能够稳定可靠地工作。
此外,弹簧的工艺也是设计过程中需要重点考虑的因素之一。
弹簧的制造工艺包括拉丝、弯曲、热处理、表面处理等多个环节,每个环节都会对弹簧的性能和质量产生影响。
因此,在设计弹簧时需要充分考虑到材料的加工性能、工艺的可行性以及成本效益等因素,以确保弹簧能够在生产过程中获得良好的加工和成形效果。
综上所述,弹簧的设计标准涉及到材料的选择、形状和尺寸的确定以及工艺的制定等多个方面。
在设计弹簧时,需要全面考虑这些因素,并在实际生产中进行充分的验证和测试,以确保弹簧能够满足产品的要求和使用环境的需求。
只有这样,才能够设计出质量可靠、性能稳定的弹簧产品,为各种机械设备的正常运行提供可靠的支持。
机械设计中的弹簧设计
机械设计中的弹簧设计在机械设计中,弹簧是一种常用的零件,应用广泛且具有重要的功能。
弹簧设计的合理性直接影响到机械设备的性能和寿命。
本文将以“机械设计中的弹簧设计”为题,探讨弹簧的设计原理和常见的设计方法。
一、弹簧设计的基本原理弹簧是一种能储存和释放弹性势能的弹性零件,广泛应用于各种机械装置中。
弹簧的设计原理主要包括以下几个方面:1. 弹簧的负载-变形关系:弹簧在受到外力作用时,会发生变形以吸收能量,当外力减小或消失时,弹簧会恢复原状并释放能量。
这种负载-变形关系可以通过弹簧的刚度来描述,刚度越大,变形对应的力也越大。
2. 弹簧的材料选择:弹簧一般由弹性材料制成,常见的弹簧材料包括钢、不锈钢、合金钢等。
材料的选择需要考虑弹性模量、耐疲劳性、耐腐蚀性等因素。
3. 弹簧的强度和耐久性:弹簧在工作过程中会受到不同程度的载荷,因此需要设计足够的强度以防止弹簧在工作过程中出现破坏。
同时,弹簧的耐久性也是设计的重要考虑因素之一。
4. 弹簧的稳定性:在设计弹簧时,需要考虑弹簧是否具有稳定性。
稳定性主要涉及弹簧在变形过程中是否会出现失稳和干涉等问题。
二、弹簧设计的方法根据不同的应用需求,弹簧的设计方法也各不相同。
下面将介绍几种常见的弹簧设计方法:1. 针对静态载荷设计的方法:对于受到静态载荷的弹簧设计,可以使用静态平衡方程求解。
通过平衡受力和变形的关系,确定弹簧的刚度、尺寸和材料。
2. 针对动态载荷设计的方法:对于受到动态载荷的弹簧设计,需要考虑弹簧在振动过程中的动态特性,如共振频率和振幅。
可以使用模态分析等方法进行设计,确保弹簧在动态载荷下的正常工作。
3. 基于材料强度设计的方法:弹簧在工作过程中会受到一定的应力和变形,需要选择合适的材料以满足设计要求。
可以通过材料力学性能的计算和实验来确定材料的强度,并根据受力状态进行合理的选择。
4. 弹簧的最优化设计方法:在弹簧设计中,可以使用最优化方法寻求最优设计方案。
通过制定合适的目标函数和约束条件,使用数值优化算法进行求解,得到最优的弹簧设计方案。
弹簧设计和计算范文
弹簧设计和计算范文弹簧设计的第一步是进行荷载分析。
荷载分析主要是确定弹簧所需承受的力或扭矩的大小和方向。
根据弹簧所需承受的荷载,可以选择合适的弹簧类型,如压缩弹簧、拉伸弹簧、扭簧等。
材料选择是弹簧设计的关键步骤之一、弹簧材料需要具有一定的弹性和强度,以承受荷载而不产生永久形变或破裂。
常用的弹簧材料包括碳钢、不锈钢和合金钢等。
在选择材料时,需要考虑弹簧的工作环境和要求,如温度、湿度、腐蚀性等因素。
直线弹簧设计是弹簧设计中的一种常见类型。
直线弹簧可分为压缩弹簧和拉伸弹簧。
压缩弹簧用于承受压力,而拉伸弹簧用于承受拉力。
直线弹簧的设计需要确定弹簧的几何参数,如弹簧的长度、直径、线径、圈数等。
这些参数将直接影响弹簧的刚度和荷载承受能力。
根据弹簧设计所需的刚度和弹性系数,可以计算弹簧的几何参数。
在设计过程中,需要参考弹簧设计手册或使用计算软件进行计算。
一个常用的设计方法是使用赫克定律(Hooke's Law)和背板理论(Plate Theory)来计算弹簧的刚度和荷载承受能力。
赫克定律描述了弹簧的变形与受力之间的关系,而背板理论描述了由直线弹簧产生的挤压力。
扭簧设计是另一种常见的弹簧设计类型。
扭簧主要用于承受扭转力矩。
扭簧的设计包括计算扭转刚度、扭转角度和最大扭矩。
扭簧的几何参数包括弹簧的材料特性、内外直径、线径和圈数等。
在弹簧设计的计算中,还需要考虑弹簧的安全系数。
安全系数是指弹簧能够承受的荷载与实际荷载之间的比值。
安全系数根据弹簧的应用和要求来确定。
通常,较高的安全系数将提高弹簧的可靠性和耐久性,但也会增加成本和重量。
总之,弹簧设计和计算是机械工程中重要的一个方面。
弹簧的设计和计算过程包括荷载分析、材料选择、直线弹簧和扭簧设计等步骤。
在进行设计和计算时,需要合理选择弹簧类型、材料和几何参数,并考虑安全系数,以确保弹簧的可靠性和耐久性。
弹簧设计标准尺寸规范表
弹簧设计标准尺寸规范表
弹簧是一种能够具有弹性变形并恢复原状的机械零件,广泛应用于机械、电子、汽车、家具等领域。
弹簧设计标准尺寸规范表是根据弹簧的用途和性能要求而制定的一种尺寸规范表,用于指导弹簧的设计和制造。
弹簧设计标准尺寸规范表通常包括以下内容:
1. 弹簧材料:指定弹簧所使用的材料,如钢丝、钛合金等。
材料的选择应根据弹簧的用途和工作环境来确定,以保证弹簧的强度和耐腐蚀性能。
2. 弹簧形状:给出不同弹簧类型的形状尺寸,如压缩弹簧、拉伸弹簧、扭转弹簧等。
形状尺寸包括弹簧的直径、长度、螺距、圈数等。
3. 弹簧刚度:指定弹簧的刚度系数,即单位长度弹簧所需的外力。
刚度系数的选择应根据弹簧的工作负载和变形要求来确定,以确保弹簧能够提供足够的弹力。
4. 弹簧荷载:给出弹簧的荷载范围,即允许的最大工作负荷和最小工作负荷。
工作负荷的选择应考虑弹簧的安全系数和寿命要求。
5. 弹簧表面处理:指定弹簧在制造过程中需要进行的表面处理,如热处理、电镀等。
表面处理的选择应根据弹簧的防腐蚀和表面光洁度要求来确定。
6. 弹簧检验和测试:给出弹簧的检验方法和测试要求,以确保弹簧的质量和性能符合标准要求。
弹簧设计标准尺寸规范表的制定旨在统一弹簧的设计和制造标准,确保弹簧的质量和性能符合工程要求。
制造商和设计师可以根据这些标准规范表来选择合适的弹簧尺寸和材料,并进行弹簧的设计和制造。
总之,弹簧设计标准尺寸规范表是一种重要的工程文件,对于弹簧的设计和制造起到了指导和标准化的作用。
它的使用可以提高弹簧的质量和性能,确保弹簧在工程中的安全和可靠性。
弹簧设计步骤详解
弹簧设计步骤详解弹簧是一种具有弹性变形的机械元件,广泛应用于各种机械装置和工具中。
弹簧可以存储和释放能量,具有稳定性和可控性,因此在设计过程中需要考虑多种因素。
下面是弹簧设计的详细步骤:1.确定需求:首先需要明确设计弹簧的目的和要求。
弹簧的类型和规格取决于应用的具体要求,包括载荷、位移、工作环境、寿命等。
2.材料选择:根据应用的需求和要求选择适当的材料。
常用的弹簧材料包括钢、不锈钢和合金等。
选择材料时需要考虑其力学性能、耐腐蚀性、热处理性以及成本等因素。
3.计算载荷和位移:根据应用中的负载和位移要求,计算所需的弹簧力和弹性变形。
这可以通过应力分析和位移-力关系来实现,通常使用胡克定律来进行计算。
4.确定弹簧类型:根据载荷和位移要求,选择合适的弹簧类型。
主要的弹簧类型包括扭簧、拉簧和压簧等。
每种类型的弹簧都有其特定的适用范围和性能。
5.确定尺寸和几何形状:根据弹簧类型和要求,确定合适的尺寸和几何形状。
在这个步骤中,需要考虑弹簧的直径、长度、线径、圈数等因素。
这些参数会直接影响弹簧的刚度、载荷和位移。
6.弹簧的松弛和预紧:考虑到弹簧在使用过程中的松弛和弯曲,需要对弹簧进行合适的预紧处理。
这样可以确保弹簧在工作时具有预期的弹性性能。
7.建立模型和进行强度分析:使用计算机辅助设计软件或类似工具,建立弹簧的三维模型,并进行强度分析。
这可以帮助设计师评估弹簧的强度、刚度和耐久性等方面的性能。
8.进行对比和优化:在设计过程中,可以通过多次迭代,对不同的设计方案进行对比和优化。
考虑到因素的权衡,选择最优的设计方案。
9.制造和检验:根据最终设计方案制造弹簧,并进行质量检验。
这包括检查弹簧的尺寸、线径、圈数等参数是否符合要求,以及进行弹簧的弹性性能测试。
10.耐久性和寿命评估:通过实验或理论分析,评估弹簧的耐久性和寿命。
这可以用来验证设计的可行性和可靠性。
总之,弹簧设计是一个复杂和多变的过程,需要综合考虑材料、载荷、位移、几何形状等多个因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
No.3 《中国重型装备》
September 2008 HEAVY MACHINERY scIEN E…AND TECHNOLOGY
较短弹簧的设计与选用
赵丽霞孙刚
(一重集团公司,黑龙江161042)
摘要:弹簧是电磁离合器的关键部件,本文详细介绍了62000N・m摩擦式安全离合器中的弹簧设计与选用。
关键词:电磁离合器;弹簧;设计
中图分类号:TM574.6 文献标识码:B
Design&Selection of the Shorter Spring
Zhao Lixia,Sun Gang
Abstract:Spring is a critical part of the electro—magnetic clutch.The paper introduces the design and selection of
the spring for 62000N・m friction type safety clutch in detail.
Key words:electromagnetic clutch;spring;design
1 设计分析
我厂为首钢设计的62 000 N・m摩擦式安全 离合器,是首钢替代德国进口的相同型号的离合 器。由于离合器的轴向、径向尺寸都很小,所以通 过我们计算需要选用推力大、轴向尺寸小的复位 圆柱螺旋弹簧。要满足离合器的性能要求,每件 弹簧的静载荷 ≥1 875 N,轴向高度H ̄<60 mm, 弹簧载荷变形量.厂≤18 am。 首钢摩擦式安全离合器见图1。 1一支撑底板2~内齿套3一外齿摩檫片4一内齿片 5一外齿轴套6一弹簧底座7一护圈8一弹簧 9~压力板10一锁紧螺母 图1 62 000 N・m摩擦式安全离合器 Figure 1 62 000 N・m friction type safety clutch 收稿日期:20o8—02—25 14 2弹簧计算 根据用户提供的扭矩值计算出离合器所需正
压力F=30 000 N,按16件弹簧选用,则
每件最大工作载荷:F =1 875 N
对应变形量:.厂=10 mm
极限变形量:. :17 mm
极限载荷:F;=3 187.5 N
选用60Si2Mn为弹簧钢丝材料,淬火温度为
870 ̄C,油淬,回火温度为480 ̄C。力学性能指标
为R =1 170 MPa,R =1 274 MPa,淬火硬度为
47~50HRC。
旋绕比C=D/d,C取4,弹簧钢丝取d=6
mm,故D=Cd=24。
许用切应力 =8kFC/.rrd =531 N(受静载
荷,故曲度系数k取1)
受轴向载荷F的变形量 =8FC n/Gd=10.2
mm(选有效圈5圈,支撑圈2圈)
式中切变模量G=78 400 MPa
3校核弹簧
校核弹簧钢丝d≥1.6(KFC/r) =6 mm
式中r为实验切应力 =0.45 R =573.3
MPa
校核有效圈: =Gd4f/8FD =4.998 5
经过各项校核计算,可满足设计需要条件:每
件工作载荷F1: Gd /8D 凡=1 874.25 N。
故最后确定弹簧工作图(见图2),弹簧钢丝
Q6 mm,材料60Si2Mn,有效圈数:5圈,支撑圈:2
圈,自由高度: =60mm,相应变形量:厂=10.2
(下转第18页)
维普资讯 http://www.cqvip.com
No.3 《中国重型装备》
September 2008 HEAVY MACHINERY SCIENCE AND TECHNOLOGY
接处的合力, huosai2表示两z向微调活塞杆铰
接处合力,G表示相关零部件及管片的总重力。
由于这三力在平衡时必须汇交于一点,根据力的 平衡原理可知,三力的方向如图8(b)所示。F—r、 F_huosai2的大小由/3角决定。t从0 s到6 s时, 值保持不变。对应 r、F_huosai2值不变,此时 F_r与重力G的方向相反,则重力完全由其承担, 为34 790 N,F_huosai2为0;t从6 S到25 S时, 由1 17.69。增大到180。,则F_huosai2值逐渐增大 到最大值12 841 N,而F_r则基本保持下降趋势; t从25 S到31.4 S时, 由180。增大到225.31。, 则F_huosai2减小,F—r增大,达到37 208 N;t从 31.4 S到49.4 S时,JB值保持不变,对应F—r、F— huosai2值不变;t从49.4 S到55.4 S时, 值又有 微小的增大,对应F_huosai2减小到11 293 N,F—r 增大到极大值38 267 N。 从整机典型工况各连接处的受力情况可以看 出,各零部件受力的最大值出现在z向旋转初调 工步中,径向伸、缩工步时受力情况稳定。由于整 机结构除在大齿圈、导向套处采用悬臂方式连接 外,其他连接均沿通过管片重心的铅垂面对称布 置,从各连接处受力图可以看出,其受载情况也基 本对称,满足设计尽量平均分配载荷的要求,提高 了结构强度。两组液压缸的受力情况几乎完全一 致,为实现对拼装机同步控制和液压系统设计提 供了有利依据。 2.3局部典型工况多刚体动力学仿真 2.3.1局部典型工况1 当整机典型工况在t=13.25 S时,经历此局 部典型工况,此时两径向活塞杆F—huosai达到最 大值21 456 N,此数值可作为径向伸缩油缸液压 系统设计的依据。 (上接第l4页) 一+”+”+”+”+一+”+”+“+一— “—。 图2 62 000 N・m摩擦式离合器弹簧 Figure 2 The spring for 62 000 N‘m friction type clutch 18 3.3.2局部典型工况2 局部典型工况仿真时间为48 S、480步。t从 0 s到6 s,处于径向提升工步,管片等的重心位置
变化不大,对应驱动转矩表现为近似水平线;t从
6 S到24 s,处于z向旋转初调工步,管片等零部
件的重心到大齿圈旋转重心距离在水平方向投
影,在旋转过程中按正弦规律变化,对应在t=
10.5 s处。由于重心与旋转重心在同一铅垂线
上,转矩为0,在t=24 S时,重心、旋转重心连线
与重力成90。夹角,转矩达到68 710 N・m;t从24
S到42 S,处于径向伸出工步,管片等的重心与旋
转中心的距离随时间线性增长,到42 S时增长到
9 502 N・m;t从42 S到48 S,处于z向旋转微调
工步,管片等的重心基本不变。对应转矩微小增
长到9 510 N・m。对比整机典型工况中小齿轮
最大驱动力矩8 021 N・m,局部典型工况下的驱
动转矩更大,此转矩应作为旋转机构的主要性能
参数之一。
3结束语
通过对管片拼装机整机和局部典型工况的多
体动力学分析,可以初步得出管片拼装过程中的
速度和加速度以及各典型工况中拼装机所承受的
最大转矩,从而为TBM后配套系统中管片拼装机
的设计开发提供一些关键参考数据。
参考文献
[1] 《岩石隧道掘进机(TBM)施工及工程实例》编委会.岩石隧
道掘进机(TBM)施工及工程实例[M].北京:中国铁道出
版社,2004.
[2] 陈立平,等.机械系统动力学分析及ADAMS应用教程
[M].清华大学出版社,2005.
责任编辑王丽娟
lnlTl,展开长L=530 mm,每件工作载荷F。=1 875 N。
62 000 N・m摩擦式安全离合器选16件弹
簧,承受最大载荷F=1 875×16=30 000 N
4结论
通过以上的理论分析和弹簧计算,得出此设
计弹簧有效圈数较少,弹簧高度仅为60 mm,而每
件弹簧却能承受工作载荷1 875 N,按l6件弹簧
计算,共承受最大载荷为30 000 N,符合62 000 N
・m摩擦式安全离合器产品需要传递大扭矩且弹
簧较短的设计要求。
责任编辑傅冬梅
维普资讯 http://www.cqvip.com