2011年甘肃省白银市中考数学试卷 2
西北5省自治区2011年中考数学试题分类解析专题(1-12)

西北5省自治区2011年中考数学专题3:方程(组)和不等式(组)一、选择题1. (宁夏自治区3分)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是A .⎩⎨⎧x +y =8,xy +18=yx .B .⎩⎨⎧x +y =8,x +10y +18=10x +y .C .⎩⎨⎧x +y =8,10x +y +18=yx .D .⎩⎨⎧x +y =8,10(x +y)+18=yx .【答案】B 。
【考点】由实际问题抽象出二元一次方程组(数字问题)。
【分析】设这个两位数的个位数字为x ,十位数字为y ,则两位数可表示为10y+x ,对调后的两位数为10x+y ,根据题中的两个数字之和为8及对调后的等量关系可列出方程组⎩⎨⎧x +y =8,x +10y +18=10x +y .故选B 。
2.(甘肃兰州4分)下列方程中是关于x 的一元二次方程的是A.2210x x+= B.20ax bx c ++= C. (1)(2)1x x -+= D.223250x xy y --=【答案】C 。
【考点】一元二次方程的定义。
【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数。
由这四个条件对四个选项进行验证,满足这四个条件者为正确答案:A 、2210x x +=不是整式方程,故本选项错误; B 、当a =0时,方程就不是一元二次方程,故本选项错误;C 、由原方程,得230x x +-=,符合一元二次方程的要求,故本选项正确; D 、方程223250x xy y --=中含有两个未知数;故本选项错误。
故选C 。
3.(甘肃兰州4分)用配方法解方程x 2﹣2x ﹣5=0时,原方程应变形为A 、(x+1)2=6B 、(x+2)2=9C 、(x ﹣1)2=6D 、(x ﹣2)2=9【答案】C 。
西北5省自治区2011年中考数学试题分类解析汇编 专题8 平面几何基础

西北5省自治区2011年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (甘肃天水4分)如图,将三角板的直角顶点放在两条平行线a、b中的直线b上,如果∠1=40°,则∠2的度数是A、30°B、45°C、40°D、50°【答案】D。
【考点】平行线的性质,平角的定义。
【分析】如图,∵a∥b,∠1=40°,∴∠3=∠1=40°(两直线平行,同位角相等)。
∵∠2+∠3+∠4=180°(平角的定义),∠4=90°,∴∠2=50°。
故选D。
2.(甘肃兰州4分)现给出下列四个命题:①无公共点的两圆必外离;②位似三角形是相似三角形;③菱形的面积等于两条对角线的积;④对角线相等的四边形是矩形.其中真命题的个数是A、1B、2C、3D、4【答案】A。
【考点】命题与定理,圆与圆的位置关系,位似变换,菱形的性质,矩形的判定。
【分析】根据真命题的定义逐个进行判断即可得出结果:①无公共点的两圆有可能外离,也有可能内含,故本选项错误;②位似三角形是相似三角形,故本选项正确;③菱形的面积等于两条对角线的积的一半,故本选项错误;④对角线相等的四边形是矩形,等腰梯形也可以,故本选项错误。
∴真命题的个数是1。
故选A。
3.(青海省3分)某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是A.1,3,5 B.1,2,3 C. 2,3,4 D.3,4,5【答案】C。
【考点】三角形三边关系。
【分析】根据三角形三边关系定理:①三角形两边之和大于第三边②三角形的两边差小于第三边求出第三边的取值范围,再找出范围内的整数即可:设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4。
故选C。
4.(新疆自治区、兵团5分)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于A.40°B.65°C.75° D.115°【答案】B。
2011-甘肃兰州中考数学

二、填空题(本题5小题,每小题4分,共20分。
) 16.(2011甘肃兰州,16,4分)如图,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度。
【答案】63°17.(2011甘肃兰州,17,4分)某水库大坝的横断面是梯形,坝内斜坡的坡度i =1度i =1∶1,则两个坡角的和为 。
【答案】75° 18.(2011甘肃兰州,18,4分)已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆作如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是 m 。
(结果用π表示)【答案】2π+5019.(2011甘肃兰州,19,4分)关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 。
【答案】x 1=-4,x 2=-1 20.(2011甘肃兰州,20,4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。
已知第一个矩形的面积为1,则第n 个矩形的面积为 。
【答案】114n - 三、解答题(本题8小题,共70分。
解答时写出必要的文字说明、证明过程或演算步骤。
) 21.(2011甘肃兰州,21,7分)已知α是锐角,且sin(α+15°1014cos ( 3.14)tan 3απα-⎛⎫--++ ⎪⎝⎭的值。
ODBCl……【答案】由sin(α+15°)=2得α=45° 原式=411332⨯-++= 22.(2011甘肃兰州,22,7分)如图,有A 、B 两个转盘,其中转盘A 被分成4等份,转盘B 被分成3等份,并在每一份内标上数字。
现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A 转盘指针指向的数字记为x ,B 转盘指针指向的数字记为y ,从而确定点P 的坐标为P (x ,y )。
初中数学甘肃省白银市中考模拟数学考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:3的相反数是()A.3 B.﹣3 C.D.﹣试题2:下列运算中,结果正确的是()A.4a﹣a=3a B.a10÷a2=a5C.a2+a3=a5D.a3•a4=a12试题3:下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()A.B.C.D.试题4:如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()评卷人得分A.B.C.D.试题5:如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°试题6:一元二次方程x2+x﹣2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定试题7:分式方程的解是()A.x=﹣2 B.x=1 C.x=2 D.x=3试题8:某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=48试题9:已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有()A.1个B.2个C.3个D.4个试题10:如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S 关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.试题11:分解因式:x2﹣9= (x+3)(x﹣3).试题12:不等式2x+9≥3(x+2)的正整数解是1,2,3 .试题13:等腰三角形的周长为16,其一边长为6,则另两边为6,4或5,5 .试题14:如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为 5 米.试题15:如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD .(答案不唯一,只需填一个)试题16:若代数式的值为零,则x= 3 .试题17:已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t= 2或0 .试题18:现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是﹣1或4 .试题19:计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.试题20:先化简,再求值:,其中x=﹣.试题21:两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)试题22:某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.试题23:如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1.(1)求反比例函数的解析式;(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.试题24:为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?试题25:在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200 名同学;(2)条形统计图中,m= 40 ,n= 60 ;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72 度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?试题26:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.试题27:如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.(1)若OC=5,AB=8,求tan∠BAC;(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.试题28:如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.试题1答案:考点:相反数.分析:根据相反数的意义,3的相反数即是在3的前面加负号.解答:解:根据相反数的概念及意义可知:3的相反数是﹣3.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.试题2答案:考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项、同底数幂的除法法则:底数不变,指数相减,同底数幂的乘法法则:底数不变,指数相加,可判断各选项.解答:解:A、4a﹣a=3a,故本选项正确;B、a10÷a2=a10﹣2=a8≠a5,故本选项错误;C、a2+a3≠a5,故本选项错误;D、根据a3•a4=a7,故a3•a4=a12本选项错误;故选A.点评:此题考查了同类项的合并,同底数幂的乘除法则,属于基础题,解答本题的关键是掌握每部分的运算法则,难度一般.试题3答案:考点:中心对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.解答:解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.点评:此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.试题4答案:考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.试题5答案:考点:平行线的性质.分析:根据两直线平行,内错角相等求出∠3,再求解即可.解答:解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选C.点评:本题考查了两直线平行,内错角相等的性质,是基础题,熟记性质是解题的关键.试题6答案:考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵a=1,b=1,c=﹣2,∴△=b2﹣4ac=1+8=9>0∴方程有两个不相等的实数根.故选A点评:本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.试题7答案:考点:解分式方程.分析:公分母为x(x+3),去括号,转化为整式方程求解,结果要检验.解答:解:去分母,得x+3=2x,解得x=3,当x=3时,x(x+3)≠0,所以,原方程的解为x=3,故选D.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,(2)解分式方程一定注意要验根.试题8答案:考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:三月份的营业额=一月份的营业额×(1+增长率)2,把相关数值代入即可.解答:解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故选D.点评:考查列一元二次方程;得到三月份的营业额的关系是解决本题的关键.试题9答案:考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,利用图象将x=1,﹣1,2代入函数解析式判断y的值,进而对所得结论进行判断.解答:解:①∵由函数图象开口向下可知,a<0,由函数的对称轴x=﹣<0,故b>0,所以2a﹣b<0,①正确;②∵a<0,对称轴在y轴左侧,a,b同号,图象与y轴交于负半轴,则c<0,故abc<0;②正确;③当x=1时,y=a+b+c<0,③正确;④当x=﹣1时,y=a﹣b+c<0,④错误;⑤当x=2时,y=4a+2b+c<0,⑤错误;故错误的有2个.故选:B.点评:此题主要考查了图象与二次函数系数之间的关系,将x=1,﹣1,2代入函数解析式判断y的值是解题关键.试题10答案:考点:动点问题的函数图象;多边形内角与外角;切线的性质;切线长定理;扇形面积的计算;锐角三角函数的定义.专题:计算题.分析:连接OB、OC、OA,求出∠BOC的度数,求出AB、AC的长,求出四边形OBAC和扇形OBC的面积,即可求出答案.解答:解:连接OB、OC、OA,∵圆O切AM于B,切AN于C,∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC∴∠BOC=360°﹣90°﹣90°﹣α=(180﹣α)°,∵AO平分∠MAN,∴∠BAO=∠CAO=α,AB=AC=,∴阴影部分的面积是:S四边形BACO﹣S扇形OBC=2×××r﹣=(﹣)r2,∵r>0,∴S与r之间是二次函数关系.故选C.点评:本题主要考查对切线的性质,切线长定理,三角形和扇形的面积,锐角三角函数的定义,四边形的内角和定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.试题11答案:考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.试题12答案:考点:一元一次不等式的整数解.专题:计算题.分析:先解不等式,求出其解集,再根据解集判断其正整数解.解答:解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.点评:本题考查了一元一次不等式的整数解,会解不等式是解题的关键.试题13答案:考点:等腰三角形的性质;三角形三边关系.分析:此题分为两种情况:6是等腰三角形的腰或6是等腰三角形的底边.然后进一步根据三角形的三边关系进行分析能否构成三角形.解答:解:当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理,故该等腰三角形的另两边为:6,4或5,5.故答案为:6,4或5,5.点评:本题考查了等腰三角形的性质,应从边的方面考查三角形,涉及分类讨论的思想方法,难度适中.试题14答案:考点:相似三角形的应用.分析:易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.解答:解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.试题15答案:考点:全等三角形的判定.专题:开放型.分析:可以添加条件AC=CD,再由条件∠BCE=∠ACD,可得∠ACB=∠DCE,再加上条件CB=EC,可根据SAS定理证明△ABC≌△DEC.解答:解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).点评:此题主要考查了考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.试题16答案:考点:分式的值为零的条件;解分式方程.专题:计算题.分析:由题意得=0,解分式方程即可得出答案.解答:解:由题意得,=0,解得:x=3,经检验的x=3是原方程的根.故答案为:3.点评:此题考查了分式值为0的条件,属于基础题,注意分式方程需要检验.试题17答案:考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况列出关于t的方程讨论求解.解答:解:∵⊙O1、⊙O2的半径分别是方程x2﹣4x+3=0的两根,解得⊙O1、⊙O2的半径分别是1和3.①当两圆外切时,圆心距O1O2=t+2=1+3=4,解得t=2;②当两圆内切时,圆心距O1O2=t+2=3﹣1=2,解得t=0.∴t为2或0.故答案为:2或0.点评:考查解一元二次方程﹣因式分解法和圆与圆的位置关系,同时考查综合应用能力及推理能力.注意:两圆相切,应考虑内切或外切两种情况是解本题的难点.试题18答案:考点:解一元二次方程-因式分解法.专题:新定义.分析:根据题中的新定义将所求式子转化为一元二次方程,求出一元二次方程的解即可得到x的值.解答:解:根据题中的新定义将x★2=6变形得:x2﹣3x+2=6,即x2﹣3x﹣4=0,因式分解得:(x﹣4)(x+1)=0,解得:x1=4,x2=﹣1,则实数x的值是﹣1或4.故答案为:﹣1或4点评:此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边变为积的形式,然后根据两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.试题19答案:考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:根据45°角的余弦等于,有理数的负整数指数次幂等于正整数指数次幂的倒数,二次根式的化简,任何非0数的0次幂等于1进行计算即可得解.解答:解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2﹣1,=+4﹣2﹣1,=3﹣.点评:本题考查了实数的运算,主要利用了特殊角的三角函数值,负整数指数幂,二次根式的化简,零指数幂,是基础运算题,注意运算符号的处理.试题20答案:考点:分式的化简求值.专题:计算题.分析:先通分计算括号里的,再把除法转化成乘法进行约分,最后把x的值代入计算即可.解答:解:原式=•=x﹣1,当x=﹣时,原式=﹣﹣1=﹣.点评:本题考查了分式的化简求值,解题的关键是注意把分式的分子、分母因式分解.试题21答案:考点:作图—应用与设计作图.分析:仔细分析题意,寻求问题的解决方案.到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.由于两条公路所夹角的角平分线有两条,因此点C有2个.解答:解:(1)作出线段AB的垂直平分线;(2)作出角的平分线(2条);它们的交点即为所求作的点C(2个).点评:本题借助实际场景,考查了几何基本作图的能力,考查了线段垂直平分线和角平分线的性质及应用.题中符合条件的点C 有2个,注意避免漏解.试题22答案:考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC﹣AB得解.解答:解:∵在Rt△ADB中,∠BDA=45°,AB=3米,∴DA=3米,在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=3.∴BC=CA﹣BA=(3﹣3)米.答:路况显示牌BC是(3﹣3)米.点评:此题主要考查了解直角三角形的应用,当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.试题23答案:考点:反比例函数与一次函数的交点问题.分析:(1)一次函数是完整的函数,把点A的纵坐标代入即可求得M的坐标;然后把A的坐标代入反比例函数解析式,即可求得反比例函数的解析式;(2)根据交点A的坐标,即可得到当x>0时,一次函数的值大于反比例函数的值的x的取值范围.解答:解:(1)点A在y=x﹣2上,∴1=x﹣2,解得x=6,把(6,1)代入得m=6×1=6.∴y=;(2)由图象得,当x>6时,一次函数的值大于反比例函数的值.点评:本题考查用待定系数法求函数解析式;注意:无论是求自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;同时要注意反比例函数的自变量不能取0.试题24答案:考点:游戏公平性;列表法与树状图法.分析:(1)首先根据题意列出表格或画出树状图,然后求得所有等可能的结果与甲得1分的情况,然后利用概率公式求解即可求得答案;(2)由(1)求得乙的得分,比较概率不相等,即可得这个游戏是不公平.解答:解:(1)列表得:1 2 3 41 ﹣1分1分0分2 1分﹣1分0分3 1分1分﹣0分4 0分0分0分﹣画树状图得:∴P(甲得1分)==(2)不公平.∵P(乙得1分)=∴P(甲得1分)≠P(乙得1分),∴不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.试题25答案:考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据艺术类读物所在扇形的圆心角是:×360°=72°;(3)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;解答:解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.点评:此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.试题26答案:考点:矩形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.解答:解:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.点评:本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.试题27答案:考点:切线的判定;勾股定理;垂径定理.专题:计算题.分析:(1)根据垂径定理由半径OC垂直于弦AB,AE=AB=4,再根据勾股定理计算出OE=3,则EC=2,然后在Rt△AEC中根据正切的定义可得到tan∠BAC的值;(2)根据垂径定理得到AC弧=BC弧,再利用圆周角定理可得到∠AOC=2∠BAC,由于∠DAC=∠BAC,所以∠AOC=∠BAD,利用∠AOC+∠OAE=90°即可得到∠BAD+∠OAE=90°,然后根据切线的判定方法得AD为⊙O的切线.解答:解:(1)∵半径OC垂直于弦AB,∴AE=BE=AB=4,在Rt△OAE中,OA=5,AE=4,∴OE==3,∴EC=OC﹣OE=5﹣3=2,在Rt△AEC中,AE=4,EC=2,∴tan∠BAC===;(2)AD与⊙O相切.理由如下:∵半径OC垂直于弦AB,∵AC弧=BC弧,∴∠AOC=2∠BAC,∵∠DAC=∠BAC,∴∠AOC=∠BAD,∵∠AOC+∠OAE=90°,∴∠BAD+∠OAE=90°,∴OA⊥AD,∴AD为⊙O的切线.点评:本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了勾股定理以及垂径定理、圆周角定理.试题28答案:考点:二次函数综合题.分析:(1)将原点坐标代入抛物线中即可求出k的值,也就得出了抛物线的解析式.(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可.(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P 点的坐标.求△POB的面积时,可先求出OB,OP的长度即可求出△BOP的面积.解答:解:①∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1,∴y=x2﹣3x,②假设存在点B,过点B做BD⊥x轴于点D,∵△AOB的面积等于6,∴AO•BD=6,当0=x2﹣3x,x(x﹣3)=0,解得:x=0或3,∴AO=3,∴BD=4即4=x2﹣3x,解得:x=4或x=﹣1(舍去).又∵顶点坐标为:( 1.5,﹣2.25).∵2.25<4,∴x轴下方不存在B点,∴点B的坐标为:(4,4);③∵点B的坐标为:(4,4),∴∠BOD=45°,BO==4,当∠POB=90°,∴∠POD=45°,设P点横坐标为:﹣x,则纵坐标为:x2﹣3x,即﹣x=x2﹣3x,解得x=2 或x=0,∴在抛物线上仅存在一点P (2,﹣2).∴OP==2,使∠POB=90°,∴△POB的面积为: PO•BO=×4×2=8.点评:本题考查了二次函数解析式的确定、函数图象交点、图象面积求法等知识.利用已知进行分类讨论得出符合要求点的坐标是解题关键.。
2024年甘肃省白银市中考数学真题试卷及答案解析

白银市2024年初中毕业升学暨高中阶段学校招生考试数学试卷考生注意:本试卷满分为150分,考试时间为120分钟.所有试题均在答题卡上作答,否则无效.一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.下列各数中,比2-小的数是()A.1-B.4-C.4D.12.如图所示,该几何体的主视图是()A. B. C. D.3.若55A ∠=︒,则A ∠的补角为()A.35︒B.45︒C.115︒D.125︒4.计算:4222a ba b a b -=--()A.2B.2a b -C.22a b - D.2a ba b--5.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60ABD ∠=︒,2AB =,则AC 的长为()A.6B.5C.4D.36.如图,点A ,B ,C 在O 上,AC OB ⊥,垂足为D ,若35A ∠=︒,则C ∠的度数是()A.20︒B.25︒C.30︒D.35︒7.如图1,“燕几”即宴几,是世界上最早的一套组合桌,由北宋进士黄伯思设计.全套“燕几”一共有七张桌子,包括两张长桌、两张中桌和三张小桌,每张桌面的宽都相等.七张桌面分开可组合成不同的图形.如图2给出了《燕几图》中名称为“回文”的桌面拼合方式,若设每张桌面的宽为x 尺,长桌的长为y 尺,则y 与x 的关系可以表示为()A.3y x =B.4y x =C.31y x =+D.41y x =+8.近年来,我国重视农村电子商务的发展.下面的统计图反映了2016—2023年中国农村网络零售额情况.根据统计图提供的信息,下列结论错误的是()A.2023年中国农村网络零售额最高B.2016年中国农村网络零售额最低C.2016—2023年,中国农村网络零售额持续增加D.从2020年开始,中国农村网络零售额突破20000亿元9.敦煌文书是华夏民族引以为傲的艺术瑰宝,其中敦煌《算经》中出现的《田积表》部分如图1所示,它以表格形式将矩形土地的面积直观展示,可迅速准确地查出边长10步到60步的矩形田地面积,极大地提高了农田面积的测量效率.如图2是复原的部分《田积表》,表中对田地的长和宽都用步来表示,A 区域表示的是长15步,宽16步的田地面积为一亩,用有序数对记为()15,16,那么有序数对记为()12,17对应的田地面积为()A.一亩八十步B.一亩二十步C.半亩七十八步D.半亩八十四步10.如图1,动点P 从菱形ABCD 的点A 出发,沿边AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.D.二、填空题:本大题共6小题,每小题4分,共24分.11.因式分解:228x -=________.12.已知一次函数24y x =-+,当自变量2x >时,函数y 的值可以是________(写出一个合理的值即可).13.定义一种新运算*,规定运算法则为:*n m n m mn =-(m ,n 均为整数,且0m ≠).例:32*32232=-⨯=,则(2)*2-=________.14.围棋起源于中国,古代称为“弈”.如图是两位同学的部分对弈图,轮到白方落子,观察棋盘,白方如果落子于点________的位置,则所得的对弈图是轴对称图形.(填写A ,B ,C ,D 中的一处即可,A ,B ,C ,D 位于棋盘的格点上)15.如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =-++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8mDE =的矩形,则可判定货车________完全停到车棚内(填“能”或“不能”).16.甘肃临夏砖雕是一种历史悠久的古建筑装饰艺术,是第一批国家级非物质文化遗产.如图1是一块扇面形的临夏砖雕作品,它的部分设计图如图2,其中扇形OBC 和扇形OAD 有相同的圆心O ,且圆心角100O ∠=︒,若120OA =cm ,60OB =cm ,则阴影部分的面积是______2cm .(结果用π表示)三、解答题:本大题共6小题,共46分.解答时,应写出必要的文字说明、证明过程或演算步骤.17..18.解不等式组:()223122x x x x ⎧-<+⎪⎨+<⎪⎩19.先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.20.马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .21.在一只不透明的布袋中,装有质地、大小均相同的四个小球,小球上分别标有数字1,2,3,4.甲乙两人玩摸球游戏,规则为:两人同时从袋中随机各摸出1个小球,若两球上的数字之和为奇数,则甲胜;若两球上的数字之和为偶数,则乙胜.(1)请用画树状图或列表的方法,求甲获胜的概率.(2)这个游戏规则对甲乙双方公平吗?请说明理由.22.习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)四、解答题:本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.在阳光中学运动会跳高比赛中,每位选手要进行五轮比赛,张老师对参加比赛的甲、乙、丙三位选手的得分(单位:分,满分10分)进行了数据的收集、整理和分析,信息如下:信息一:甲、丙两位选手的得分折线图:信息二:选手乙五轮比赛部分成绩:其中三个得分分别是9.0,8.9,8.3;信息三:甲、乙、丙三位选手五轮比赛得分的平均数、中位数数据如下:选手甲乙丙统计量平均数m9.18.9中位数9.29.0n根据以上信息,回答下列问题:(1)写出表中m ,n 的值:m =_______,n =_______;(2)从甲、丙两位选手的得分折线图中可知,选手_______发挥的稳定性更好(填“甲”或“丙”);(3)该校现准备推荐一位选手参加市级比赛,你认为应该推荐哪位选手,请说明理由.24.如图,在平面直角坐标系中,将函数y ax =的图象向上平移3个单位长度,得到一次函数y ax b =+的图象,与反比例函数()0k y x x=>的图象交于点()24A ,.过点()02B ,作x 轴的平行线分别交y ax b =+与()0k y x x =>的图象于C ,D 两点.(1)求一次函数y ax b =+和反比例函数k y x=的表达式;(2)连接AD ,求ACD 的面积.25.如图,AB 是O 的直径, BCBD =,点E 在AD 的延长线上,且ADC AEB ∠=∠.(1)求证:BE 是O 的切线;(2)当O 的半径为2,3BC =时,求tan AEB ∠的值.26.【模型建立】(1)如图1,已知ABE 和BCD △,AB BC ⊥,AB BC =,CD BD ⊥,AE BD ⊥.用等式写出线段AE ,DE ,CD 的数量关系,并说明理由.【模型应用】(2)如图2,在正方形ABCD 中,点E ,F 分别在对角线BD 和边CD 上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.【模型迁移】(3)如图3,在正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 的延长线上,AE EF ⊥,AE EF =.用等式写出线段BE ,AD ,DF 的数量关系,并说明理由.27.如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F落在抛物线上时,求点F的坐标;+的最小值.②如图3,连接BD,BF,求BD BF参考答案一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.【答案】B【解析】【分析】本题主要考查了有理数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大其值越小进行求解即可.-=>-=>-=,【详解】解;∵442211∴42114-<-<-<<,∴四个数中比2-小的数是4-,故选:B .2.【答案】C【解析】【分析】本题考查了简单几何体的三视图,根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到的图形是:故选:C .3.【答案】D【解析】【分析】根据和为180︒的两个角互为补角,计算即可.本题考查了补角,熟练掌握定义是解题的关键.【详解】55A ∠=︒。
甘肃省白银市中考数学试题(word版,含答案)

2018年甘肃省白银市中考数学试卷含解析一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(4分)使得代数式有意义的x的取值范围是.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A 地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
2022年甘肃白银市中考试卷及参考解析—数学
2022年甘肃白银市中考试卷及参考解析—数学(本试卷满分150分,考试时刻120分钟)一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个选项是符合题目要求的,将此选项的代号填入题后的括号内. 1.327=【 】A .3B .-3C .-2D .2 【答案】A 。
2.将如图所示的图案通过平移后能够得到的图案是【 】A .B .C .D .【答案】A 。
3.下列调查中,适合用普查(全面调查)方式的是【 】A .了解一批袋装食品是否含有防腐剂B .了解某班学生“50米跑”的成绩C .了解江苏卫视“非诚勿扰”节目的收视率D .了解一批灯泡的使用寿命 【答案】B 。
4.方程 2x 1x 1-=+的解是【 】A .x=±1B .x=1C .x=-1D .x=0 【答案】B 。
5.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是【 】A .B .C .D .【答案】D 。
6.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是【 】A.10吨B.9吨C.8吨D.7吨【答案】A。
7.如图,直线l1∥l2,则∠α为【】A.150°B.140°C.130°D.120°【答案】D。
8.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是【】A.m+3 B.m+6 C.2m+3 D.2m+6【答案】C。
9.二次函数2<时x的取值范畴是【】y ax bx c=++的图象如图所示,则函数值y0A.x1<-或x>3 <-B.x>3 C.-1<x<3 D.x1【答案】C。
10.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是【】A.B.C.D.【答案】A。
011年甘肃省兰州市中考数学试卷、答案及考点详解
实数的运算A 组一 选择题1.(2011上海市杨浦区中考模拟)两个连续的正整数的积一定是 ( ) (A)素数; (B)合数; (C)偶数; (D)奇数. 【答案】C2.(2011上海市杨浦区中考模拟)已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是 ( )(A)a b a b +=+; (B)a b a b +=-;(C)11b b +=+; (D)11a a +=+.【答案】D ;3、(2011双柏县中考模拟)下列运算正确的是( ) A .x 2+x 3=x 5 B . x ·x --1=0 C .(x -2)2=x 2-4 D . (x 2)3=x 6 【答案】D4、(2011双柏县中考模拟)若2(2)|3|0a b -++=,则2008()a b +的值是( ) A .0 B .1 C .-1 D .2008 【答案】B5. (2011杭州市余杭中考模拟) 设02a =,2(3)b =-,39c =-,11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是 A .c a d b <<< B .b d a c <<<C .a c d b <<<D .b c a d <<<【答案】A6. (2011杭州市余杭中考模拟) 如果一个数x 与2相乘的结果是有理数,则这个数x 的一般形式是 .(用代数式表示x【答案】2x a =(a 为有理数)或2ax =(a 为有理数) 7. (2011杭州市金山学校中考模拟)(根据初中教与学中考全程复习训练题改编)16的平方根是 ( ▲ )A. 4B. 2C. ±4D.±2 【答案】D8. (2011杭州市金山学校中考模拟)(根据初中教与学中考全程复习训练题改编)估算331-的值 ( ▲ )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间【答案】CO a b 19.(2011萧山区中考模拟)【原创】按100分制60分及格来算,满分是150分的及格分是( ) A 、60分 B 、72分 C 、90分 D 、105分 【答案】C10、 (2011萧山区中考模拟)【原创】下列哪一个数与方程1693=-x的根最接近( )A 、2B 、3C 、4D 、5 【答案】B11.(2011浙江金衢十一校联考)比1小2的数是 ( )A .-3B .-2C .-1D .0 【答案】C12.(南京市六合区2011年中考一模)14开平方的结果是( ▲ ) A.12- B.12C.12± D.116答案:C13.(南京市江宁区2011年中考一模)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(▲) A .3 B .6 C .200623 D .10033231003⨯+答案:A14. 在 ①2的平方根是 2 ;②2的平方根是±2 ;③2的立方根是32 ;④2的立方根是±32 中,正确的结论有( ▲ )个A .1个B .2个C .3个D .4个 答案:B15、(2011黄冈张榜中学模拟)下列运算正确的是( )A .()b a b a +=+--B .a a a =-2333C .01=+-aa D . 323211=⎪⎭⎫⎝⎛÷- 考查内容: 答案:D16、(2011年徐汇区诊断卷)下列运算正确的是( ▲ )A .224a a a +=; B .2a a =(a 为实数);x 21输出输入xx +3x 为偶数x 为奇数第2题C .a a a =÷23; D .()532a a =.考查内容: 答案:C二 填空题1.(2011上海市杨浦区中考模拟)将11032,8,(2)a b c π-=-==-从小到大排列,并用不等号连接: . 【答案】a <c <b2、(2011双柏县中考模拟)“惠农”超市1月份的营业额为16万元,3月份的营业额为36万元,则每月的平均增长率为 。
2011甘肃兰州中考数学
兰州市2011年初中毕业生学业考试试卷数 学(A )注意事项:1.全卷共150分,考试时间120分钟。
2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡的相应位置。
3.考生务必将答案直接填(涂)写在答题卡的相应位置。
一、选择题(本题15小题,每小题4分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.(2011甘肃兰州,1,4分)下列方程中是关于x 的一元二次方程的是A .2210x x+=B .20ax bx c ++= C .(1)(2)1x x -+=D .223250x xy y --=【答案】C 2.(2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为A .2y x=B .2y x=-C .12y x=D .12y x=-【答案】B 3.(2011甘肃兰州,3,4分)如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于点C ,若∠A=25°,则∠D 等于A .20°B .30°C .40°D .50°【答案】C 4.(2011甘肃兰州,4,4分)如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ’B ’,则tanB ’的值为A .12B .13C .14D.4ABDOC【答案】B5.(2011甘肃兰州,5,4分)抛物线221y x x =-+的顶点坐标是A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1) 【答案】A 6.(2011甘肃兰州,6,4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是A .B .C .D . 【答案】D 7.(2011甘肃兰州,7,4分)一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m 与n 的关系是A .m=3,n=5B .m=n=4C .m+n=4D .m+n=8 【答案】D 8.(2011甘肃兰州,8,4分)点M (-sin60°,cos60°)关于x 轴对称的点的坐标是 A .(2,12) B .(2-,12-)C .(2-,12) D .(12-,2-) 【答案】B9.(2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
甘肃省白银市中考一模数学考试试卷
甘肃省白银市中考一模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -2011的绝对值,相反数,倒数是()A . 2011,2011,-B . -2011,-2011,C . -2011,2011,-D . 2011,-2011,-2. (2分) (2019七上·榆树期中) 我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.数据130 000 000科学记数法可表示为()A . 1.3×109 .B . 1.3×108C . 13×107D . 1.3×1073. (2分)如图,在一水平面上摆放两个几何体,它的主视图是()A .B .C .D .4. (2分)在计算某一样本:12,16,-6,11,….(单位:℃)的方差时,小明按以下算式进行计算:S2=[(12−20)2+(16−20)2+(−6−20)2+(11−20)2+…] ,则计算式中数字15和20分别表示样本中的()A . 众数.中位数B . 方差.标准差C . 样本中数据的个数.平均数D . 样本中数据的个数.中位数5. (2分)将一元二次方程5x2﹣1=4x化成一般形式后,二次项系数和一次项系数分别为()A . 5,﹣1B . 5,4C . 5,﹣4D . 5x2 ,﹣4x6. (2分) (2020八上·温州月考) 若一等腰三角形的腰长为4 cm,腰上的高为2 cm,则等腰三角形的顶角为()A . 30°B . 150°C . 30°或150°D . 以上都不对7. (2分)(2018·舟山) 不等式1-x≥2的解在数轴上表示正确的是()A .B .C .D .8. (2分) (2016七上·高台期中) 在下列各组中,是同类项的是()A . 9a2x和9a2B . a2和2aC . 2a2b和3ab2D . 4x2y和﹣yx29. (2分)(2016·兰州) 如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A . 40°B . 45°C . 50°D . 60°10. (2分)若函数y=5x+1+m的图象不经过第二象限,则m的取值范围是()A . m≥-5B . m=-5C . m≤-5D . m<-5二、填空题 (共5题;共5分)11. (1分) (2016七上·射洪期中) 定义a★b=a2﹣b,则(0★1)★2016=________.12. (1分) (2019七下·龙岗期末) 如图,在中,已知,,,则的度数为________.13. (1分) (2016九上·岳池期末) 布袋中有红、黄、蓝三种不同颜色的球各一个,从中先摸出一个球,记录下颜色后不放回布袋,将布袋搅匀,再摸出一个球,这时摸出的两个球是“一红一黄”的概率为________.14. (1分) (2019九上·包河期中) 如图,在轴上方,平行于轴的直线与反比例函数和的图象分别交于两点,连接.若的面积为则 ________.15. (1分) (2020八下·镇江月考) 矩形的一个内角平分线把矩形一条边分成3 cm和5 cm两部分,则矩形的周长为________.三、解答题 (共8题;共76分)16. (5分) (2019八下·兴化月考) 先化简,再求值:,其中a2+a﹣1=0.17. (11分) (2017九上·慈溪期中) 若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形________“奇妙四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.求“奇妙四边形”ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”,作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.18. (10分) (2020八下·福州期中) 为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为________人,图①中的m的值为________,图①中“38号”所在的扇形的圆心角度数为________;(2)本次调查获取的样本数据的众数是________,中位数是________;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?19. (5分)如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 ).20. (10分)(2020·黄冈模拟) 如图,点在双曲线上,垂直轴,垂足为,点在上,平行于轴交曲线于点,直线与轴交于点,已知,点的坐标为 .(1)求该双曲线的解析式;(2)求的面积.21. (10分)(2019·青海模拟) 某公司计划购进甲、乙两种规格的电脑,若购买甲种电脑3台,乙种电脑2台,共需资金23000元;若购买甲种电脑4台,乙种电脑3台,共需资金32000元.(1)甲、乙两种电脑每台的价格分别是多少元;(2)若公司计划购进这两种规格的电脑共20台,其中甲种电脑的数量不少于乙种电脑的数量,公司至多能够提供购买电脑的资金92000元,请设计几种购买方案供这个公司选择.22. (10分)(2019·莆田模拟) 问题提出学习了全等三角形的判定方法(“SSS”“SAS”“ASA”“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.初步思考将问题用符号语言表示为:在△ABC和△DEF中,AC=DF , BC=EF ,∠ABC=∠DEF ,然后对∠ABC 进行分类,可分为“∠ABC是锐角、直角、钝角”三种情况进行探究.第一种情况:当∠ABC是锐角时,AB=DE不一定成立第二种情况:当∠ABC是直角时,根据“HL”,可得△ABC≌△DEF ,则AB=DE;第三种情况,当∠ABC是钝角时,则AB=DE .如图,在△ABC和△DEF中,AC=DF , BC=EF .∠ABC=∠DEF ,且∠ABC是钝角.求证:AB=DE;方法归纳化归是一种有效的数学思维方式,一般是将未解决的问题通过变换转化为已解决的问题,观察发现第三种情况可以转化为第二种情况,如图,过点C作CG⊥AB交延长线于点G .(1)在△DEF中用尺规作出DE边上的高FH ,不写作法,保留作图痕迹;(2)请你完成(1)中作图的基础上,加以证明AB=DE .23. (15分)(2017·遵义) 如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y= x+ .(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E 两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+ NB)的最小值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共76分)16-1、17-1、17-2、17-3、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年甘肃省张掖市初中毕业与升学学业考试(中考)试卷
数 学
亲爱的同学,三年的初中生活你已经学到了不少数学知识,眼前的试卷将给你一个展示的机会,相信自己!(本试卷满分为150分,考试时间为120分钟)
A 卷(满分100分)
一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,
请把正确的选项选出来.) 1.图中几何体的主视图是
2.下列运算中,计算结果正确的是
A .x 2·x 3=x 6
B .x 2n ÷x n -2=x n +
2
C .(2x 3)2=4x 9
D .x 3+x 3=x 6
3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是
4.多项式2a 2-4ab +2b 2分解因式的结果正确的是 A .2(a 2-2ab +b 2) B .2a (a -2b )+2b 2
C .2(a -b ) 2
D .(2a -2b ) 2
5.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°
6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率
是 A .12
B .13
C .14
D .1
7.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为
A .y =(x +1)2+4
B .y =(x -1)2+4
C .y =(x +1)2+2
D .y =(x -1)2+2
8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8 B .5 C .2 2 D .3
9.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是
A .13
B .12
C .34
D .1
10.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,
再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为
D .
C . B . A .
D .
正面
a b 1
A .6
B .4
C .2
D .1
二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.计算8-
1
2
=_ ▲ . 12.若x +y =3,xy =1,则x 2+y 2=_ ▲ .
13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,
利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )
14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕
地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .
15.如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +2
3x -5
,且点A 、B 到原点的距离相等.则x
=_ ▲ .
16.计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ .
17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_ ▲ .
(1)
(2)
D C
C
E
C
E
E
B D
18.如图,在梯形ABCD 中,
AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且
AE =2(AE <AD ),点P 是AC 上的动点,则PE +
PB 的最小值是_ ▲ .
三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程.
19.本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分)
Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值.
Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.
(2)经过点A 且平行于l 2的直线的解析式
20.已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD
是平行四边形吗?请说明理由.
C
B
A
E
D F B A
E
21.本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)
Ⅰ.爱养花的李先生为选择一个合适的时间去参观2011年西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题:
(1)5月10日至16日这一周中,参观人数最多的是日是_ ▲,有_ ▲万人,参观人数最少的是日是_ ▲,有_ ▲万人,中位数是_ ▲.
(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?
Ⅱ.如图在等腰Rt△OBA和Rt△BCD中,∠OBA=∠BCD=90°,点A和点C都在双曲线y=4
x(k>0)上,
求点D的坐标.
B卷(满分50分)
四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.)
22.(8分)如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A的坐标为(1,1).
(1)若将正方形ABCD绕点A顺时针方向旋转,点B到达点B1,点C到达点C1,点D到达点D1,求点
B1、C1、D1的坐标.
(2)若线段AC1的长度
..与点D1的横坐标
...的差.恰好是一元二次方程x
2+ax+1=0的一个根,求a的值.
23.(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图
(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.
24.(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择
一种型号的电脑.
(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A
型号电脑被选中的概率是多少?
(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不
能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?
甲 乙
型号 A B C D E 单价(元/台)
6000
4000
2500
5000
2000
25.(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC 的外
接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =9
2,BQ =32.
(1)求⊙O 的半径;
(2)若DE =3
5
,求四边形ACEB 的周长.
26.(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O 为原点,
OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.
第220
题
A
A
B
(1)
A
D
E G
F
(2)
(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.。