【最新】七年级下册期中数学试题及答案

合集下载

新人教版七年级数学下册期中试卷【及答案】

新人教版七年级数学下册期中试卷【及答案】

新人教版七年级数学下册期中试卷【及答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是()A.15-B.15C.5 D.-52.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.若a x=6,a y=4,则a2x﹣y的值为()A.8 B.9 C.32 D.405.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合()A .0B .1C .2D .37.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.甲、乙两名同学在解方程组5{213mx y x ny +=-=时,甲解题时看错了m ,解得7{22x y ==- ;乙解题时看错了n ,解得3{7x y ==-.请你以上两种结果,求出原方程组的正确解.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min .小东骑自行车以300m/min 的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、A6、B7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、60°3、344、-405、两6、76.510⨯三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、n = 3 , m = 4, 2{3x y ==-3、(1)家与图书馆之间路程为4000m ,小玲步行速度为100m/s ;(2)自变量x 的范围为0≤x ≤403;(3)两人相遇时间为第8分钟.4、60°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。

【人教版】七年级下册数学《期中考试题》附答案解析

【人教版】七年级下册数学《期中考试题》附答案解析

人教版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列方程组中,属于二元一次方程组的是( )A. 31x y x z +=-⎧⎨+=-⎩B. 32x y y +=⎧⎨=⎩ C. 233x y x y +=⎧⎨-=-⎩ D. 32x y xy +=⎧⎨=-⎩2. 若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A. x 2≤B. x 1>C. 1x 2≤<D. 1x 2<≤ 3. 下面四个图形中,线段BD 是△ABC 的高的是( ) A. B. C. D.4. 如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A. 高B. 角平分线C. 中线D. 不能确定 5. 如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=76°,∠C=64°,则∠DAE 的度数是()A. 10°B. 12°C. 15°D. 18°6. 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )A . ∠BCA=∠F;B. ∠B=∠E;C. BC∥EF ;D. ∠A=∠EDF 7. 如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A. △ABC≌△CDEB. CE =ACC. AB⊥CDD. E 为BC 的中点 8. 如图,在三角形模板ABC 中,∠A=60°,D 、E 分别为AB 、AC 上的点,则∠1+∠2的度数为( ) A . 180°B. 200°C. 220°D. 240° 9. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是( )A 十三边形 B. 十二边形 C. 十一边形 D. 十边形10. 如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③1902BFC BAC ∠=︒+∠;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( )A 2个 B. 3个 C. 4个 D. 5个二、填空题11. 已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.12. 不等式2x﹣1>3的解集为_____.13. A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.14. 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.15. 如图,在△ABC中,点D在AC上,点E在BD上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC 的度数为__________.16. 一个多边形的内角和是1440°,则这个多边形是__________边形.17. 如图,在Rt三角形ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=8cm,BE=3cm,则DE=__________cm.18. 如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为__________cm.19. 已知△ABC中,∠B=40°,AD是△ABC的高,且∠CAD=10°,则∠BAC的度数为__________.20. 如图,在Rt△ABC中,∠ACB=90°,AC=BC,CH为△ABC斜边上的中线,点F为CH上一点,连接BF并延长交AC于点D,过点A作AE⊥AC,连接CE和DE,若∠ACE=2∠ABF,CE=13,CD=8,则△CDE 的面积为__________.三、解答题21. 解方程组及不等式组(1)25 437 x yx y+=-⎧⎨+=-⎩(2)211841x xx x->+⎧⎨+<-⎩22. 正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt⊿ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.23. 四川雅安发生地震后,某校学生会向全校1900名学生发起了”心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24. 如图,在△ABC中,BD,CE分别是AC,AB边上的高,在BD上截取BF=AC,延长CE至点G使CG=AB,连接AF,AG.(1)如图1,求证:AG=AF;(2)如图2,若BD恰好平分∠ABC,过点G作GH⊥AC交CA的延长线于点H,请直接写出图中所有的全等三角形并用全等符号连接.25. “双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?26. 如图,△ABC中,点E和点F在边BC上,连接AE,AF,使得∠EAC=∠ECA,∠BAE=2∠CAF.(1)如图1,求证:∠BAF=∠BFA;(2)如图2,在过点C且与AE平行的射线上取一点D,连接DE,若∠AED=∠B,求证:BE=CD;27. 如图,在平面直角坐标系中,点A 在第一象限,点B(a ,0),点C(0,b)分别在x 轴,y 轴上,其中a ,b 是二元一次方程534a b -=的解,且a 为不等式312133a a -+≤的最大整数解. (1)证明:OB=OC ;(2)如图1,连接AB ,过点A 作AD ⊥AB 交y 轴于点D ,在射线AD 上截取AE=AB ,连接CE ,取CE 的中点F ,连接AF 并延长至点G ,使FG=AF ,连接CG ,OA .当点A 在第一象限内运动(AD 不经过点C )时,证明:∠OAF 的大小不变;答案与解析一、选择题1. 下列方程组中,属于二元一次方程组的是( )A. 31x y x z +=-⎧⎨+=-⎩B. 32x y y +=⎧⎨=⎩C. 233x y x y +=⎧⎨-=-⎩D. 32x y xy +=⎧⎨=-⎩【答案】B【解析】【分析】 根据二元一次方程组的定义判断即可.【详解】A.31x y x z ,方程组中有三个未知数,不是二元一次方程组; B. 32x y y ,是二元一次方程组;C.233x y x y ,方程组中未知数的最高次是2,不是二元一次方程组;D. 32x y xy ,方程组中2xy =-不是二元一次方程,所以原方程组不是二元一次方程组;故选:B .【点睛】本题考查的是二元一次方程组的判别,熟悉二元一次方程的定义是解题的关键.2. 若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A. x 2≤B. x 1>C. 1x 2≤<D. 1x 2<≤【答案】D【解析】【分析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.【详解】解:在表示解集时”≥”,”≤”要用实心圆点表示;”<”,”>”要用空心圆点表示.因此,这个不等式<≤.组的解是1x2故选D.3. 下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.【答案】D【解析】【分析】根据三角形高的定义,过点B向AC边作垂线,点B和垂足D之间的线段是△ABC的高,逐项判断即可.【详解】∵由三角形的高线定义可知:过点B作BD⊥AC,垂足为D,则线段BD为△ABC的高;∴选项A、B、C图形中垂足不正确,都不符合题意,只有选项D符合题意.故选:D.【点睛】本题考查三角形的高线,正确理解三角形的高线是解题关键.4. 如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A. 高B. 角平分线C. 中线D. 不能确定【答案】C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD ,即AD 是中线.故选C .考点:三角形的面积;三角形的角平分线、中线和高.5. 如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=76°,∠C=64°,则∠DAE 的度数是( )A. 10°B. 12°C. 15°D. 18°【答案】B【解析】【分析】 根据直角三角形两锐角互余求出CAD ∠,再根据角平分线定义求出CAE ∠,然后根据DAE CAE CAD ∠=∠-∠,代入数据进行计算即可得解.【详解】解:AD BC ⊥,64C ∠=︒, 906426CAD ,AE ∵是ABC ∆的角平分线,76BAC, 11763822CAE BAC ,382612DAE CAE CAD .故选:B .【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.6. 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )A. ∠BCA=∠F;B. ∠B=∠E;C. BC∥EF ;D. ∠A=∠EDF【答案】B【解析】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E,只要求出∠B=∠E 即可.解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC≌△DEF,故本选项错误;B 、∵在△ABC 和△DEF 中,AB=DE ,∠B=∠E,BC=EF ,∴△ABC≌△DEF(SAS ),故本选项正确;C 、∵BC∥EF,∴∠F=∠BCA,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC≌△DEF,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC≌△DEF,故本选项错误.故选B .7. 如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A. △ABC≌△CDEB. CE =ACC. AB⊥CDD. E 为BC 的中点【答案】D【解析】【分析】 首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.8. 如图,在三角形模板ABC 中,∠A=60°,D 、E 分别为AB 、AC 上的点,则∠1+∠2的度数为( )A. 180°B. 200°C. 220°D. 240°【答案】D 【解析】 【分析】根据三角形内角和定理求出B C ∠+∠,根据多边形内角和定理求出即可. 【详解】解:60A ∠=︒,180120B C A , 12360360120240BC,故选:D .【点睛】本题考查了三角形内角和定理和多边形内角和定理,能熟记知识点的内容是解此题的关键,注意:三角形的内角和等于180︒,四边形的内角和等于360︒.9. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是( ) A. 十三边形 B. 十二边形C. 十一边形D. 十边形【答案】A 【解析】试题分析:根据多边形的对角线的定义可知,从n 边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.解:设这个多边形是n 边形.依题意,得n ﹣3=10, ∴n=13.故这个多边形是13边形. 故选A .考点:多边形的对角线.10. 如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③1902BFC BAC ∠=︒+∠;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( )A. 2个B. 3个C. 4个D. 5个【答案】D 【解析】 【分析】根据AE 平分ACD ∠,CF 平分ACB ∠,可得12ACEECDACD ,12ACF BCFACB 则易证90ECF ∠=,可判断①正确;根据BE 平分ABC ∠,BE AC ⊥于点H ,可证()ABHHBC ASA ,得到AH CH =,可证()AHE CHE SAS ,则有AE CE =,可判断②正确;根据BE 平分ABC ∠,CF 平分ACB∠,得到12ABHHBCABC ,12ACF BCFACB ,则利用BFCFHCACFABH BAC ACF 可以判断③;根据90FCHHCE,90HECHCE,得到FCHHEC ,利用ABHHBC ,CF 平分ACB ∠,得22BAC BCA FCH HEC ,可以判断④正确;根据AHECHE ,CF 平分ACB ∠,得到AHEHEC ,BCF FCH ,FCHHEC ,AEHBCF ,故可以判断⑤正确;【详解】解:∵AE 平分ACD ∠,CF 平分ACB ∠,∴12ACE ECD ACD ,12ACF BCF ACB ∴1111180902222ECF ACFACEACB ACD ACBACD,故①正确;∵BE 平分ABC ∠,BE AC ⊥于点H , ∴ABH HBC ,90AHB CHB,∴()ABHHBC ASA ,∴AH CH =, ∵90AHE CHE,HEHE ,∴()AHECHE SAS ,∴AE CE =,故②正确;∵BE 平分ABC ∠,CF 平分ACB ∠, ∴12ABH HBCABC ,12ACF BCFACB 又∵BFC FHCACFABH BAC ACF即有:1122BFCABC BAC ACB 12ABCACB BAC 11802BACBAC1902BAC ,故③正确; ∵90FCH HCE,90HECHCE∴FCH HEC ,又∵ABHHBC ,CF 平分ACB ∠,∴AB BC =, ∴22BAC BCAFCHHEC即:2BAC BEC ,故④正确;∵AHE CHE,CF平分ACB∠,∴AHE HEC,BCF FCH,FCH HEC,∴AEH BCF,故⑤正确;综上所述,正确的有:①②③④⑤,共5个,故选:D.【点睛】本题主要考查了全等三角形、角平分线的性质,能熟练应用相关性质是解题的关键.二、填空题11. 已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.【答案】5 3【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12xy=⎧⎨=⎩代入二元一次方程3210mx y--=,得:32210m,解得:53 m=.故答案为:5 3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12. 不等式2x﹣1>3的解集为_____.【答案】x>2 【解析】【分析】【详解】解:移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得x>2,∴不等式2x﹣1>3的解集为x>2.13. A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.【答案】17【解析】【分析】设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,由于A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,由此即可方程组解决问题.【详解】解:设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,依题意得771401010140x yx y,解之得:173xy=⎧⎨=⎩,∴这艘船在静水中的速度和水流速度分别为17千米/小时,3千米/小时,故答案为:17.【点睛】此题是一个行程问题,关键是知道如何求顺流和逆流的速度,如何根据速度、路程、时间即可列出方程组解决问题.14. 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.【答案】26【解析】【分析】设共有x名学生,根据每人分3本,那么余8本,可得图书共有(3x+8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x名学生,则图书共有(3x+8)本,由题意得,0<3x+8−5(x−1)<3,解得:5<x<6.5,∵x为非负整数,∴x=6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.15. 如图,在△ABC 中,点D 在AC 上,点E 在BD 上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC 的度数为__________.【答案】117︒ 【解析】 【分析】两次利用三角形的一个外角等于与它不相邻的两个内角的和,列式进行计算即可得解. 【详解】解:在ABD ∆中,70A ∠=︒,22ABD ∠=︒,702292CDE A ABD, 2592117BECDCECDE.故答案为:117︒.【点睛】本题主要考查了三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和,两次利用性质是解题的关键.16. 一个多边形的内角和是 1440°,则这个多边形是__________边形. 【答案】十 【解析】 【分析】利用多边形的内角和定理:n 边形的内角和为()2180n -⨯︒ 便可得. 【详解】∵n 边形的内角和为()2180n -⨯︒ ∴()21801440n -⨯︒=,28,10n n -==. 故答案为:十边形.【点睛】本题考查多边形的内角和公式,掌握n 边形内角和定理为本题的关键.17. 如图,在Rt 三角形ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D ,若AD=8cm ,BE=3cm ,则DE=__________cm .【答案】4 【解析】 【分析】易证CAD BCE ∠=∠,即可证明CDA BEC ,可得CD BE =,CE AD =,根据DE CE CD =-,即可解题. 【详解】解:90ACB ∠=︒,BE CE ⊥于点E ,AD CE ⊥于点D ,90ACD BCE ∴∠+∠=︒,90ACD CAD ∠+∠=︒, CAD BCE ∴∠=∠,在CDA ∆和BEC ∆中, 90CDA BEC CAD BCEACBC,()CDA BEC AAS ,CD BE ∴=,AD CE =,DECE CD ,DE AD BE ∴=-,7AD cm ,3BE cm =, 734DEcm cmcm .故答案为:4.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法和性质(全等三角形的对应边、对应角相等)是解题的关键.18. 如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若△ABC 的面积为21cm 2,AB=8cm ,AC=6cm ,则DE 的长为__________cm .【答案】3 【解析】 【分析】根据角平分线上的点到角的两边的距离相等可得DE DF =,再根据三角形的面积公式列式计算即可得解. 【详解】解:AD 为BAC ∠的平分线,DE AB ⊥,DF AC ⊥,DE DF ∴=,ABC ∆面积112122AB DEAC DF,即11862122DE DE ,解得3DE =. 故答案为:3.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的面积公式列出方程是解题的关键.19. 已知△ABC 中,∠B=40°,AD 是△ABC 的高,且∠CAD=10°,则∠BAC 的度数为__________. 【答案】40︒或60︒. 【解析】 【分析】在Rt ABD ∆中,B 与BAD ∠互余,而20CAD ∠=︒,故有BAC BADCAD .【详解】解:90D ∠=︒,40B ∠=︒,50BAD ∴∠=︒,10CAD ,当△ABC 如图一所示时:501060BAC BAD CAD ,当△ABC 如图二所示时:501040BAC BAD CAD ,故答案为:40︒或60︒.【点睛】本题考查了直角三角形的性质和三角形的内角和,熟悉相关性质是解题的关键.20. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,CH 为△ABC 斜边上的中线,点F 为CH 上一点,连接BF 并延长交AC 于点D ,过点A 作AE ⊥AC ,连接CE 和DE ,若∠ACE=2∠ABF ,CE=13,CD=8,则△CDE 的面积为__________.【答案】20 【解析】 【分析】延长BD 交CE 于G 点,作AKGD 交CE 于K ,交GD 于O ,设ABF α∠=,则2ACE,根据90ACB ∠=︒,AC BC =,可得45CBG ,902BCG ,可证CBG CGB ∠=∠,则CGCBCA,根据ASA 易证明CAKCGD,利用CK CD ,9045135CKACDG DCB CBD ,可证EK EA ,可得5EA =,再利用三角形的面积公式即可求解.【详解】解:如图示:延长BD 交CE 于G 点,作AKGD 交CE 于K ,交GD 于O ,设ABF α∠=,则2ACE,∵90ACB ∠=︒,AC BC =, ∴45ABC ∠=︒, ∴45CBG CBA ABF , 902BCGACB ACE ∴1801809024545CGB BCGCBG,∴CBG CGB ∠=∠ ∴CGCBCA在Rt△ADO 和Rt△BDC 中, ADOBDC ,90AODBCD,∴DAO DBC ,则有CAK CGD在△CAK 和△CGD 中, CAKCGD ,CA CG =,ACK GCD∴()CAK CGD ASA∴CK CD ,9045135CKACDG DCB CBD∴18018013545EKACKA又∵904545EAKEAC CAK 即有EK EA , ∴1385EAEK CE CK CE CD ∴11852022CDE S CD EA , 故答案为:20.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,解题的关键是正确寻找全等三角形解决问题.三、解答题21. 解方程组及不等式组(1)25437x y x y +=-⎧⎨+=-⎩ (2)211841x x x x ->+⎧⎨+<-⎩【答案】(1)43x y =-⎧⎨=⎩;(2)3x >. 【解析】【分析】(1)把第一个方程乘以2然后和第二个方程进行计算,利用加减消元法求解即可;(2)先求出两个不等式的解集,再求其公共解.【详解】解:(1)25437x y x y ①②, 将2①得:4210x y③,将②-③得:3y = 把3y =代入①得,235x +=-,解之得:4x =-所以,方程组的解是43x y =-⎧⎨=⎩;(2)211841x xx x①②,由①得,2x>,由②得,3x>,所以,不等式组的解集是3x>.【点睛】本题考查的是二元一次方程组的解法,一元一次不等式组解集的解集,熟悉相关解法是解题得关键.22. 正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt⊿ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.【答案】可以是:【解析】【分析】画的直角三角形的三边应符合两直角边的平方和等于斜边的平方.第一个图形和第二个图形的面积可让两条直角边的积÷2即可.【详解】解:画图如下:易得图1三边长为10、10、20=25,符合两边和的平方等于第三边的平方,图2中三边长分别为2、18=32、20=25符合两边和的平方等于第三边的平方,第三个图中,三边长分别为8=22、8=22、16=4符合两边和的平方等于第三边的平方,【点睛】本题考查直角三角形的格点画法需满足的条件;直角三角形的三边应符合两直角边的平方和等于斜边的平方.23. 四川雅安发生地震后,某校学生会向全校1900名学生发起了”心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【答案】(1)50;32;(2)16;10;15;(3)608人.【解析】【分析】(1)根据条形统计图即可得出样本容量:4+16+12+10+8=50(人);根据扇形统计图得出m的=----=;值:m100202416832(2)利用平均数、中位数、众数的定义分别求出即可.(3)根据样本中捐款10元的百分比,从而得出该校本次活动捐款金额为10元的学生人数.【详解】解:(1)根据条形图4+16+12+10+8=50(人),m=100-20-24-16-8=32;故答案为:50; 32.(2)∵1x 541016151220103081650=⨯+⨯+⨯+⨯+⨯=(), ∴这组数据的平均数为:16.∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:()11515152+=, (3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数有1900×32%=608人.∴该校本次活动捐款金额为10元的学生约有608人.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24. 如图,在△ABC 中,BD ,CE 分别是AC ,AB 边上的高,在BD 上截取BF=AC ,延长CE 至点G 使CG=AB ,连接AF ,AG .(1)如图1,求证:AG=AF ;(2)如图2,若BD 恰好平分∠ABC ,过点G 作GH ⊥AC 交CA 的延长线于点H ,请直接写出图中所有的全等三角形并用全等符号连接.【答案】(1)证明见解析;(2)ABD CBD ∆≅∆,AGC FAB ∆≅∆,HGA DAF ∆≅∆.【解析】【分析】(1)根据BD 、CE 分别是AC 、AB 两条边上的高,BF=AC ,CG=AB ,利用SAS 可证AGC FAB ∆≅∆,则可证AG AF =;(2)利用等腰三角形的对称性,可得ABD CBD ∆≅∆;根据AGC FAB ∆≅∆易证90GAF ∠=︒,则可得90HAG FAD ,即有HGA DAF ,利用AAS 可证HGA DAF ∆≅∆.【详解】(1)证明:∵BD 、CE 分别是AC 、AB 两条边上的高,90ADB AEC ∴∠=∠=︒,90ABDBAD ACE CAE ,ABD ACG , 在AGC ∆与FAB ∆中,CABF GCAABF GC AB , ()AGC FAB SAS ,∴AG AF =;(2)∵BD 平分∠ABC ,BD 是AC 边上的高,则BD 为△ABC 中三线合一的线,即△ABC 为等腰三角形,BD 为△ABC 的对称轴,根据对称性,有ABD CBD ∆≅∆AGC FAB ;AG AF ∴=,G BAF ∠=∠,90G GAE , 90BAF GAE ,90GAF ∴∠=︒,∴90HAG FAD∵GH AC ⊥,∴90HAG HGA∴HGA DAF 在HGA 与DAF ∆中,90GHAADF HGADAFGA AF ,()HGA DAF AAS ,综上所述,全等三角形有ABD CBD ∆≅∆,AGC FAB ∆≅∆,HGA DAF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质和判定和对称的性质,正确的识别图形是解题的关键.25. “双11”期间,某个体户在淘宝网上购买某品牌A 、B 两款羽绒服来销售,若购买3件A ,4件B 需支付2400元,若购买2件A ,2件B ,则需支付1400元.(1)求A 、B 两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A 、B 两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?【答案】最多让利5件.【解析】【分析】(1)设设A 款a 元,B 款b 元,根据题意列方程组求解;(2)设让利的羽绒服有x 件,总获利不低于3800元,列不等式,求出最大整数解.【详解】解:(1)设A 款a 元,B 款b 元,可得:342400221400a b a b +=⎧⎨+=⎩, 解得:400300a b =⎧⎨=⎩, 答:A 款400元,B 款300元.(2)设让利的羽绒服有x 件,则已售出的有(20﹣x )件600 (20﹣x )+600×60% x ﹣400×10﹣30×10≥3800,解得x≤5,答:最多让利5件.考点:一元一次不等式的应用;二元一次方程组的应用.26. 如图,在△ABC 中,点E 和点F 在边BC 上,连接AE ,AF ,使得∠EAC=∠ECA ,∠BAE=2∠CAF . (1)如图1,求证:∠BAF=∠BFA ;(2)如图2,在过点C 且与AE 平行的射线上取一点D ,连接DE ,若∠AED=∠B ,求证:BE=CD ;【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)设CAF α∠=,则2BAE α∠=,可得EAF EAC ,EFA EAC ,易证BAF BFA ∠=∠; (2)根据//AE CD ,EAC ECA ∠=∠,则有AED D ,AEB DCE ,AE EC =,利用AAS 可证AEB ECD ,则有BE DC =. 【详解】解:(1)设CAF α∠=,则2BAE α∠=,∴EAF EAC ,EFA ECA EAC , 22BAF EAF EAC EAC∴BAF BFA ∠=∠;(2)//AE CD ,EAC ECA ∠=∠∴AED D ,AEB DCE ,AE EC =又∵AED B ∠=∠,∴D B ∠=∠,∴()AEB ECD AAS ,∴BE DC =;【点睛】本题考查了三角形的外角,平行线的性质和三角形全等的证明,熟悉相关性质是解题的关键. 27. 如图,在平面直角坐标系中,点A 在第一象限,点B(a ,0),点C(0,b)分别在x 轴,y 轴上,其中a ,b 是二元一次方程534a b -=的解,且a 为不等式312133a a -+≤的最大整数解. (1)证明:OB=OC ;(2)如图1,连接AB ,过点A 作AD ⊥AB 交y 轴于点D ,在射线AD 上截取AE=AB ,连接CE ,取CE 的中点F ,连接AF 并延长至点G ,使FG=AF ,连接CG ,OA .当点A 在第一象限内运动(AD 不经过点C )时,证明:∠OAF 的大小不变;【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据a 为不等式312133a a -+≤的最大整数解,求解不等式,利用534ab -=推出a b =即可; (2)求出TAO 为等腰直角三角形即可;【详解】(1)解:解不等式312133a a -+≤得2a ≤ ∵a 为不等式312133a a -+≤的最大整数解 2a ∴=,将2a =代入方程534a b -=得2b =, a b ∴=,OB OC ∴=;(2)证明:连接GO ,F 为CE 中点,CF EF ∴=,在GCF ∆和AEF ∆中CF EFCFG FEAFG FAGCF AEF SAS,()CG EA,GCF AEF,GC AD,//GCD CDA,=,AB AEGC AB,⊥,⊥,OB OCAD ABCOB BAD,90ABO ADO,180ADO ADC,180ADC ABO,GCD CDA,GCD ABO,∆中在GCO和ABOGC ABGCO ABOOC OBGCO ABO SAS,()GO AO,GOC AOB,AOB AOC,90GOC AOC,90GAO为等腰直角三角形,∠的大小不变;OAF,即OAF45【点睛】本题是三角形综合题,主要考查了解不等式,全等三角形判定和性质,等腰三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.。

人教版七年级下册数学期中试卷及答案【完整版】

人教版七年级下册数学期中试卷及答案【完整版】

人教版七年级下册数学期中试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±1 2.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .4 4.94的值等于( ) A .32 B .32- C .32± D .81165.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C.851060860x x+=-D.85108x x+=+8.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________ 4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.5.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是________.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.已知,x 无论取什么值,式子35ax bx ++必为同一定值,求a b b +的值.3.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.4.如图,四边形ABCD 中,对角线AC 、BD 交于点O ,AB =AC ,点E 是BD 上一点,且AE =AD ,∠EAD =∠BAC,(1)求证:∠ABD =∠ACD ;(2)若∠ACB =65°,求∠BDC 的度数.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.在做解方程练习时,学习卷中有一个方程“2y–12=12y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x–1)–2(x–2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、B6、C7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、55°3、135°4、225、3a <.6、4.三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、853、(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由略. 4、(1)略;(2) 50°5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、略。

人教版数学七年级下册期中考试试卷及答案

人教版数学七年级下册期中考试试卷及答案

人教版数学七年级下册期中考试试题一、单选题(每小题3分,共30分)1.下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.2.如图,∠1=50°,则∠2=()A.100°B.120°C.130°D.140°3.观察图形,下列说法正确的个数是()①线段AB的长必大于点A到直线l的距离;②线段BC的长小于线段AB的长,根据是两点之间线段最短;③图中对顶角共有9对;④线段CD的长是点C到直线AD的距离.A.1个B.2个C.3个D.4个)4A.9B.±9C.±3D.35.比较3,()A.3B.3C.<3D<36.下列实数中,最小的是()A.3B.3C.−2D.0 7.下列各式中,正确的是()A 3=-B .3=-C 3=±D .3±8.已知y 轴上的点P 到原点的距离为5,则点P 的坐标为()A .(5,0)B .(0,5)或(0,-5)C .(0,5)D .(5,0)或(-5,0)9.将某个图形的横坐标都加上3,纵坐标不变得到一个新图形,该图形是由原图形如何平移得到的()A .向右平移3个单位长度B .向左平移3个单位长度C .向上平移3个单位长度D .向下平移3个单位长度10.若点P(x ,y)的坐标满足xy=0(x≠y ),则点P 在()A .原点上B .x 轴上C .y 轴上D .坐标轴上二、填空题11.如图,三条直线交于同一点,∠1∶∠2∶∠3=2∶3∶1,则∠4=_____________.12.如图,请你写出一个能判定l 1∥l 2的条件:_____________________.13.在数轴上表示−7的点到原点的距离为_________.14.将点A 先向下平移3个单位,再向右平移2个单位后,则得到点B (-2,5),则点A 的坐标为_______________.三、解答题15.计算(1)-+;(221-+.16.如图,已知直线AB 、CD 交于点O ,且∠1∶∠2=2∶3,∠AOC =60°,求∠2的度数.17.推理填空:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠4()∴∠2=∠4(等量代换)∴CE∥BF()∴∠=∠3()又∵∠B=∠C(已知),∴∠3=∠B(等量代换)∴AB∥CD()18.如图,AD∥BC,AC平分∠BAD交BC于C,∠B=50°,求∠ACB的度数.19.已知:AB∥CD,OE平分∠AOD,OF⊥OE于O,∠D=60°,求∠BOF的度20.已知a、b、c的大小为0<c<1,b<-1,a<b;化简:|a+c|+2|b+c|-3|a+b|.21.已知a、b互为相反数,c、d互为倒数,求2−2+2c的值.22.在直角坐标系中,描出A(1,3)、B(0,1)、C(1,−1)、D(2,1)四点,并指出顺次连接A、B、C、D四点的图形是什么图形。

【3套打包】绍兴市绍兴一初最新七年级下册数学期中考试题

【3套打包】绍兴市绍兴一初最新七年级下册数学期中考试题

七年级下册数学期中考试试题【答案】一、选择题(本大题共12小题,每小题四个选项只有一项是正确的,每小题选对得3分.)1.如图,由∠1=∠2能得到AB∥CD的是( )2.若,那么的值是( )A.-4 B.-2 C.2 D.43.二元一次方程3x+y=7的正整数解有( )对.A. 1 B.2 C.3 D.44.如图,直线a∥b∥c,直角三角板的直角顶点落在直线b上,若∠1=40°,则∠2等于( )A.40° B.60° C.50° D.70°5.下列说法错误的是( )A.同位角相等,两直线平行B.与己知直线平行的直线有且只有一条C.在平面内过一点有且只有一条直线垂直于已知直线D.在同一平面内,垂直于同一条直线的两*条直线平行6.如图,A线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=()度.A.66 B.50 C.64 D.767.若是方程组的解,则的值为( )A. B. C.-16 D.168.计算的结果是( )A. B. C. D.9.若,则m的值为( )A.-1 B. 1 C. -2 D. 210.若k为正整数,则等于( )A.0 B. C. D.11.如图,在下列四个等式中,不能表示“OC是∠AOB的平分线”的是( ) A.∠AOC=∠BOC B.∠AOC= ∠AOBC.∠AOB=2∠BOC D.∠AOC+∠BOC=∠AOB12.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,则每块墙砖的截面面积是( )A. 425cm2B. 525cm2C. 600cm2D. 800cm2第II卷(非选择题,84分)二、填空题(本大题共8小题,共24分,只填写最后结果,每小题填对得3分)13.-0.0000408用科学记数法表示为 .14.若∠1+∠2=90°,∠2+∠3=90°,则∠1与∠3的关系是 .,理由是 . 15.己知:,, = . .16.如图,给出了直线外一点作己知直线的平行绒的方法,其依据是 .17.方程中,有一组解x与y互为相反数,则= .18.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= ,∠2= .19.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是 .20.一个三位数,各个数位上数字之和为10,百位数字比十位数字大1,如果百位数字与个位数字对调,则所得新数比原数的3倍还大61,那么原来的三位数是 .三、解答题(本大题共7小题,共60分.解答要写出文字说明、证明过程或演算步骤)21.(本题满分l2分,每小题4分)(1)计算:(2)计算:(3)解方程组:.22.(本题满分6分)如图,己知∠BED=∠B+∠D,试判断AB与CD的位置关系,并说明理由。

七年级数学下册期中考试题【含答案】

七年级数学下册期中考试题【含答案】

七年级数学下册期中考试题【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.方程13153520052007x x x x ++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003D .10032007 2.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .433.若整数x 满足5+19≤x ≤45+2,则x 的值是( )A .8B .9C .10D .114.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A .0x =B .3x =C .3x =-D .2x =5.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°6.实数a ,b 在数轴上的对应点的位置如图所示,把﹣a ,﹣b ,0按照从小到大的顺序排列,正确的是( )A .﹣a <0<﹣bB .0<﹣a <﹣bC .﹣b <0<﹣aD .0<﹣b <﹣a7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 10.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.已知直角三角形的两边长分别为3、4.则第三边长为________.2.如果22(1)4x m x +-+是一个完全平方式,则m =__________.3.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若3BC 的长是________.4.若216x mx++是一个完全平方式,则m=________5.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________ 6.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.三、解答题(本大题共6小题,共72分)1.解方程:53211 64x x---=2.已知关于x、y的二元一次方程组352{2718 x y a x y a-=+=-(1)若x,y的值互为相反数,求a的值;(2)若2x+y+35=0,解这个方程组.3.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G(1)求证:EF BC=;(2)若65ABC∠=︒,28ACB∠=︒,求FGC∠的度数.4.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC 边上,且BE=BD,连结AE、DE、DC①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少别瓶?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、A5、C6、C7、B8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、52、-1或334、±85、-1或-46、同位角相等,两直线平行.三、解答题(本大题共6小题,共72分)1、154x=.2、(1)a的值是8;(2)这个方程组的解是17 {1xy=-=-.3、(1)略;(2)78°.4、①略;②∠BDC=75°.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、A饮料生产了30瓶,B饮料生产了70瓶.。

最新七年级数学期中考试测试卷及答案

最新七年级数学期中考试测试卷及答案最新七年级数学期中考试测试卷及答案考试就是让一群拥有不同教育资源的人在一定的时间内完成一份相同的答卷。

然而考试的意义并不局限于此,考试其实就是让社会中来自不同社会地位的人拥有改变自己的机会。

以下是店铺为大家收集的最新七年级数学期中考试测试卷及答案,仅供参考,欢迎大家阅读。

最新七年级数学期中考试测试卷及答案1一、选择题(共8小题,每小题3分,满分24分)1.在数轴上表示不等式2x﹣4>0的解集,正确的是( )A. B. C. D.2.如果是二元一次方程2x﹣y=3的解,则m=( )A.0B.﹣1C.2D.33.若a>b,则下列不等式中,不成立的是( )A.a+5>b+5B.a﹣5>b﹣5C.5a>5bD.﹣5a>﹣5b4.下列长度的各组线段首尾相接能构成三角形的是( )A.3cm、5cm、8cmB.3cm、5cm、6cmC.3cm、3cm、6cmD.3cm、5cm、10cm5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( )A.1种B.2种C.3种D.4种6.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于( )A.30°B.45°C.60°D.75°7.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个8.已知关于x的不等式组无解,则a的取值范围是( )A.a≤2B.a≥2C.a<2 d.a="">2二、填空题(共7小题,每小题3分,满分21分)9.若是方程x﹣ay=1的解,则a= .10.不等式3x﹣9<0的最大整数解是.11.列不等式表示:“2x与1的和不大于零”:.12.将方程2x+y=6写成用含x的代数式表示y,则y= .13.等腰三角形的两边长分别为9cm和4cm,则它的周长为.14.一个三角形的三边长分别是3,1﹣2m,8,则m的取值范围是.15.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.三、解答题(共9小题,满分75分)16.(1)解方程:﹣ =1;(2)解方程组: .17.解不等式组,并在数轴上表示它的解集..18.x为何值时,代数式﹣的值比代数式﹣3的值大3.19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=度;(2)求∠EDF的度数.21.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,求这个多边形的每一个外角的度数及这个多边形的边数.22.(1)分析图①,②,④中阴影部分的分布规律,按此规律,在图③中画出其中的阴影部分;(2)在4×4的正方形网格中,请你用两种不同方法,分别在图①、图②中再将两个空白的小正方形涂黑,使每个图形中的涂黑部分连同整个正方形网格成为轴对称图形.23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小.24.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.最新七年级数学期中考试测试卷及答案2一、选择题(共8小题,每小题3分,满分24分)1.在数轴上表示不等式2x﹣4>0的解集,正确的是( )A. B. C. D.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】将不等式的解集在数轴上表示出来就可判定答案了.【解答】解:不等式的解集为:x>2,故选A2.如果是二元一次方程2x﹣y=3的解,则m=( )A.0B.﹣1C.2D.3【考点】二元一次方程的解.【分析】本题将代入二元一次方程2x﹣y=3,解出即可.【解答】解:∵ 是二元一次方程2x﹣y=3的解,∴2﹣m=3,解得m=﹣1.故选B.3.若a>b,则下列不等式中,不成立的是( )A.a+5>b+5B.a﹣5>b﹣5C.5a>5bD.﹣5a>﹣5b【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B,根据不等式的性质2,可判断C,根据不等式的性质3,可判断D.【解答】解:A、B、不等式的两边都加或都减同一个整式,不等号的方向不变,故A、B正确;C、不等式的两边都乘以同一个正数不等号的方向不变,故C正确;D、不等式的两边都乘以同一个负数不等号的方向改变,故D错误;故选:D.4.下列长度的各组线段首尾相接能构成三角形的是( )A.3cm、5cm、8cmB.3cm、5cm、6cmC.3cm、3cm、6cmD.3cm、5cm、10cm【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、3+5=8,排除;B、3+5>6,正确;C、3+3=6,排除;D、3+5<10,排除.故选B.5.商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有( )A.1种B.2种C.3种D.4种【考点】平面镶嵌(密铺).【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:①长方形的每个内角是90°,4个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖有①②④.故选C.6.如图,将矩形ABCD沿AE折叠,若∠BAD′=30°,则∠AED′等于( )A.30°B.45°C.60°D.75°【考点】矩形的性质;翻折变换(折叠问题).【分析】根据折叠的性质求∠EAD′,再在Rt△EAD′中求∠AED′.【解答】解:根据题意得:∠DAE=∠EAD′,∠D=∠D′=90°.∵∠BAD′=30°,∴∠EAD′= (90°﹣30°)=30°.∴∠AED′=90°﹣30°=60°.故选C.7.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【解答】解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:C.8.已知关于x的不等式组无解,则a的取值范围是( )A.a≤2B.a≥2C.a<2 d.a="">2【考点】解一元一次不等式组.【分析】根据不等式组无解的条件即可求出a的取值范围.【解答】解:由于不等式组无解,根据“大大小小则无解”原则,a≥2.故选B.二、填空题(共7小题,每小题3分,满分21分)9.若是方程x﹣ay=1的解,则a= 1 .【考点】二元一次方程的解.【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数k的一元一次方程,从而可以求出a的值.【解答】解:把代入方程x﹣ay=1,得3﹣2a=1,解得a=1.故答案为1.10.不等式3x﹣9<0的最大整数解是 2 .【考点】一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的最大整数即可.【解答】解:不等式的解集是x<3,故不等式3x﹣9<0的最大整数解为2.故答案为2.11.列不等式表示:“2x与1的和不大于零”:2x+1≤0.【考点】由实际问题抽象出一元一次不等式.【分析】理解:不大于的意思是小于或等于.【解答】解:根据题意,得2x+1≤0.12.将方程2x+y=6写成用含x的代数式表示y,则y= 6﹣2x .【考点】解二元一次方程.【分析】要用含x的代数式表示y,就要把方程中含有y的项移到方程的左边,其它的项移到方程的另一边.【解答】解:移项,得y=6﹣2x.故填:6﹣2x.13.等腰三角形的两边长分别为9cm和4cm,则它的周长为22cm .【考点】等腰三角形的性质;三角形三边关系.【分析】先根据已知条件和三角形三边关系定理可知,等腰三角形的腰长不可能为4cm,只能为9cm,再根据周长公式即可求得等腰三角形的周长.【解答】解:∵等腰三角形的两条边长分别为9cm,4cm,∴由三角形三边关系可知:等腰三角形的腰长不可能为4cm,只能为9cm,∴等腰三角形的周长=9+9+4=22.故答案为:22cm.14.一个三角形的三边长分别是3,1﹣2m,8,则m的取值范围是﹣5【考点】三角形三边关系;解一元一次不等式组.【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【解答】解:8﹣3<1﹣2m<3+8,即5<1﹣2m<11,解得:﹣5故答案为:﹣515.如图所示,在△ABC中,DE是AC的中垂线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是19 cm.【考点】线段垂直平分线的性质.【分析】由已知条件,根据垂直平分线的性质得到线段相等,进行线段的等量代换后可得到答案.【解答】解:∵△ABC中,DE是AC的中垂线,∴AD=CD,AE=CE= AC=3cm,∴△ABD得周长=AB+AD+BD=AB+BC=13 ①则△ABC的周长为AB+BC+AC=AB+BC+6 ②把②代入①得△ABC的周长=13+6=19cm故答案为:19.三、解答题(共9小题,满分75分)16.(1)解方程:﹣ =1;(2)解方程组: .【考点】解二元一次方程组;解一元一次方程.【分析】(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)应用加减消元法,求出二元一次方程组的解是多少即可.【解答】解:(1)去分母,可得:2(x﹣1)﹣(x+2)=6,去括号,可得:2x﹣2﹣x﹣2=6,移项,合并同类项,可得:x=10,∴原方程的解是:x=10.(2)(1)+(2)×3,可得7x=14,解得x=2,把x=2代入(1),可得y=﹣1,∴方程组的解为: .17.解不等式组,并在数轴上表示它的解集..【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀“同小取小”确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式 >x﹣1,得:x<4,解不等式4(x﹣1)<3x﹣4,得:x<0,∴不等式组的解集为x<0,将不等式解集表示在数轴上如下:18.x为何值时,代数式﹣的值比代数式﹣3的值大3.【考点】解一元一次方程.【分析】根据题意列出一元一次方程,解方程即可解答.【解答】解:由题意得:﹣9(x+1)=2(x+1)﹣9x﹣9=2x+2﹣11x=11x=﹣1.19.如图,已知△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,若∠ADE=80°,∠EAC=20°,求∠B的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】要求∠B的度数,可先求出∠C=70°,再根据三角形内角和定理求出∠BAC+∠B=110°最后由三角形的外角与内角的关系可求∠ADE=∠B+∠BAD= (∠BAC+∠B)+ ∠B,即∠B=50°.【解答】解:∵AE⊥BC,∠EAC=20°,∴∠C=70°,∴∠BAC+∠B=110°.∵∠ADE=∠B+∠BAD= (∠BAC+∠B)+ ∠B,∴∠B=50°.20.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110 度;(2)求∠EDF的度数.【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.21.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,求这个多边形的每一个外角的度数及这个多边形的边数.【考点】多边形内角与外角.【分析】一个内角是一个外角的3倍,内角与相邻的外角互补,因而外角是45度,内角是135度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:每一个外角的度数是180÷4=45度,360÷45=8,则多边形是八边形.22.(1)分析图①,②,④中阴影部分的分布规律,按此规律,在图③中画出其中的阴影部分;(2)在4×4的正方形网格中,请你用两种不同方法,分别在图①、图②中再将两个空白的小正方形涂黑,使每个图形中的涂黑部分连同整个正方形网格成为轴对称图形.【考点】规律型:图形的变化类;轴对称图形;旋转的性质.【分析】(1)从图中可以观察变化规律是,正方形每次绕其中心顺时针旋转90°,每个阴影部分也随之旋转90°.(2)如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,依据定义即可作出判断.【解答】解:(1)如图:(2)23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点P,使PB1+PC最小.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)根据网格结构找出点A、B、C关于直线DE的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据轴对称确定最短路线问题,连接BC1,与直线DE的交点即为所求的点P.【解答】解:(1)△A1B1C1如图所示;(2)点P如图所示.24.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)等量关系为:A种型号衣服9件乘进价+B种型号衣服10件乘进价=1810,A种型号衣服12件乘进价+B种型号衣服8件乘进价=1880;(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y 元,则:,解之得 .答:A种型号的衣服每件90元,B种型号的衣服100元;(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,可得:,解之得,∵m为正整数,∴m=10、11、12,2m+4=24、26、28.答:有三种进货方案:(1)B型号衣服购买10件,A型号衣服购进24件;(2)B型号衣服购买11件,A型号衣服购进26件;(3)B型号衣服购买12件,A型号衣服购进28件.最新七年级数学期中考试测试卷及答案3一、精心选一选,你一定很棒!(本大题共8小题,每小题3分,共24分,每小题所给的选项中只有一项符合题目要求,请把答案直接写在答题纸相应的位置上.)1.(3分)(2012安徽)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.考点:有理数的加法.分析:设这个数为x,根据题意可得方程x+(﹣3)=0,再解方程即可.解答:解:设这个数为x,由题意得:x+(﹣3)=0,x﹣3=0,x=3,故选:A.点评:此题主要考查了一元一次方程的应用,关键是理解题意,根据题意列出方程.2.(3分)下列一组数:﹣8,2.7,,,0.66666…,0,2,0.080080008…(相邻两个8之间依次增加一个0)其中是无理数的有()A.0个B.1个C.2个D.3个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,0.080080008…(相邻两个8之间依次增加一个0).共2个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)下列表示某地区早晨、中午和午夜的温差(单位:℃),则下列说法正确的是()A.午夜与早晨的温差是11℃B.中午与午夜的温差是0℃C.中午与早晨的温差是11℃D.中午与早晨的温差是3℃考点:有理数的减法;数轴.专题:数形结合.分析:温差就是气温与最低气温的差,分别计算每一天的温差,比较即可得出结论.解答:解:A、午夜与早晨的温差是﹣4﹣(﹣7)=3℃,故本选项错误;B、中午与午夜的温差是4﹣(﹣4)=8℃,故本选项错误;C、中午与早晨的温差是4﹣(﹣7)=11℃,故本选项正确;D、中午与早晨的温差是4﹣(﹣7)=11℃,故本选项错误.故选C.点评:本题是考查了温差的概念,以及有理数的减法,是一个基础的题目.有理数减法法则:减去一个数等于加上这个数的相反数.4.(3分)今年中秋国庆长假,全国小型车辆首次被免除高速公路通行费.长假期间全国高速公路收费额减少近200亿元.将数据200亿用科学记数法可表示为()A.2×1010B.20×109C.0.2×1011D.2×1011考点:科学记数法—表示较大的数.专题:存在型.分析:先把200亿元写成20000000000元的形式,再按照科学记数法的法则解答即可.解答:解:∵200亿元=20000000000元,整数位有11位,∴用科学记数法可表示为:2×1010.故选A.点评:本题考查的是科学记算法,熟知用科学记数法表示较大数的法则是解答此题的关键.5.(3分)下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×32考点:有理数的乘方;有理数的混合运算;幂的乘方与积的乘方.专题:计算题.分析:利用有理数的混合运算法则,先算乘方,再算乘除,最后算加减,有括号应先算括号里面的,按照运算顺序计算即可判断出结果.解答:解:A、34=81,43=64,81≠64,故本选项错误,B、﹣42=﹣16,(﹣4)2=16,﹣16≠16,故本选项错误,C、﹣23=﹣8,(﹣2)3=﹣8,﹣8=﹣8,故本选项正确,D、(﹣2×3)2=36,﹣22×32=﹣36,36≠﹣36,故本选项错误,故选C.点评:本题主要考查了有理数的混合运算法则,乘方意义,积的乘方等知识点,按照运算顺序计算出正确结果是解此题的关键.6.(3分)下列运算正确的是()A.5x﹣2x=3B.xy2﹣x2y=0C.a2+a2=a4D.考点:合并同类项.专题:计算题.分析:这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.据此对各选项依次进行判断即可解答.解答:解:A、5x﹣2x=3x,故本选项错误;B、xy2与x2y不是同类项,不能合并,故本选项错误;C、a2+a2=2a2,故本选项错误;D、,正确.故选D.点评:本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.7.(3分)每个人身份证号码都包含很多信息,如:某人的身份证号码是321284************,其中32、12、84是此人所属的省(市、自治区)、市、县(市、区)的编码,1976、10、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是321123************的人的生日是()A.1月1日B.10月10日C.1月8日D.8月10日考点:用数字表示事件.分析:根据题意,分析可得身份证的第7到14位这8个数字为该人的出生、生日信息,由此人的身份证号码可得此人出生信息,进而可得答案.解答:解:根据题意,分析可得身份证的第7到14位这8个数字为该人的出生、生日信息,身份证号码是321123************,其7至14位为19801010,故他(她)的生日是1010,即10月10日.故选:B.点评:本题考查了数字事件应用,训练学生基本的计算能力和找规律的能力,解答时可联系生活实际根据身份证号码的信息去解.8.(3分)如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A﹣B﹣C为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为.A.5次B.6次C.7次D.8次考点:规律型:数字的变化类.专题:规律型.分析:首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为﹣5,终点为9,即可得出它需要跳的次数.解答:解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳=7次.故选C.点评:此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.二、认真填一填,你一定能行!(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应的位置上.)9.(3分)(2012铜仁地区)|﹣2012|=2012.考点:绝对值.专题:存在型.分析:根据绝对值的性质进行解答即可.解答:解:∵﹣2012<0,∴|﹣2012|=2012.故答案为:2012.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.10.(3分)我区郭猛镇生态园区生产的草莓包装纸箱上标明草莓的质量为千克,如果这箱草莓重4.98千克,那么这箱草莓质量符合标准.(填“符合”或“不符合”).考点:正数和负数.分析:据题意求出标准质量的范围,然后再根据范围判断.解答:解:∵5+0.03=5.03千克;5﹣0.03=4.97千克,∴标准质量是4.97千克~5.03千克,∵4.98千克在此范围内,∴这箱草莓质量符合标准.故答案为:符合.点评:本题考查了正、负数的意义,懂得质量书写含义求出标准质量的范围是解题的关键.11.(3分)(2012河源)若代数式﹣4x6y与x2ny是同类项,则常数n的值为3.考点:同类项.分析:根据同类项的定义得到2n=6解得n值即可.解答:解:∵代数式﹣4x6y与x2ny是同类项,∴2n=6解得:n=3故答案为3.点评:本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.12.(3分)某校去年初一招收新生x人,今年比去年减少20%,用代数式表示今年该校初一学生人数为0.8x.考点:列代数式.分析:根据今年的收新生人数=去年的新生人数﹣20%×去年的新生人数求解即可.解答:解:去年收新生x人,所以今年该校初一学生人数为(1﹣20%)x=0.8x人,故答案为:0.8x.点评:本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.注意今年比去年增加20%和今年是去年的20%的区别.13.(3分)已知代数式x+2y﹣1的值是3,则代数式3﹣x﹣2y 的值是﹣1.考点:代数式求值.专题:整体思想.分析:由代数式x+2y﹣1的值是3得到x+2y=4,而3﹣x﹣2y=3﹣(x+2y),然后利用整体代值的思想即可求解.解答:解:∵代数式x+2y﹣1的值是3,∴x+2y﹣1=3,即x+2y=4,而3﹣x﹣2y=3﹣(x+2y)=3﹣4=﹣1.故答案为:﹣1.点评:此题主要考查了求代数式的值,解题的关键把已知等式和所求代数式分别变形,然后利用整体思想即可解决问题.14.(3分)一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则点A所表示的数是±7.考点:数轴.分析:一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则这个数的绝对值是7,据此即可判断.解答:解:一只蚂蚁从数轴上一点A出发,爬了7个单位长度到了原点,则这个数的绝对值是7,则A表示的数是:±7.故答案是:±7.点评:本题考查了绝对值的定义,根据实际意义判断A的绝对值是7是关键.15.(3分)现定义某种运算“*”,对任意两个有理数a,b,有a*b=ab,则(﹣3)*2=9.考点:有理数的乘方.专题:新定义.分析:将新定义的运算按定义的规律转化为有理数的乘方运算.解答:解:因为a*b=ab,则(﹣3)*2=(﹣3)2=9.点评:新定义的运算,要严格按定义的规律来.16.(3分)代数式6a2的实际意义:a的平方的6倍考点:代数式.分析:本题中的代数式6a2表示平方的六倍,较为简单.解答:解:代数式6a2表示的实际意义即为a的平方的6倍.故答案为:a的平方的6倍.点评:本题考查代数式的意义问题,对式子进行分析,弄清各项间的关系即可.17.(3分)已知|x﹣2|+(y+3)2=0,则x﹣y=5.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,x﹣2=0,y+3=0,解得x=﹣2,y=﹣3,所以,x﹣y=2﹣(﹣3)=5.故答案为:5.点评:本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.18.(3分)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性.若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为an,计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算,可知a100=5050.考点:规律型:数字的变化类.专题:计算题;压轴题.分析:先计算a2﹣a1=3﹣1=2;a3﹣a2=6﹣3=3;a4﹣a3=10﹣6=4,则a2=1+2,a3=1+2+3,a4=1+3+4,即第n个三角形数等于1到n的所有整数的和,然后计算n=100的'a的值.解答:解:∵a2﹣a1=3﹣1=2;a3﹣a2=6﹣3=3;a4﹣a3=10﹣6=4,∴a2=1+2,a3=1+2+3,a4=1+2+3+4,…∴a100=1+2+3+4+…+100==5050.故答案为:5050.点评:本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、耐心解一解,你笃定出色!(本大题共有8题,共66分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(12分)计算题:(1)﹣6+4﹣2;(2);(3)(﹣36)×;(4).考点:有理数的混合运算.分析:(1)从左到右依次计算即可求解;(2)首先把除法转化成乘法,然后计算乘法,最后进行加减运算即可;(3)利用分配律计算即可;(4)首先计算乘方,计算括号内的式子,再计算乘法,最后进行加减运算即可.解答:解:(1)原式=﹣2﹣2=﹣4;(2)原式=81×××=1;(3)原式=36×﹣36×+36×=16﹣30+21=7;(4)原式=﹣1﹣(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.点评:本题考查了有理数的混合运算,正确确定运算顺序是关键.20.(10分)(1)先化简,再求值:3(x﹣y)﹣2(x+y)+2,其中x=﹣1,y=2.。

七年级下册期中数学试题及答案

七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.四个数﹣3.14,0,1,2,最大的数是()A.﹣3.14 B.0 C.1 D.22.下列说法正确的是()A.a3•a2=a6B.a5+a5=a10C.a6÷a2=a4D.(﹣3a3)2=6a23.用科学记数法表示0.0000907的结果正确的是()A.9.1×10﹣4B.9.1×10﹣5C.9.0×10﹣5D.9.07×10﹣54.如果一个角的补角是150°,那么这个角的度数是()A.30°B.60°C.90°D.120°5.下列说法正确的是()A.对顶角相等B.同位角相等 C.内错角相等 D.同旁内角互补6.计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a7.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式y=35x+20来表示,则y随x的增大而()A.增大B.减小C.不变D.以上答案都不对8.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±69.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE10.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的关系的图象如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲在中途停留了0.5小时.③乙比甲晚出发了0.5小时.④甲、乙两人同时到达目的地.⑤乙追上甲后甲的速度<乙的速度.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共24分)11.﹣2的相反数是.12.化简:6a6÷3a3= .13.如图,∠1=118°,∠2=62°,则a与b的位置关系是.14.如图,AB⊥l1,AC⊥l2,垂足分别为B,A,则A点到直线l1的距离是线段的长度.15.如上图,把矩形ABCD沿EF对折,若∠1=36°,则∠AEF等于.16.用“※”定义新运算:对于任意实数a,b,都有a※b=b2+1.例如,7※4=42+1=17,那么5※3=.17.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是.三、解答题(本大题共3小题,每小题6分,共18分)18.5x(2x2﹣3x+4)19.计算:(﹣1)2+|﹣4|+(3.14﹣π)0﹣()﹣2.20.已知:∠α,∠β.请你用直尺和圆规作一个∠BAC,使∠BAC=∠α+∠β.(要求:要保留作图痕迹)四、解答题(本大题共3小题,每小题7分,共21分)21.先化简,再求值:(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab,其中a=2,b=1.22.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.23.如图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t (单位:时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,自变量是,因变量是.(2)9时所走的路程是多少?他休息了多长时间?(3)他从休息后直至到达目的地这段时间的平均速度是多少?五、解答题(本大题共3小题,每小题9分,共27分)24.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.证明:∵∠1=∠2,∴∥,()∴∠EAC=∠ACG,()∵AB平分∠EAC,CD平分∠ACG,∴=∠EAC,=∠ACG,∴= ,∴AB∥CD().25.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.26.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;(3)求第n行各数之和.七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.四个数﹣3.14,0,1,2,最大的数是()A.﹣3.14 B.0 C.1 D.2【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,即可解答.【解答】解:∵﹣3.14<0<1<2,∴最大的数是2,故选:D.2.下列说法正确的是()A.a3•a2=a6B.a5+a5=a10C.a6÷a2=a4D.(﹣3a3)2=6a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a5,不符合题意;B、原式=2a5,不符合题意;C、原式=a4,符合题意;D、原式=9a6,不符合题意,故选C3.用科学记数法表示0.0000907的结果正确的是()A.9.1×10﹣4B.9.1×10﹣5C.9.0×10﹣5D.9.07×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000907=9.07×10﹣5.故选:D.4.如果一个角的补角是150°,那么这个角的度数是()A.30°B.60°C.90°D.120°【考点】余角和补角.【分析】根据和为180度的两个角互为补角求解即可.【解答】解:根据定义一个角的补角是150°,则这个角是180°﹣150°=30°,故选A.5.下列说法正确的是()A.对顶角相等B.同位角相等 C.内错角相等 D.同旁内角互补【考点】同位角、内错角、同旁内角;余角和补角;对顶角、邻补角.【分析】根据对顶角相等和平行线的性质得出即可.【解答】解:A、对顶角相等,故本选项正确;B、只有在平行线中同位角才相等,故本选项错误;C、只有在平行线中内错角才相等,故本选项错误;D、只有在平行线中同旁内角才互补,故本选项错误;故选A.6.计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a,故选:B.7.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式y=35x+20来表示,则y随x的增大而()A.增大B.减小C.不变D.以上答案都不对【考点】一次函数的应用.【分析】题目所给信息:“某个地点y与x的关系可以由公式y=35x+20来表示”,由一次函数的性质,可知:当系数大于零时,y随x的增大而增大,然后根据一次函数的图象性质可知道y,x的关系【解答】解:由题目分析可知:在某个地点岩层温度y随着所处深度x的变化的关系可以由公式y=35x+20来表示,由一次函数性质,进行分析,因为35>0,故应有y随x的增大而增大.故选A.8.若x2+ax+9=(x+3)2,则a的值为()A.3 B.±3 C.6 D.±6【考点】完全平方公式.【分析】根据题意可知:将(x+3)2展开,再根据对应项系数相等求解.【解答】解:∵x2+ax+9=(x+3)2,而(x+3)2=x2+6x+9;即x2+ax+9=x2+6x+9,∴a=6.故选C.9.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.10.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的关系的图象如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲在中途停留了0.5小时.③乙比甲晚出发了0.5小时.④甲、乙两人同时到达目的地.⑤乙追上甲后甲的速度<乙的速度.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【考点】一次函数的应用.【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:(1)两个图象纵坐标的最大值都是18,则他们都行驶18千米,正确;(2)甲在途中停留的时间是1﹣0.5=0.5(小时),正确;(3)乙比甲晚出发0.5小时,正确;(4)乙比甲早到0.5小时,错误;(5)乙追上甲后的速度是=12千米/时,相遇时,距离是12×0.5=6(千米),则甲的速度是=8(千米/时),故⑤正确.故选C.二、填空题(本大题共7小题,每小题4分,共24分)11.﹣2的相反数是 2 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.12.化简:6a6÷3a3= 2a3.【考点】整式的除法.【分析】单项式除以单项式就是将系数除以系数作为结果的系数,相同字母除以相同字母作为结果的一个因式即可.【解答】解:6a6÷3a3=(6÷3)(a6÷a3)=2a3.故答案为:2a3.13.如图,∠1=118°,∠2=62°,则a与b的位置关系是a∥b .【考点】平行线的判定;对顶角、邻补角.【分析】先根据邻补角得出∠3=118°,再根据∠1=118°,得出∠1=∠3,进而得到a∥b.【解答】解:如图,∵∠2=62°,∴∠3=118°,又∵∠1=118°,∴∠1=∠3,∴a∥b,故答案为:a∥b.14.如图,AB⊥l1,AC⊥l2,垂足分别为B,A,则A点到直线l1的距离是线段AB 的长度.【考点】点到直线的距离.【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离可得点P到直线l的距离是线段AB的长度.【解答】解:∵AB⊥l,1的距离是线段AB的长度,∴则A点到直线l1故答案为:AB.15.如上图,把矩形ABCD沿EF对折,若∠1=36°,则∠AEF等于108°.【考点】翻折变换(折叠问题);矩形的性质.【分析】根据平角的定义求出∠BFH,根据折叠的性质得到∠BFE=∠HFE,根据平行线的性质计算即可.【解答】解:∵∠1=36°,∴∠BFH=180°﹣∠1=144°,由翻转变换的性质可知,∠BFE=∠HFE=∠BFH=72°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=180°﹣∠BFE=108°,故答案为:108°.16.用“※”定义新运算:对于任意实数a,b,都有a※b=b2+1.例如,7※4=42+1=17,那么5※3=10 .【考点】代数式求值.【分析】熟悉新运算的计算规则,运用新规则计算.【解答】解:依规则可知:5※3=32+1=10;故答案为:10.17.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是0 .【考点】代数式求值.【分析】根据运算程序可得,若输入的是x,则输出的是﹣2x+4,把x的值代入可求输出数的值.【解答】解:根据运算程序可知,若输入的是x,则输出的是﹣2x+4,∴当x=2时,输出的数值是﹣2×2+4=0.三、解答题(本大题共3小题,每小题6分,共18分)18.5x(2x2﹣3x+4)【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.19.计算:(﹣1)2+|﹣4|+(3.14﹣π)0﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及正整数指数、零指数幂、负指数幂、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+4+1﹣4=2.20.已知:∠α,∠β.请你用直尺和圆规作一个∠BAC,使∠BAC=∠α+∠β.(要求:要保留作图痕迹)【考点】作图—复杂作图.【分析】先作一个角等于∠1=∠α,再在∠1的一边作∠2=∠β,则∠1+∠2=∠BAC.【解答】解:(1)作射线AC,(2)以O点为圆心,以任意长为半径,交OM于M、交ON于N;(3)以A点为圆心,以ON长为半径画弧,交AC于C;(4)以C为圆心,以MN长为半径作弧,交前弧于E';即∠EAC=∠1=∠α,同理在∠1的同侧作∠2=∠β;即∠1+∠2=∠BAC.四、解答题(本大题共3小题,每小题7分,共21分)21.先化简,再求值:(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab,其中a=2,b=1.【考点】整式的混合运算—化简求值.【分析】先根据平方差公式和多项式除单项式的法则化简,然后再代入计算即可.【解答】解:(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab=a2﹣b2+b2﹣2ab,=a2﹣2ab,当a=2,b=1时,原式=22﹣2×2×1,=4﹣4,=0.22.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.【考点】垂线;对顶角、邻补角.【分析】∠1与∠3是对顶角;∠2与∠3互为余角.【解答】解:由题意得:∠3=∠1=30°(对顶角相等)∵AB⊥CD(已知)∴∠BOD=90°(垂直的定义)∴∠3+∠2=90°即30°+∠2=90°∴∠2=60°23.如图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t (单位:时)的变量关系的图象.根据图象回答问题:(1)在这个变化过程中,自变量是时间,因变量是路程.(2)9时所走的路程是多少?他休息了多长时间?(3)他从休息后直至到达目的地这段时间的平均速度是多少?【考点】函数的图象;常量与变量.【分析】(1)根据数量关系路程=速度×时间,结合函数图象即可得出:自变量为时间,因变量为路程;(2)找出当时间为9时时的路程,再找出休息的起始时间即可得出结论;(3)利用速度=路程÷时间即可求出结论.【解答】解:(1)∵数量关系:路程=速度×时间,∴结合图形即可得出:自变量为时间,因变量为路程.故答案为:时间;路程.(2)∵当时间为9时时,路程为4千米,∴9时所走的路程是4千米.10.5﹣10=0.5小时=30分钟.∴他休息了30分钟.(3)(15﹣9)÷(12﹣10.5)=4(千米/时).答:他从休息后直至到达目的地这段时间的平均速度是4千米/时.五、解答题(本大题共3小题,每小题9分,共27分)24.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.证明:∵∠1=∠2,∴AE ∥CF ,(同位角相等,两直线平行)∴∠EAC=∠ACG,(两直线平行,内错角相等)∵AB平分∠EAC,CD平分∠ACG,∴2∠3 =∠EAC,2∠4 =∠ACG,∴∠3 = ∠4 ,∴AB∥CD(内错角相等,两直线平行).【考点】平行线的判定与性质.【分析】首先证明AE∥CF,进而得到∠EAC=∠ACG,再利用角平分线的性质得到∠3=∠4,于是得到AB∥CD.【解答】证明:∵∠1=∠2,∴AE∥CF,(同位角相等,两直线平行)∴∠EAC=∠ACG,(两直线平行,内错角相等)∵AB平分∠EAC,CD平分∠ACG,∴2∠3=∠EAC,2∠4=∠ACG,∴∠3=∠4,∴AB∥CD(内错角相等,两直线平行).故答案为AE;CF;同位角相等,两直线平行;两直线平行,内错角相等;2∠3;2∠4;∠3;∠4;内错角相等,两直线平行25.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.【考点】一次函数的应用.【分析】(1)因为移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话xmin,两种方式的费用分别为y1元和y2元,则y1=50+0.4x,y2=0.6x;(2)令y1=y2,解方程即可;(3)令x=300,分别求出y1、y2的值,再做比较即可.【解答】解:(1)y1=50+0.4x;y2=0.6x;(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250所以通话250分钟两种费用相同;(3)令x=300则y1=50+0.4×300=170;y2=0.6×300=180所以选择全球通合算.26.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是64 ,它是自然数8 的平方,第8行共有15 个数;(2)用含n的代数式表示:第n行的第一个数是n2﹣2n+2 ,最后一个数是n2,第n 行共有2n﹣1 个数;(3)求第n行各数之和.【考点】整式的混合运算;规律型:数字的变化类.【分析】(1)数为自然数,每行数的个数为1,3,5,…的奇数列,很容易得到所求之数;(2)知第n行最后一数为n2,则第一个数为n2﹣2n+2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)通过以上两步列公式从而解得.【解答】解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得64,其他也随之解得:8,15;(2)由(1)知第n行最后一数为n2,且每行个数为(2n﹣1),则第一个数为n2﹣(2n﹣1)+1=n2﹣2n+2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)第n行各数之和:×(2n﹣1)=(n2﹣n+1)(2n﹣1).11。

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.4的平方根是()A .2B .2±C .2D .2±2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D 3.点(﹣4,2)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.以下命题是真命题的是( )A .相等的两个角一定是对顶角B .过直线外一点有且只有一条直线与已知直线平行C .两条平行线被第三条直线所截,内错角互补D .在同一平面内,垂直于同一条直线的两条直线互相垂直5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .46.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③B .①②④C .①③④D .②③④ 7.如图,直线AB ∥CD ,BE 平分∠ABD ,若∠DBE =20°,∠DEB =80°,求∠CDE 的度数是( )A .50°B .60°C .70°D .80°8.如图,在平面直角坐标系中,将边长为3,4,5的Rt ABO 沿x 轴向右滚动到11AB C △的位置,再到112A B C 的位置…依次进行下去,发现()3,0A ,()112,3A ,()215,0A …那么点10A 的坐标为( )A .()60,3B .()60,0C .()63,3D .()63,0二、填空题9.36的平方根是_________10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____.12.如图,已知AB //EF ,∠B =40°,∠E =30°,则∠C -∠D 的度数为________________.13.如图,将一张长方形纸条折成如图的形状,若170∠=︒,则2∠的度数为____.14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.点()2,28M a a +-是第四象限内一点,若点M 到两坐标轴的距离相等,则点M 的坐标为__________.16.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______三、解答题17.(1)已知2(1)4x -=,求x 的值;(2)计算:23112(2)8--+-. 18.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程.理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ).ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 .(2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.已知:a 是173-的整数部分,b 是173-的小数部分.求:(1)a ,b 值(2)()()224a b -++的平方根.22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.23.如图,直线HD //GE ,点A 在直线HD 上,点C 在直线GE 上,点B 在直线HD 、GE 之间,∠DAB =120°.(1)如图1,若∠BCG =40°,求∠ABC 的度数;(2)如图2,AF 平分∠HAB ,BC 平分∠FCG ,∠BCG =20°,比较∠B ,∠F 的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.【参考答案】一、选择题1.D解析:D【分析】依据平方根的定义、算术平方根的定义进行解答即可.【详解】解:∵2=,∴故选D.【点睛】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【详解】解:点(-4,2)所在的象限是第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】利用对顶角的定义、平行线的性质等知识分别判断后即可确定正确的选项.【详解】解:A、相等的两个角不一定是对顶角,故原命题错误,是假命题,不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,正确,是真命题,符合题意;C、两条平行线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;D、在同一平面内,垂直于同一条直线的两条直线互相平行,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确; ∵116的算术平方根是14,∴④正确; 正确的是②③④,故选:D .【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.7.B【分析】延长DE ,交AB 于点F ,根据角平分线的定义以及已知条件可得20EBF ∠=︒,由三角形的外角性质可求EFB ∠,最后由平行线的性质即可求解.【详解】延长DE ,交AB 于点F ,BE 平分∠ABD ,20DBE ∠=︒,20EBF DBE ∴∠=∠=︒,DEB DFB EBF ∠=∠+∠,∠DEB =80°,802060EFB DEB EBF ∴∠=∠-∠=︒-︒=︒,//AB CD ,60CDE EFB ∴∠=∠=︒,故选B .【点睛】本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键.8.D【分析】根据旋转的过程寻找规律即可求解.【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(解析:D【分析】根据旋转的过程寻找规律即可求解.【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A9(5×12,3),A10(5×12+3,0),即(63,0).故选:D.【点睛】本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识.二、填空题9..【详解】【分析】先确定,再根据平方根定义可得的平方根是±.【详解】因为,6的平方根是±,所以的平方根是±.故正确答案为±.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示解析:【详解】=.6=,6的平方根是6故正确答案为.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义. 10.0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.【详解】解:根据对称的性质,得,解得.故答案为:0.【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.4cm【详解】∵BC=10cm ,BD :DC=3:2,∴BD=6cm ,CD=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .解析:4cm【详解】∵BC=10cm ,BD :DC=3:2,∴BD=6cm ,CD=4cm ,∵AD 是△ABC 的角平分线,∠ACB=90°,∴点D 到AB 的距离等于DC ,即点D 到AB 的距离等于4cm .12.10°【分析】过点C 作CG ∥AB ,过点D 作DH ∥EF ,根据平行线的性质可得AB ∥CG ∥DH ∥EF ,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH ,即可求解.【详解】解析:10°【分析】过点C 作CG ∥AB ,过点D 作DH ∥EF ,根据平行线的性质可得AB ∥CG ∥DH ∥EF ,从而可得∠BCG =∠B =40°,∠EDH =∠E =30°,∠DCG =∠CDH ,即可求解.【详解】解:如图,过点C 作CG ∥AB ,过点D 作DH ∥EF ,∵AB//EF,∴AB∥CG∥DH∥EF,∵∠B=40°,∠E=30°,∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°.故答案为:10°.【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键.13.55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,解析:55°【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵∠1=70°,∴∠3+∠4=180°-∠1=110°,又∵折叠,∴∠3=∠4=55°,∵AB//DE,∴∠2=∠3=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b ++- =a ,a 最大为8; 当a <b 时,a ☆b =2a b a b ++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【分析】根据点是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.【详解】∵点是第四象限内一点且到两坐标轴距离相等,∴点M 的横坐标与纵坐标互为解析:()4,4-【分析】根据点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,点M 的横坐标与纵坐标互为相反数列方程求出a 的值,再求解即可.【详解】∵点()2,28M a a +-是第四象限内一点且到两坐标轴距离相等,∴点M 的横坐标与纵坐标互为相反数∴()228a =a +--解得,2a =∴M 点坐标为(4,-4).故答案为(4,-4)【点睛】本题考查了点的坐标,理解点M 是第四象限内一点且到两坐标轴距离相等,则点M 的横坐标与纵坐标互为相反数是解题的关键.16.(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解解析:(8052,0).【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O 的距离,然后写出坐标即可.【详解】解:∵点A (﹣4,0),B (0,3),∴OA =4,OB =3,∴AB5,∴第(3)个三角形的直角顶点的坐标是()12,0;观察图形不难发现,每3个三角形为一个循环组依次循环,∴一次循环横坐标增加12,∵2013÷3=671∴第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,∴第(2013)个三角形的直角顶点的坐标是()67112,0⨯即()8052,0.故答案为:()8052,0.【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.三、解答题17.(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵;∴∴x=3或x=-1(2)原式=,【解析:(1)x=3或x=-1;(212(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:∵()214x -=;∴12x -=±∴x=3或x=-1(2)原式1122-+ 12=, 【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键. 18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1),或.(2),.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1)1a =,174b =.(2)32±【分析】(1接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】 1754<<∴ 132<<,∴整数部分1a =,小数部分314b -=.(2)()()224a b -++原式())22144=-++ 11718=+=,则()()224a b -++的平方根为±【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键. 22.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x ,宽为2x ,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析【分析】(1)设长为3x ,宽为2x ,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a 即可得到大正方形的面积.【详解】解:(1)设长为3x ,宽为2x ,则:3x •2x =30,∴x∴3x =,2x =答:这个长方形纸片的长为(2)正确.理由如下:根据题意得:()()2504230a b a b a b ⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩, 解得:105a b =⎧⎨=⎩, ∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后∠HAP;理由见解解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12析.【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK//HD//GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=12∠HAP+12∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣12∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣12∠HAP﹣12∠PCG﹣90°+12∠PCG=90°﹣12∠HAP,即:∠N=90°﹣12∠HAP.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.。

人教版七年级数学下册期中测试卷【及答案】

人教版七年级数学下册期中测试卷【及答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个2.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106° 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.68.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)的立方根是________.1.272.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.已知直线AB∥x轴,点A的坐标为(1,2),并且线段AB=3,则点B的坐标为________.5.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6(3)3157146x x---=(4)20.30.40.50.3a a-+-=12.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、B5、C6、B7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、203、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、(4,2)或(﹣2,2).5、-1或-46、54°三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、(1)m=-5 (2)373、略4、(1)略;(2)略.5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 七年级(下)期中数学试卷 一、选择题(本大题共10小题,每小题3分,共30分) 1.四个数﹣3.14,0,1,2,最大的数是( ) A.﹣3.14 B.0 C.1 D.2 2.下列说法正确的是( ) A.a3•a2=a6 B.a5+a5=a10 C.a6÷a2=a4 D.(﹣3a3)2=6a2 3.用科学记数法表示0.0000907的结果正确的是( ) A.9.1×10﹣4 B.9.1×10﹣5 C.9.0×10﹣5 D.9.07×10﹣5 4.如果一个角的补角是150°,那么这个角的度数是( ) A.30° B.60° C.90° D.120° 5.下列说法正确的是( ) A.对顶角相等 B.同位角相等 C.内错角相等 D.同旁内角互补 6.计算3a﹣2a的结果正确的是( ) A.1 B.a C.﹣a D.﹣5a 7.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式y=35x+20来表示,则y随x的增大而( ) A.增大 B.减小 C.不变 D.以上答案都不对 8.若x2+ax+9=(x+3)2,则a的值为( ) A.3 B.±3 C.6 D.±6 9.如图,能判定EB∥AC的条件是( )

A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 10.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的关系的图象如图所示.根据图中提供的信息,有下列说法: ①他们都行驶了18千米.②甲在中途停留了0.5小时.③乙比甲晚出发了0.5小时.④甲、乙两人同时到达目的地.⑤乙追上甲后甲的速度<乙的速度. 其中符合图象描述的说法有( )

A.2个 B.3个 C.4个 D.5个 二、填空题(本大题共7小题,每小题4分,共24分) 11.﹣2的相反数是 . 12.化简:6a6÷3a3= . 13.如图,∠1=118°,∠2=62°,则a与b的位置关系是 . 2

14.如图,AB⊥l1,AC⊥l2,垂足分别为B,A,则A点到直线l1的距离是线段 的长度. 15.如上图,把矩形ABCD沿EF对折,若∠1=36°,则∠AEF等于 . 16.用“※”定义新运算:对于任意实数a,b,都有a※b=b2+1.例如,7※4=42+1=17,那么5※3= . 17.下面是一个简单的数值运算程序,当输入x的值为2时,输出的数值是 .

三、解答题(本大题共3小题,每小题6分,共18分) 18.5x(2x2﹣3x+4)

19.计算:(﹣1)2+|﹣4|+(3.14﹣π)0﹣()﹣2. 20.已知:∠α,∠β.请你用直尺和圆规作一个∠BAC,使∠BAC=∠α+∠β.(要求:要保留作图痕迹)

四、解答题(本大题共3小题,每小题7分,共21分) 21.先化简,再求值:(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab,其中a=2,b=1. 22.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.

23.如图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象.根据图象回答问题: (1)在这个变化过程中,自变量是 ,因变量是 . (2)9时所走的路程是多少?他休息了多长时间? (3)他从休息后直至到达目的地这段时间的平均速度是多少? 3

五、解答题(本大题共3小题,每小题9分,共27分) 24.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.将下列证明AB∥CD的过程及理由填写完整. 证明:∵∠1=∠2, ∴ ∥ ,( ) ∴∠EAC=∠ACG,( ) ∵AB平分∠EAC,CD平分∠ACG, ∴ =∠EAC, =∠ACG, ∴ = , ∴AB∥CD( ).

25.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元. (1)写出y1、y2与x之间的函数关系式; (2)一个月内通话多少分钟,两种移动通讯费用相同; (3)某人估计一个月内通话300min,应选择哪种移动通讯合算些. 26.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.

(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数; (2)用含n的代数式表示:第n行的第一个数是 ,最后一个数是 ,第n行共有 个数; (3)求第n行各数之和. 4

七年级(下)期中数学试卷 参考答案与试题解析 一、选择题(本大题共10小题,每小题3分,共30分) 1.四个数﹣3.14,0,1,2,最大的数是( ) A.﹣3.14 B.0 C.1 D.2 【考点】有理数大小比较. 【分析】根据正数大于0,0大于负数,即可解答. 【解答】解:∵﹣3.14<0<1<2, ∴最大的数是2, 故选:D.

2.下列说法正确的是( ) A.a3•a2=a6 B.a5+a5=a10 C.a6÷a2=a4 D.(﹣3a3)2=6a2 【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 【分析】原式各项计算得到结果,即可作出判断. 【解答】解:A、原式=a5,不符合题意; B、原式=2a5,不符合题意; C、原式=a4,符合题意; D、原式=9a6,不符合题意, 故选C

3.用科学记数法表示0.0000907的结果正确的是( ) A.9.1×10﹣4 B.9.1×10﹣5 C.9.0×10﹣5 D.9.07×10﹣5 【考点】科学记数法—表示较小的数. 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【解答】解:0.0000907=9.07×10﹣5. 故选:D.

4.如果一个角的补角是150°,那么这个角的度数是( ) A.30° B.60° C.90° D.120° 【考点】余角和补角. 【分析】根据和为180度的两个角互为补角求解即可. 【解答】解:根据定义一个角的补角是150°, 则这个角是180°﹣150°=30°, 故选A.

5.下列说法正确的是( ) A.对顶角相等 B.同位角相等 C.内错角相等 D.同旁内角互补 【考点】同位角、内错角、同旁内角;余角和补角;对顶角、邻补角. 【分析】根据对顶角相等和平行线的性质得出即可. 【解答】解:A、对顶角相等,故本选项正确; B、只有在平行线中同位角才相等,故本选项错误; C、只有在平行线中内错角才相等,故本选项错误; 5

D、只有在平行线中同旁内角才互补,故本选项错误; 故选A.

6.计算3a﹣2a的结果正确的是( ) A.1 B.a C.﹣a D.﹣5a 【考点】合并同类项. 【分析】根据合并同类项的法则,可得答案. 【解答】解:原式=(3﹣2)a=a, 故选:B.

7.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式y=35x+20来表示,则y随x的增大而( ) A.增大 B.减小 C.不变 D.以上答案都不对 【考点】一次函数的应用. 【分析】题目所给信息:“某个地点y与x的关系可以由公式y=35x+20来表示”,由一次函数的性质,可知:当系数大于零时,y随x的增大而增大,然后根据一次函数的图象性质可知道y,x的关系 【解答】解:由题目分析可知:在某个地点岩层温度y随着所处深度x的变化的关系可以由公式y=35x+20来表示,由一次函数性质,进行分析,因为35>0,故应有y随x的增大而增大. 故选A.

8.若x2+ax+9=(x+3)2,则a的值为( ) A.3 B.±3 C.6 D.±6 【考点】完全平方公式. 【分析】根据题意可知:将(x+3)2展开,再根据对应项系数相等求解. 【解答】解:∵x2+ax+9=(x+3)2, 而(x+3)2=x2+6x+9; 即x2+ax+9=x2+6x+9, ∴a=6. 故选C.

9.如图,能判定EB∥AC的条件是( ) A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 【考点】平行线的判定. 【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线. 【解答】解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意; B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意; C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意; D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意. 故选:D.

10.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的关系的图象如图所示.根据图中提供的信息,有下列说法:

相关文档
最新文档