煤制天然气技术对比
煤制天然气项目工艺选择对比

中国科技期刊数据库 工业A2015年18期 197煤制天然气项目工艺选择对比仵彦钊新疆广汇新能源有限公司,新疆 哈密 839303摘要:煤气化工艺有十几种,在工业上大量采用的也就是几种,可分为固定床、流化床、气流床三种类型。
煤制天然气项目可供选择的气化工艺有GSP 、Texcao 、Shell 干粉煤、Lurgi 碎煤固定床干法排灰压力气化。
本文就此三种气化工艺进行了对比分析,结果表明煤制气项目选用碎煤加压气化非常合适。
关键词:煤制天然气;气化工艺;对比 中图分类号:TQ546 文献标识码:A 文章编号:1671-5799(2015)18-0197-011 煤气化工艺对比研究煤气化工艺选择原则是:(1)根据煤质选择相适应的煤气化工艺;(2)根据煤气加工的产品及用途选择煤气化工艺;(3)装置规模的大型化。
煤制天然气项目可供选择的气化工艺有GSP 、Texcao 、Shell 干粉煤、Lurgi 碎煤固定床干法排灰压力气化。
为此对GSP 、Lurgi 、Shell 三种气化工艺进行详细的比较如下:(1)三种煤气化工艺在消耗指标上,消耗高水份原料煤基本一样,差别最大的是氧气消耗原料煤Shell 、GSP 气化是碎煤加压气化2.9倍。
(2)包括焦油等副产品在内,三种气化工艺的碳转化率、气化效率、气化热效率基本一样。
(3)三种煤气化投资相差很大。
采用碎煤加压气化工艺合成天然气与采用Shell 、GSP 煤气化工艺合成天然气相比,变换、低温甲醇洗净化装置、甲烷化装置等后系统的处理量大大减少,消耗、投资大大降低。
2 煤制天然气项目气化工艺选择对于天然气为目标产品的煤化工项目,采用碎煤加压气化工艺与Texcao 气化工艺有以下优点:(1)项目的投资增加:①备煤工段的投资与能耗增加5倍以上。
②空分的的投资与能耗增加3倍以上。
③变换、甲烷化工段的投资与能耗增加1.5倍以上。
(2)副产品减少:众所周知碎煤加压气化工艺在气化过程中生成大量的煤焦油、石脑油、粗酚、液氨。
煤制天然气

煤制天然气煤制天然气通常指采用已开采原煤,经过气化工艺来制造合成天然气(Synthetic Natural Gas, SNG)。
用褐煤等低品质煤种制取甲烷(即天然气主要成分)气体,可利用现有和未来建设的天然气管网进行输送。
煤制天然气的耗水量在煤化工行业中是相对较少,而转化效率又相对较高,因此,与耗水量较大的煤制油相比具有明显的优势。
此外,煤制天然气过程中利用的水中不存在污染物质,对环境的影响也较小。
生产工艺煤制天然气的工艺可分为煤气化转化技术和直接合成天然气技术。
两者的区别主要在于煤气化转化技术先将原料煤加压气化,由于气化得到的合成气达不到甲烷化的要求,因此需要经过气体转换单元提高H2/CO 比再进行甲烷化(有些工艺将气体转换单元和甲烷化单元合并为一个部分同时进行)。
直接合成天然气技术则可以直接制得可用的天然气。
煤气化转化技术可分为较为传统的两步法甲烷化工艺和将气体转换单元和甲烷化单元合并为一个部分同时进行的一步法甲烷化工艺。
直接合成天然气的技术主要有催化气化工艺和加氢气化工艺。
其中催化气化工艺是一种利用催化剂在加压流化气化炉中一步合成煤基天然气的技术。
加氢化工艺是将煤粉和氢气均匀混合后加热,直接生产富氢气体。
制作流程煤制天然气整个生产工艺流程可简述为:原料煤在煤气化装置中与空分装置来的高纯氧气和中压蒸汽进行反应制得粗煤气;粗煤气经耐硫耐油变换冷却和低温甲醇洗装置脱硫脱碳后,制成所需的净煤气;从净化装置产生富含硫化氢的酸性气体送至克劳斯硫回收和氨法脱硫装置进行处理,生产出硫磺;净化气进入甲烷化装置合成甲烷,生产出优质的天然气;煤气水中有害杂质通过酚氨回收装置处理、废水经物化处理、生化处理、深度处理及部分膜处理后,废水得以回收利用;除主产品天然气外,在工艺装置中同时副产石脑油、焦油、粗酚、硫磺等副产品。
主工艺生产装置包括空分、碎煤加压气化炉;耐硫耐油变换;气体净化装置;甲烷化合成装置及废水处理装置。
煤制气甲烷化技术对比及研究进展综述

煤制气甲烷化技术对比及研究进展综述摘要:近些年,随着环境承载力的日益减弱,环保压力逐渐增大,同时,各大城市的公共交通相继开展煤改气、油改气工程,对天然气需求量激增,适度发展煤制气项目,开发和储备一批煤制气技术,对于保障能源安全、对外议价等均具有举足轻重的作用。
基于此,本文主要对煤制气甲烷化技术对比及研究进展进行分析。
关键词:煤制气甲烷化;技术对比;研究进展1、甲烷化技术的起源氨合成工业中,由于CO和CO2的氧元素会使氨合成铁催化剂中毒,在合成气进氨合成前需将微量的CO和CO2脱除,脱除方法有液氮洗和微量甲烷化两种方法。
微量甲烷化技术是利用合成气中少量CO和CO2与H2反应转化为CH4,使合成气中CO+CO2小于10mg/m3。
由于微量甲烷化催化剂使用温区较窄(300~450℃),且甲烷化反应放热很大,为防止催化剂床层超温,进微量甲烷化反应器的CO+CO2含量要求不大于0.8%,同时,为防止微量甲烷化镍基催化剂中毒,合成气中要求硫含量小于0.1mg/m3,氯含量小于0.01mg/m3。
由于上述适用条件的限制,使得该催化剂无法在大量甲烷化装置上使用。
2、现有甲烷化技术的对比2.1 Davy甲烷化技术CRG技术最初由英国燃气公司在20世纪60年代末、70年代初开发,20世纪90年代Davy公司获得了CRG技术对外转让许可的专有权,并进一步开发、整合、完善成现在的CRG技术。
Davy甲烷化工艺前两级反应器为串并联的高温反应器,新鲜气一部分与循环气混合进一级反应器,一部分直接进二级反应器。
二级反应器出口的气体部分经循环气压缩机返回一级反应器入口。
在两级高温甲烷化反应器之后,设置多个补充甲烷化反应器。
其具体数量根据原料气成分及对合成天然气中甲烷、CO和H2含量的要求确定。
反应压力3.0~6.0MPa(g),催化剂可在230~700℃使用,副产高压或中压过热蒸汽。
2.2 Tops∮e甲烷化技术Tops∮e甲烷化工艺原料气经脱硫槽深度脱硫和脱氯,与循环气混合后进入GCC反应器,在此反应器内发生CO与H2O反应生成CO2和H2的反应,CO的浓度显著降低,然后进入高温甲烷化反应器。
【技术】煤制天然气四种气化技术选型探讨

【技术】煤制天然气四种气化技术选型探讨以煤为原料生产化工产品的煤气化技术很多,按照气固相之间相接触的方式不同,可将煤气化工艺分为三类,分别有固定床气化、气流床气化和流化床气化工艺。
自20世纪50年代加压煤气化技术实现工业化以来,随着科技的发展,煤气化技术也日趋先进和成熟。
目前已成功开发了煤种适应性广、气化压力高、生产能力大、气化效率高、污染少的多种新一代煤气化工艺。
煤气化技术的选择,必须根据项目所在地的原料特性、技术风险、投资、能耗进行综合比较,通过企业自己的实力与产品定位,通盘考虑、审慎决策。
总之,没有最好的气化方案,只有最适合的气化方案。
选择成熟、合理的气化方案必将产生更大的经济、环保与节能减排效益。
本文选取具有代表性的、工艺成熟、应用广泛的气流床和固定床气化技术:Shell方案、提质+E-gas方案、碎煤加压气化方案以及碎煤熔渣加压气化(BGL)方案,重点从原料适应性、气化规模、技术可靠性、投资及能耗方面进行分析论证,选择合适的煤气化技术方案,以提高项目的技术可靠性、经济性,降低投资风险。
1原料煤适应性比较不同的煤气化工艺要求有不同煤种特性。
项目拟使用的煤种性质见下表。
不同煤种有不同的适应工艺。
从上表可以看出,原料煤全水和内水含量较高,煤种特性为灰分适中(空气干燥基灰含量为15.36%,质量分数)、灰熔点较低(流动温度1220℃)。
①Shell气化方案对煤质的适应性较广,本项目的灰含量为15.36%,对采用膜式水冷壁的气化炉来说较为有利。
②E-gas水煤浆气化要求原煤成浆性指标D≤10,根据煤炭成浆性计算得到其收到基原煤成浆性指标,属于较难成浆的煤种。
如采用水煤浆气化,可先对原料煤进行提质干燥,得到的半焦产品制得水煤浆的浓度为63%。
③碎煤加压气化供煤条件较苛刻,要求块煤以5~50mm的粒度进料,一般要求热稳定性≥70%,黏结指数≤4。
综上所述,从各气化工艺的要求的煤质来看,除了E-GAS水煤浆气化须采用褐煤提质满足成浆性要求,其他气化工艺均适应该煤种。
国内外煤制天然气技术研发现状

国内外煤制天然气技术研发现状目录一、前言 (2)二、国内外煤制天然气技术研发现状 (3)三、主要煤制天然气生产国分析 (7)四、煤制天然气在工业和民用市场的应用 (12)五、煤制天然气的能源市场需求分析 (17)六、绿色环保与碳减排趋势 (20)七、结语总结 (24)一、前言声明:本文内容来源于公开渠道或根据行业大模型生成,对文中内容的准确性不作任何保证。
本文内容仅供参考,不构成相关领域的建议和依据。
传统的煤炭燃烧不仅产生大量的二氧化碳,还会释放大量的硫化物(SOx)和氮氧化物(NOx),这些物质是造成酸雨和城市雾霾的主要源头。
煤制天然气通过煤气化过程,在转化过程中去除了大部分的硫和氮,因此其合成气体在燃烧时产生的SOx和NOx排放显著低于煤炭直接燃烧。
这一特点有助于减少空气污染,改善空气质量。
催化剂和反应器技术的进步是提升煤制天然气生产效率和产品质量的关键因素。
新型催化剂的开发使得煤气化过程中天然气合成反应的效率得到提高,反应器设计的优化则进一步降低了设备的能耗和运行成本。
催化剂的耐高温、耐腐蚀性能也有了显著提高,增加了煤制天然气生产的经济性和可持续性。
由于煤炭资源相对分布广泛且储量丰富,煤制天然气能够提供长期稳定的能源供应。
在全球能源结构转型的背景下,传统化石能源如石油、天然气等面临日益枯竭的风险,而煤炭资源作为一种相对稳定且可持续的能源资源,能够为煤制天然气技术提供源源不断的原料支持。
因此,煤制天然气在长期内能够为国家提供稳定的能源供应,减少能源供应中断的风险。
尽管煤制天然气的市场需求在短期内呈现增长趋势,但未来需求受全球能源政策、国际市场波动等因素的影响较大。
例如,天然气价格的波动、可再生能源的快速发展等都可能影响煤制天然气的市场需求。
环保压力的增大也可能影响煤制天然气生产企业的生产模式和产品定价。
截至2023年底,中国煤制天然气年产能已经突破XX亿立方米,煤制天然气的年产量预计将在2025年达到XX亿立方米。
关于煤制天然气工艺的比较

关于煤制天然气工艺的比较我要打印 IE收藏放入公文包我要留言查看留言来源:其他添加人:admin 添加时间:2011-4-16 11:55:001煤制天然气的开发状况1.1国外煤制天然气的开发状况煤制天然气的核心技术除气化技术以外,还有甲烷化技术,气化技术已经非常成熟,甲烷化技术是在煤气化的基础上,进行煤气甲烷化,鲁奇公司、沙索公司在两个半工业化实验厂上进行考察认为煤气进行甲烷化,可制取合格的代用天然气。
在国外,美国大平原煤气化厂已投产,它是世界上第一座由煤气化经甲烷化合成高热值煤气的大型商业化工厂。
第1期工程的设计能力为日产代用天然气3890km3(相当于日产原油20k桶),于1980年7月破土动工,1984年4月完工并投入试运转,1984年7月28日生产出首批代用天然气并送入美国的天然气管网。
丹麦的托普索公司近期也推出了煤制天然气技术,该技术采用托普索自己的专用催化剂。
据声称,该公司的煤制天然气技术已经应用在美国伊利诺斯州杰斐逊的1个煤气化工厂,这个煤气化工厂将于2010年投入运行,届时每年可将约4000kt煤炭转化为天然气。
1.2国内煤制天然气的开发状况在80年代,国内开始开展“水煤气甲烷化技术生产城镇燃气的研究”,“城市煤气甲烷化”的研究,当时主要用来解决城市煤气热值问题,承担这个课题的单位有:中国科学院大连化物所、中国科技大学、西北化工研究所、华东理工大学、煤炭部北京煤化所,沈阳煤气化所,经过多年的科技攻关,取得了生产中热值城市煤气的系列煤气甲烷化技术。
即:常压水煤气甲烷化技术、耐硫甲烷化技术,并达到世界先进水平。
并利用常压水煤气甲烷化技术建厂10多座,其精脱硫催化剂、脱氧剂和常压甲烷化催化剂成为国家级新产品,甲烷化催化剂获优秀发明专利一项、国家发明三等奖、中科院科技进步一等奖、省市级奖3项;精脱硫剂获优秀专利1项,国家发明二等奖1项,脱氧剂发明专利一项,获辽宁省科技进步二等奖。
后因出现价格相对低廉的液化气,天然气,取代了城市煤气,常压水煤气的生产厂纷纷被迫停产,此项技术渐渐淡出人们的视线。
煤制天然气技术现状
煤制天然气技术现状随着全球能源结构的多元化和清洁化发展,煤制天然气技术逐渐成为一种重要的能源转化方式。
煤制天然气是以煤为原料,通过化学反应和一系列工艺过程生产出甲烷气体的过程,对于缓解天然气供需矛盾,提高能源利用效率和降低环境污染具有重要意义。
本文将详细分析煤制天然气技术的现状和发展前景。
一、煤制天然气技术现状煤制天然气技术主要包括煤浆气化、净化、甲烷化等工艺环节。
目前,国内外已有多个煤制天然气生产基地,主要以国内大型煤炭企业和外资企业为主导。
由于技术成熟度和设备采购等方面的原因,国内煤制天然气生产成本较高,但随着企业技术改造和设备更新,生产效率不断提升,成本也在逐渐降低。
从市场需求来看,煤制天然气市场仍具有较大的发展空间。
随着环保政策的加强和天然气消费量的增长,天然气供应压力逐渐增大。
煤制天然气作为补充天然气供应不足的重要途径,市场需求稳步增长,未来市场前景广阔。
二、煤制天然气技术前景1、技术发展潜力随着科技的不断进步,煤制天然气技术将不断提高,生产成本将进一步降低。
同时,各种新型煤制天然气工艺技术的开发和应用,如煤气化联合循环、甲烷化催化剂等也将进一步提高煤制天然气的生产效率和质量。
2、技术趋势未来煤制天然气技术将更加注重环保和能效。
新型煤制天然气技术将采用更环保的工艺流程和高效节能设备,以降低污染物排放和提高能源利用效率。
此外,智能化和自动化技术的应用也将进一步推动煤制天然气产业的发展。
3、面临的挑战煤制天然气技术发展仍面临诸多挑战,如设备国产化率低、投资成本高、生产过程中产生的废水废气等环境问题等。
此外,随着新能源技术的发展,煤制天然气的竞争力也将面临严峻考验。
因此,企业需要加大科技研发投入,积极推动设备国产化和工艺流程优化,以降低生产成本和提高市场竞争力。
三、重点问题研究1、投资成本高煤制天然气项目投资成本较高,主要源于设备购置和管道建设等方面。
为降低投资成本,企业应加强设备国产化和模块化建设,提高设备利用率和减少浪费。
煤气化技术应用于煤制天然气比较与选择
蒸汽 消耗 同产化
高
高
副产蒸汽
最分 殳 需引进设 备 全部同产 全部国产 备需 引进 备 需引进 相 对较多 化 化
煤制天然 气装
置总投 资
低
较高
最高
高
低
低
( 2 ) 技术成熟先进性 。S h e l l 技术在 国内运行多年 , 运行 成 熟可靠。MK + 鲁奇在 MK V基础上升级 的炉型 , 技术先进 , 但在 国内还没有实 际运行经验。航 天炉 1 5 0 0 t 级的炉型 已在 国内开
图1 间 接 甲烷 化 流 程 示 意 图 主要 由 4个 工 艺 过 程 组 成 : 煤气 化 、 变换 、 净化 、 甲烷化。
气化煤 种
褐煤到无烟
煤
褐煤到
无娴煤 2 0 — 6 0
9o 。~1 05 0
褐煤到 褐 煤到 无
无烟煤 2 0 - 4 0 l 3 0 0 ~
3 o o 0
氧气 f煤粉
2 ㈣
氧气 干煤粉
l 5 0 0
氧 C 十煤粉
2 2开 2备 高
9开 1 备 高
6开 低
8开 低
1 0开 1备 低
1 0 低
合成气 中甲烷
含量组 分
图 2 直 接 甲烷 化 流 程 示 意 图 直接 甲烷化 的优势在于不需要空分单元 .因此有较 少的
废水排 放
氧耗
多
少
多
最 少
少
少
少
多
少
多
少
最多
能量损失 以及较低的投资 。 麻省理工通过实验测得其能量转换 效 率能达到 7 0 %, 而且随着催 化剂 的发展能效还能提高l 】 1 . 此项 技术 目前处于在实验 阶段 , 还未工业化。 2 煤气化技术发展现状与不 同技术比较 2 . 1 煤气化技术发展现状 国外煤气 化技术起 步于 1 7 8 0年 .至今 已有 2 0 0多 年历
煤制天然气与传统能源的比较与优劣势分析
煤制天然气与传统能源的比较与优劣势分析在讨论煤制天然气与传统能源的比较与优劣势分析之前,我们需要了解它们各自的定义和特点。
煤制天然气是一种通过将煤转化为天然气的过程来获得能源的方法,而传统能源则包括煤炭、石油和天然气等自然资源。
接下来将从环境影响、经济效益和可持续性等方面对两者进行比较分析。
首先,从环境影响方面来看,煤制天然气相对于传统能源有着更低的碳排放量。
传统能源的开采和利用过程中释放的大量二氧化碳等温室气体是主要的环境污染源,而煤制天然气生产过程中的碳排放较低,同时也减少了对煤矿资源的开采压力。
然而,煤制天然气的生产过程仍然会释放一定量的二氧化碳,以及其他一些污染物质,因此在环境保护方面仍需进一步改进技术。
其次,从经济效益角度来看,煤制天然气具有一定的优势。
煤炭资源相对丰富,而且价格相对稳定,因此通过煤制天然气可以降低对进口能源的依赖,提高能源安全性。
此外,煤制天然气技术的不断发展也使得其生产成本逐渐降低,从而提升了其竞争力。
最后,从可持续性角度来看,煤制天然气在一定程度上能够满足能源需求的持续性。
煤炭作为一种可再生能源,其资源储量相对较大,可以满足长期的能源需求。
而且,随着技术的不断进步,煤制天然气的生产过程也变得更加高效,从而更好地保障了能源供应的可持续性。
综上所述,煤制天然气相较于传统能源在环境友好性、经济效益和可持续性方面具有一定的优势。
然而,煤制天然气仍然面临着技术改进和环境治理等方面的挑战,需要政府、企业和社会各界共同努力,推动其持续发展并最大程度地发挥其优势。
煤制天然气
煤制天然气
煤制天然气就是煤经过气化产生合成气,再经过甲烷化处理,生产热值大于8000 kcal/m3的代用天然气(SNG)。
有关煤化工专家认为,煤制天然气与煤制其他能源产品相比,竞争优势十分明显。
首先,体现在煤制天然气工艺流程简单,技术成熟、可靠;消耗低,投资省。
甲烷合成可以在煤气化压力下合成,与生产甲醇、二甲醚相比,省去了多个环节,与煤制合成油相比省去的装置更多。
其次,单位热值投资成本低,总热效率最高。
第三,煤制天然气转化率和选择性高,CO和H2的转化率接近100%。
第四,是煤制天然气废热利用率高,合成天然气废热副产的过热蒸汽可以用于本装置透平循环机空分空压机,能产生较好的经济效益。
此外,煤制天然气更环保,废水不含有害物,易于利用,不需处理就可做锅炉给水或循环水补充水,而煤制甲醇、合成油需对废水做深度处理。
专家还建议,实现煤制天然气和甲醇、二甲醚、氨等联产,经济效益更好,抗风险能力更强。
煤制天然气是最清洁的民用燃气和工艺燃料,也是机动车汽油的最佳替代品,具有热值高、环保性能好、廉价等优点。
在煤炭丰富地坑口转化后,可用管道输送到消费市场,大大降低运输成本,缓解交通运输压力,显现出一定的市场竞争力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PROCESSES FOR CONVERSION OF COAL TOSUBSTITUTE NATURAL GAS (SNG)HCE, LLCJanuary 2005HCEI-1-05-1Because the increasing demand for natural gas (methane) in the United States and the limited domestic supply, foreign natural gas imports have grown and the cost has risen to a value between $6 and $9 / MSCF. Unconventional sources such as coal bedded methane (CBM) are increasing in supply importance. A singularly large indigenous energy resource in the United States is coal. It therefore becomes prudent to examine the technology and economics of processes for conversion of coal to substitute natural gas (SNG), which would open another source of supply for methane. Table 0 lists important reasons for converting U.S. coal to SNG.There are at least 5 process methods for conversion of coal to SNG.Gasification1. Steam-Oxygen2. Catalytic Steam Gasification3. HydrogasificationGasificationSteam-Oxygen4. UndergroundHydrogasification5. Underground1. Steam-Oxygen GasificationFig.1 shows a process flow sheet and Table 1 gives the process chemistry, mass balance and energy balance for the steam-oxygen gasification process. This process is demonstrated in the North Dakota Gasification Plant in Beulah, North Dakota, where approximately 20,000 T/D of lignite is converted to 120 x 106 SCF of methane (SNG). The calculated thermal efficiency based on data in the Table indicates a thermal efficiency of 61.9% for conversion of the heating value of lignite to the heating value of the methane produced. The capital investment for theplant is high because of the need for an air liquefaction plant, a steam-oxygen coal gasifier, and a catalytic methanator.It is estimated that the capital investment is of the order of $6,250 / MSCF/D of methane produced, determined by updating the North Dakota plant investment. For estimating the production cost, the financial factors used previously (HCEI-11-04-2) are adopted here.Production Cost based on $12 / ton lignite = $0.73 / MMBTU and Thermal Efficiency =61.9% is calculated as follows:Factor Calculation $ / MSCFLignite = 0.73 / 0.619 = 1.18Fixed Charges = (0.20 x 6250) / (0.8 x 365) = 4.28O&M = 0.15 x 4.28 = 0.64Production Cost 6.102. Catalytic Steam GasificationFIG.2 shows a process flow sheet and table 2 gives the process chemistry and mass and energy balance for catalytic steam gasification of lignite. The process was originally developed by Exxon in the 1970s. The catalyst is potassium carbonate used in large quantities, amounting to about 20% by weight of the feedstock, which combines with the coal ash, and has to be separated and recovered from the alumina and silica in the ash. It is estimated that the energy requirement for the recovery process is equivalent to 0.05 moles CH4 per mole of lignite. Catalytic gasification requires less energy input to the gasifier than steam-oxygen gasification and the methane is produced directly. There is no requirement for an oxygen plant and a methanator. The capital investment would, therefore, be about 75% of the investment in the steam-oxygen gasification plant, which results in a capital investment of $4,688 / MSCF per day. The catalyst cost assumes that 1% of the weight of the coal carrying 20% catalyst is lost and has to be replace at $500 / ton of K2CO3.Production Cost Based On $12 per ton lignite = $0.73 / MMBTU and thermal efficiency = 71.4%Factor Calculation $ / MSCFLignite = 0.73 / 0.714 = 1.02Fixed Charges = (0.20 x 4688) / (0.8 x 365) = 3.21O&M = 0.15 x 3.21 = 0.48Cost of Catalyst = 0.41Production Cost 5.123. HydrogasificationFIG. 3 shows the process flow sheet and Table 3 gives the mass balance and energy balance for the hydrogasification of lignite to produce substitute natural gas (SNG). The main feature of this process is that the hydrogasification is exothermic, which makes the process thermally energy efficient. The main problem is the necessity of making up for the deficiency of hydrogen by reforming part of the methane produced in the hydrogasifier.The thermal efficiency of the process is 79.6%, which is 30% higher than the steam-oxygen gasification.It is estimated that the capital investment for this plant is 75% of that of the steam-oxygen plant - $4,688 / MSCF per day, about the same as the catalytic gasification process.Production cost estimate is based on $12 / ton lignite = $0.73 / MMBTU:Factor Calculation $ / MSCFLignite = 0.73 / 0.796 = 0.92Fixed Charges = (0.20 x 4688) / (0.8 x 365) = 3.21O&M = 0.15 x 3.21 = 0.48Production Cost 4.61The estimated production cost is 25% lower than the steam-oxygen gasification plant and 10% lower than for the catalytic gasification plant.4. Underground Steam-Oxygen Gasification of Coal (UCG)This process is the same as the above-ground steam-oxygen gasification of coal with the exception that two boreholes are drilled into a coal seam: one is an injection borehole and the other is an extraction borehole. Fracturing the coal seam between the boreholes is accomplished by explosives or hydraulic pressure to provide a path for the steam and oxygen between the injection and extraction boreholes. The oxygen permits burning the coal, which creates the temperature and pressure and provides the energy for the steam to endothermically react with the coal in the seam. Oxygen instead of air avoids dilution of the gases with nitrogen.The gasification reaction produces carbon monoxide and hydrogen synthesis gas. The sulfur and nitrogen in the coal are converted to H2S and NH3, which are extracted with the synthesis gas. Above ground, the sulfur and nitrogen compounds and any entrained coal or ash particulates are removed using hot gas cleaning operations.The hydrogen to carbon monoxide ratio in the extracted reaction gas is adjusted by water gas shift to provide a 3 to 1 ratio of hydrogen to carbon monoxide. This ratio is needed to covert the gas to methane in a catalytic methanator. The methane reaction is exothermic and the heat generates steam for the process. The water produced in the methanator is condensed to produce a concentrated substitute natural gas (SNG) product for pipelining.The thermal efficiency for this process is 61.9%. FIG. 4 is a schematic of the underground steam-oxygen gasification of coal process.By eliminating the mining of the coal, but including udnerground site preparation, it is estimated that the capital investment for steam-oxygen gasification is reduced to $6095 / MSCF/D of methane. Continuous operation, gas storage and redundant equipment can provided a high capacity factor.The production cost is calculated as follows:Factor Calculation $ / MSCFFixed Charges = (0.20 x 6095) / 365 = 3.34O&M = 0.15 x 3.34 = 0.50Production Cost 3.845. Underground Hydrogasification of Coal (aka Pumped Carbon Mining, PCM)The underground hydrogasification of coal for SNG production is similar to the above ground process with the exception that the hydrogasification takes place underground. This process is especially useful for unminable coal seams and where methane is produced from coal bedded methane (CBM) in these seams.The coal seam is accessed by two vertical boreholes spaced a distance apart; one is the intended injection borehole and the other is the intended extraction borehole. A flow connection is then established between the boreholes. This can be accomplished by a number of means, one of which is by horizontal drilling between the holes.The existing methane resource in the coal seam is removed through the extraction borehole using established coal bedded methane extraction procedures. In this process, the water in the seam is also removed and this is beneficial to the subsequent hydrogasification process.The hydrogasification process then begins with the injection into the coal seam of heated and pressurized hydrogen. Under these conditions, the hydrogen exothermically reacts with the coal, producing methane and carbon monoxide. Some of the nitrogen and sulfur in the coal is converted to ammonia and hydrogen sulfide. An excess of hydrogen is used to convert the carbon to methane under equilibrium conditions (see HCEI 10-04-3).The reaction gas flowing out of the extraction borehole is subjected to hot gas cleanup, which removes most of the unwanted contaminant gases and particulates and leaves a methane-rich stream containing hydrogen and carbon monoxide. The methane is separated from the othergases by pressure swing adsorption (PSA) or cryogenically. Since there is insufficient hydrogen in the coal to combine with the carbon in the coal to form methane, the hydrogen must be produced by reacting part of the methane produced with water in a steam-reforming operation. The net methane produced results in a thermal efficiency of 79.6% for conversion of the energy in lignite to the energy in the methane.When connecting the hydrogasification to coal bedded methane (CBM) operations, the underground site preparation cost is borne by the CBM operation and there is no oxygen or methanator investment. This reduces the capital investment to about $4,571 / MSCF/D (HCEI-11-04-2).The production cost is estimated as follows:Factor Calculation $ / MSCFFixed Charges = (0.20 x 4571) / 365 = 2.50O&M = 0.15 x 2.50 = 0.38Production Cost 2.88QUALITATIVE ANALYSIS OF PROCESSES FOR PRODUCTION OF SUBSTITUTE NATURAL GAS (SNG) FROM COAL RESOURCESThere are at least five processes for conversion of coal to substitute natural gas (SNG) as described previously. The following is a critical qualitative analysis of these processes.1) Steam Oxygen Gasification of CoalThe steam-oxygen gasification of coal is a well-know process, which has been practiced since the 1940s. Various types of gasifiers have been developed employing steam and oxygen with coal feedstock. The following is a list of the drawbacks in using this process for conversion of coal to SNG:1. The steam-oxygen reaction with coal to form synthesis gas (CO and H2) is highlyendothermic.2. An oxygen plant is required.3. A methanator is required.4. The thermal efficiency is low, about 60%.5. Capital investment is high.2) Catalytic Gasification of CoalExxon developed this process during the 1970s, operating it in a pilot plant. A full scale production plant was never built because it was not competitive. The features of the process compared to steam-oxygen gasification are as follows:1. The catalytic steam reaction is endothermic, but much less so than the steam-oxygenprocess.2. There is no need for an oxygen plant.3. There is a huge requirement for catalyst, amounting to as much as 20% of the coalfeedstock. Recovery of catalyst, K2CO3 from coal ash is costly.4. There is no requirement for a methanator.5. The thermal efficiency is higher than steam-oxygen gasification, reaching into the 70%.6. The capital investment is lower than for steam-oxygen gasification.3) Hydrogasification of CoalHydrogasification of coal for production of methane (SNG) was pilot planted in Germany in the 1970’s, but the process was never put into practice at full scale. The features of this process are as follows:1. The hydrogasification of coal is exothermic, thus requiring no oxygen or steam addition.2. There is no requirement for a methanator.3. The process has a high thermal conversion efficiency reaching into the 80%.4. It is necessary to convert part of the methane back to hydrogen by reforming with steam.5. The capital investment is lower than for steam-oxygen gasification.6. There is no requirement for a catalyst.4) Underground Steam-Oxygen Coal Gasification (UCG)There has been much research and development on underground coal gasification in the United States and Russia during the 1970s. The features of the process are as follows:1. Coal mining and preparation for above ground processing is eliminated.2. Steam-oxygen injection is required underground, which may have safety problems due toincomplete reaction and production of explosive gaseous mixtures in confined spaces.3. Difficult to control problems with fissures and crossovers to keep inflow and outflow pathsseparated.4. An oxygen plant and methanation reactor are required.5. Thermal conversion efficiency is lower than hydrogasification.5) Underground Coal Hydrogasification (Pumped Carbon Mining, PCM)The underground hydrogasification of coal has been proposed in the 1980s, but was never tested. It has been recently proposed in conjunction with coal bedded methane extraction. The hydrogasification is beneficial in configuration with the extraction of methane from unminable coal deposits. The features of the process are as follows:1. After the coal bedded methane is extracted, the hydrogasification of the remaining coalwould increase the production of methane from the coal seam by a factor of 20 or moretimes that produced from the coal bedded methane recovery operation alone (HCEI-11-04-2).2. There is no mining or handling of coal for above ground processing.3. The additional hydrogen needed is produced by steam reforming part of the methanedirectly produced by hydrogasification.4. No oxygen or methanator plants are needed, so that the capital investment is lower thansteam-oxygen processing.5. The cost of the preparation of the mine for underground hydrogasification is borne by thecoal bedded methane operations.It should be noted that underground catalytic gasification of coal as developed by Exxon is not feasible because of the large loss of catalyst underground even if it were possible to inject catalyst underground.Table 4 gives a summary comparison of the various factors for conversion of coal to SNG. Underground hydrogasification of coal (PCM) for SNG appears to have the highest thermal efficiency and lowest production cost.CO2 EmissionsIncreasing efficiency also has an impact on carbon dioxide emissions. All of these processes essentially emit concentrated carbon dioxide streams, which can be captured and sequestered. However, the higher the thermal efficiency, the lower the carbon dioxide volume and thus the lower sequestration requirements. Thus, the hydrogasification process at 79.6% thermal efficiency emits 46.5% less carbon dioxide than the steam-oxygen gasification process at a thermal efficiency of 61.9%.PUMPED CARBON MINING (PCM) COST ESTIMATE Based On Large Central Plant Servicing A Number Of Coal Bedded Methane Wells As noted in the cost estimate report, HCEI 11-04-2, it is possible to optimize the size of the hydrogen production plant so that it can supply hydrogen to a number of underground hydrogasification wells. The optimized hydrogen plant would collect the gas from a number of extraction boreholes of the wells and deliver hydrogen to the injection boreholes. Insulated piping to and from centralized processing would be utilized to deliver the high temperature and high pressure hydrogen and carbon monoxide to the wells and carry back the methane rich gas to the central processing plant. The central processing plant would contain the hot gas cleanup, heat exchangers, water gas shift and methane and carbon dioxide gas separation and pumping equipment as well as the steam reformer for the hydrogen production. The concept of a central processing plant is important because each well may have variable production. It would become expensive to locate all processing equipment at each such well especially for those wells that had relatively small production capacity.A rough example of an optimized central processing plant is as follows:A methane reforming plant producing 100,000 MSCF / D of hydrogen should cost today approximately $100 million (HCEI-11-04-2). This amount of hydrogen can service thefollowing capacity of methane produced by the Pumped Carbon Mining or lignite gasification process following extraction of the coal bedded methane.Methane Production = 46,000 MSCF / DMethane to Reformer = 25,000 MSCF / DMethane to Furnace = 9,000 MSCF / DTotal Well Methane Produced = 80,000 MSCF / DIf the amount of the total methane produced is 20 times more than the coal bedded methane (CBM), then the CBM production capacity would be 4,000 MSCF / D. If the average CBM capacity per well is only 200 MSCF / D (Ref. Mike Gatens, Oil & Gas , pp. 41-43, Dec. 13, 2004), then the central plant can handle gases from 20 wells, or if the CBM wells produce an average of 400 MSCF / D, then the central plant can process gas from 10 wells.A rough capital and production cost estimate fro this capacity is as follows: The flow sheet of FIG. 5 is followed where only one water gas shift reactor is needed. The highest cost element is the methane reformer. The other equipment is roughly estimated relative to the reformer.Capital InvestmentMillions$UnitGasCleanup 10Hot10HeatExchangerWater Gas Shift(I nclud ed in the H2 plant cost) ---Gas Separation (PSA or Cryo) 2010CirculatorPumpingMethane Reforming for H2 100Total Capital Investment 150Production Cost: (using same financial factors as in HCEI-11-04-2)Factor Calculation$ / DThe underground lignite well preparation charged to CBMFixed Charge = (0.2 x 150 x 106 ) / (365 D / yr ) = 82,190= 12,330 Op. & Maint. = 0.15 x 82,190Cost = 94,520 TotalProductionUnit production Cost of Methane = 94,520 / 46,000 = $2.05 / MSCF Thus, it is shown that by centralizing the processing and collecting the gas from a number of wells, the unit methane production cost can be reduced significantly, resulting in a high rate of return.。