中考里的有理数运算
中考专题01 有理数的运算(附教师答案版)

专题01有理数的运算1.有理数:整数和分数统称有理数⑴正整数、0、负整数统称为整数(0和正整数统称为自然数) ⑵正分数和负分数统称为分数理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
2.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 3.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;4.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.5.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 6.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 7.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 8.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.专题知识回顾9.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .10.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a. 11.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数; 注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n,当n 为正偶数时: (-a)n=a n或 (a-b)n =(b-a)n.12.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;13.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.14.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.15.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 16.混合运算法则:先乘方,后乘除,最后加减.【例题1】(2019•江苏苏州)5的相反数是( )A .15B .15- C .5D .5-【例题2】(2019•广东省广州市)|﹣6|=( ) A .﹣6 B .6C .﹣D .【例题3】(2019•湖南株洲)﹣3的倒数是( ) A .﹣B .C .﹣3D .3【例题4】(台湾)算式743×369﹣741×370之值为何?( )专题典型题考法及解析A .﹣3B .﹣2C .2D .3【例题5】(2019•湖北孝感)中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为 .【例题6】(经典题)按照要求,用四舍五入法表示数。
2024年中考数学真题汇编专题二 有理数及其运算+答案详解

2024年中考数学真题汇编专题二 有理数及其运算+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,数轴上点P 表示的数是( )A .1−B .0C .1D .22.(2024·四川遂宁·中考真题)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯3.(2024·湖南·中考真题)据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A .70.401510⨯B .64.01510⨯C .540.1510⨯D .34.01510⨯4.(2024·河南·中考真题)据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A .8578410⨯B .105.78410⨯C .115.78410⨯D .120.578410⨯ 5.(2024·河南·中考真题)计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( ) A .5a B .6a C .3a a + D .3a a6.(2024·天津·中考真题)据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯7.(2024·四川乐山·中考真题)2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A .8410⨯B .9410⨯C .10410⨯D .11410⨯8.(2024·广西·中考真题)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A .90.84910⨯B .88.4910⨯C .784.910⨯D .684910⨯ 9.(2024·黑龙江绥化·中考真题)实数12025−的相反数是( ) A .2025 B .2025− C .12025− D .1202510.(2024·甘肃临夏·中考真题)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )A .82.710⨯B .100.2710⨯C .92.710⨯D .82710⨯11.(2024·吉林·中考真题)长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯12.(2024·四川达州·中考真题)有理数2024的相反数是( )A .2024B .2024−C .12024D .12024− 13.(2024·重庆·中考真题)下列各数中最小的数是( )A .1−B .0C .1D .214.(2024·广东·中考真题)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯15.(2024·重庆·中考真题)下列四个数中,最小的数是( )A .2−B .0C .3D .12− 16.(2024·四川德阳·中考真题)下列四个数中,比2−小的数是( )A .0B .1−C .12−D .3−17.(2024·四川广安·中考真题)下列各数最大的是( )A .2−B .12−C .0D .118.(2024·云南·中考真题)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A .100米B .100−米C .200米D .200−米19.(2024·四川广元·中考真题)将1−在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1−B .1C .3−D .320.(2024·四川凉山·中考真题)下列各数中:553025.827−−−+,,,,,,负数有( ) A .1个 B .2个 C .3个 D .4个21.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3−B .1C .2D .322.(2024·湖北·中考真题)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A .10+元B .10−元C .20+元D .20−元23.(2024·湖南·中考真题)在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180−元D .480−元24.(2024·河北·中考真题)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D . 25.(2024·广东广州·中考真题)四个数10−,1−,0,10中,最小的数是( )A .10−B .1−C .0D .1026.(2024·贵州·中考真题)下列有理数中最小的数是( )A .2−B .0C .2D .427.(2024·浙江·中考真题)以下四个城市中某天中午12时气温最低的城市是( )A .北京B .济南C .太原D .郑州 28.(2024·四川内江·中考真题)2023年我国汽车出口491万辆,首次超越日本,成为全球第一大汽车出口国,其中491万用科学记数法表示为( )A .44.9110⨯B .54.9110⨯C .64.9110⨯D .74.9110⨯29.(2024·广西·中考真题)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A .B .C .D .30.(2024·福建·中考真题)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯31.(2024·北京·中考真题)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯32.(2024·湖北武汉·中考真题)国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯33.(2024·浙江·中考真题)2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .920.13710⨯B .80.2013710⨯C .92.013710⨯D .82.013710⨯34.(2024·吉林·中考真题)若()3−⨯的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1−35.(2024·内蒙古赤峰·中考真题)央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A .95.210⨯B .110.5210⨯C .95210⨯D .105.210⨯36.(2024·内蒙古包头·中考真题)若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .437.(2024·四川内江·中考真题)下列四个数中,最大数是( )A .2−B .0C .1−D .338.(2024·甘肃·中考真题)下列各数中,比2−小的数是( )A .1−B .4−C .4D .139.(2024·山东威海·中考真题)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5−C .3−D .1040.(2024·内蒙古赤峰·中考真题)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A .a b +B .a b −C .abD .a b −二、填空题41.(2024·黑龙江大兴安岭地·中考真题)国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为 .42.(2024·江苏连云港·中考真题)如果公元前121年记作121−年,那么公元后2024年应记作 年. 43.(2024·湖北·中考真题)写一个比1−大的数 .44.(2024·湖南·中考真题)计算:()2024−−= .45.(2024·湖北武汉·中考真题)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2记作 ℃.46.(2024·陕西·中考真题)小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是 .(写出一个符合题意的数即可)47.(2024·黑龙江齐齐哈尔·中考真题)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为 .48.(2024·上海·中考真题)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示) 49.(2024·四川广元·中考真题)2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810−秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为秒.50.(2024·北京·中考真题)联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。
有理数的基本概念与运算

第一章有理数基本内容结构本章内容:(1)有理数的相关概念,包括数轴、相反数、绝对值等;(2)有理数的运算,包括有理数的加、减、乘、除和乘方运算等;(3)科学记数法和近似数.本章重点:(1)有理数的相关概念,能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义;(2)有理数的运算,能进行有理数的加、减、乘、除、乘方运算和简单的混合运算.本章难点:负数概念的建立以及对有理数运算法则的理解.本章考情:本章在中考题中主要考查有理数的有关概念和科学记数法,题型主要以选择题、填空题为主. 本章知识是后续学习的基础,所以在对其他内容的考查中也会包含有理数的知识.学习方法指导1. 有理数的有关概念及运算与小学学过的数的概念及运算联系紧密,因此注意应用类比的方法学习. 例如,对负数的认识离不开对已学过的数的认识;有理数的运算,当符号确定后,就归结为已学过的运算.2. 注重数学思想的应用,体会数形结合、分类讨论、转化、类比等数学思想方法在本章学习中的应用.1.1 正数和负数本节概念与方法:正数和负数是具有相反意义的量.教学要求1.了解正数和负数的产生过程,体会数学与现实生活的联系.2.理解正数、负数和0的意义,会判断一个数是正数还是负数.13.能用正数、负数表示生活中具有相反意义的量.提前预习内容1.自然数的认识:自然数起源于数数,0是最小的自然数,没有最大的自然数.2.自然数与整数的关系:自然数都是整数,但整数不一定是自然数.3.分数:把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数.知识点突破知识点1 正数与负数的定义1.像2%,4,3,5这样大于0的数叫做正数. 有时为了明确所表达的意义,要在正数前面加上“+”(正)号,如+2,+0.7,17+,….2.像-3,-2.7%,-4.5这样在正数前面加上“-”(负)号的数叫做负数.提示:小于零的数是负数.3.0既不是正数,也不是负数,不要忽视零的这一特性.注意:(1)一个数前面的“+”或“-”号叫做这个数的符号,正数前面的“+”号一般省略不写,负数前面的“-”号不能省略不写.(2)0的意义:0不仅表示“没有”,它还是正数与负数的分界.例1 判断下列各数,哪些是正数,哪些是负数.+2014,-3.1,12,10.58,-9,+1,-45.6,0,1100+,-7%,114-.分析:可根据正数、负数的定义判断一个数是正数还是负数.解:正数有:+2014,12,10.58,+1,1100+.负数有:-3.1,-9,-45.6,-7%,114-.知识点2 用正数、负数表示具有相反意义的量在生产、生活中常常会遇到一些具有相反意义的量,例如“收入1000元与支出500元”“向东走2 km与向西走3 km”“上升1.5 m与下降0.8 m”等.为了更好地区分这些具有相反意义的量,我们把其中一种意义的量规定为正的,把另一种和它具有相反意义的量规定为负的.学习具有相反意义的量应注意两点:(1)它们表示的意义相反;(2)它们是同类量.提示:(1)用正数和负数表示具有相反意义的量时,哪种意义为正是可以任意选择的,2但习惯把“前进、上升,收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.例如:若规定收入1000元记作+1000元,则支出500元记作-500元;若规定上升1.5 m记作+1.5 m,则下降0.8 m记作-0.8 m.(2)具有相反意义的量一定是具体的数量.(3)具有相反意义的量中的两个量必须是同类量,如节约3吨汽油与浪费1吨水就不是具有相反意义的量.(4)具有相反意义的量是成对出现的,单独的一个量不能成为具有相反意义的量.具有相反意义的量,只要求意义相反,而不要求数量相等,如盈利3000元与亏损400元是具有相反意义的量.例2 (1)天气预报说某地12月某天的最高温度是零上5 ︒C,最低温度是零下3 ︒C,若规定零上温度为正,则零上5 ︒C可记作︒C,零下3 ︒C可记作︒C.(2)如果某蓄水池的水位比标准水位高2 m,记作+2 m,那么比标准水位低0.8 m应记作;恰好在标准水位应记作.(3)某地区的平均高度高于海平面310 m,记作海拔高度+310 m,则海拔高度-270 m 表示.解析:(1)因为规定零上温度为正,所以零下温度为负;(2)比标准水位高用正数表示,那么比标准水位低则用负数表示,恰好在标准水位上就用0表示;(3)高于海平面的海拔高度用正数表示,所以负数表示海拔高度低于海平面.答案:(1)+5(或5),-3;(2)-0.8 m,0 m;(3)低于海平面270 m.点拨:用正数和负数表示具有相反意义的量时,要明确“基准”.例3 长江某水文站的警戒水位为12 m,如果超过警戒水位1 m,记作+1 m,那么低于警戒水位0.60 m,记作m.观察某年8月1日至8月5日该水文站的水位记录表并回答问题.日期8月1日8月2日8月3曰8月4曰8月5日水位/m -0.80 0 0.38 0.50 0.96(1)哪一天的水位最高?最高水位是多少?(2)哪一天的水位最低?最低水位是多少?(3)在这五天中,有多少天的水位超过警戒水位?分析:在本题中负数表示低于警戒水位,正数表示超过警戒水位,由此可确定每天的水位,再进行比较即可.解:-0.60.(1)8月5日的水位最高,为12.96 m.(2)8月1日的水位最低,为11.20 m.(3)在这五天中,有三天的水位超过警戒水位.34规律总结:当题目中已明确给出“一种意义”的量对应的是正数还是负数时,我们就可判断“与之具有相反意义”的量所对应的是负数还是正数.题型分类剖析题型1 辨别正数和负数例1 在-5,0,2014,123-,13-,+0.03,154+,-1.23,π中,负数的个数为( ). A .8 B .6 C .4 D .3解析:根据负数的定义进行判断.注意对于正数和负数,不能简单地理解为带“+”号的数是正数,带“-”号的数是负数,如+(-4)=-4不是正数,-(-2)=2不是负数.答案:C题型2 正数和负数的实际应用1.用具有相反意义的量表示行走问题中的量例2 文具店、书店和玩具店依次位于一条东西走向的大街上,文具店在书店西边20 m 处,玩具店在书店东边100 m 处,小明从书店沿街向东走了40 m ,接着又向东走了-60 m ,此时小明在( ).A .文具店B .玩具店C .文具店西40 m 处D .玩具店西60 m 处解析:把文具店、书店、玩具店的相对位置及小明的行走路线在图上表示出来,小明从书店出发沿街向东走了40 m ,到达M 处,接着又向东走了-60 m ,表示接着向西走了60 m ,所以小明向西走了60 m ,此时小明在文具店.答案:A方法归纳:图示法.图示法是将研究的问题用图表示出来,使其直观形象,便于理解问题内在联系的方法.例如,本题中用直线上的点表示位置,用线段的长表示距离,便可轻松地确定小明的位置.2.用正数、负数记录成绩例3 七年级(1)班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,将超过平均成绩的记为正,得到五名同学的成绩为-15分,-4分,0分,4分,15分.这五名同学的实际成绩分别是多少分?分析:以平均成绩为标准,负数表示该成绩低于平均成绩,0表示该成绩与平均成绩相同,正数表示该成绩高于平均成绩.解:-15分表示比平均成绩85分少15分,即70分;-4分表示比平均成绩少4分,即81分;0分表示和平均成绩相同,即85分;4分表示比平均成绩多4分,即89分;15分表示比平均成绩多15分,即100分.这五名同学的实际成绩分别是70分,81分,85分,89分,100分.方法归纳:为了计算方便,常把高于平均数、标准数或某一基准数的量规定为正,把与它们具有相反意义的量用负数表示.3.用正数、负数表示误差范围例 4 某饮料公司生产了一种瓶装饮料,外包装上印有“(600±30) mL”的字样,那么(600±30) mL表示什么含义?质检局抽查了5瓶该产品,容量分别为603 mL,611 mL,588 mL,568 mL,628 mL,就容量而言,问抽查的产品是否合格?解题关键:“(600±30) mL”隐含着产品合格的范围,即合格产品的容量在(600-30) mL与(600+30) mL之间,根据这个范围来判断抽查产品是否合格.解:(600±30) mL表示容量在(570~630) mL的产品都合格.抽查的5瓶饮料中只有568 mL比600 mL少了32 mL,属不合格,其余均合格.注意:正数和负数的分界是0,但并不是所有的分界都是0,如本题中的分界为600 mL.题型3 与正数、负数相关的表格信息题例 5 一个病人每天要测量五次体温,该病人某一天五次所测体温的变化情况(与前一次测量的体温比较,升高为正,降低为负,前一天最后一次测量的体温是38 ︒C)如下表:时间6:00 10:00 14:00 18:00 22:00 体温变化/︒C +1.1 +0.4 -1 +0.5 -0.1实际体温/︒C(1)完成上面的表格;(2)计算该病人这一天的平均体温;(3)用前一天最后一次测量的体温与这天的平均体温比较,你能判断出该病人的体温是上升还是下降吗?分析:(1)根据该病人一天的体温变化情况,结合正数和负数的表示方法,即可求出答案.(2)根据表中所给的数据,结合题意,即可求出该病人这一天的平均体温.(3)用该病人前一天最后一次测量的体温与病人这天的平均体温进行比较,即可得出答案.解:(1)完成表格如下:5时间6:00 10:00 14:00 18:00 22:00 体温变化/︒C +1.1 +0.4 -1 +0.5 -0.1实际体温/︒C +39.1 +39.5 +38.5 +39 +38.9(2)根据题意,得平均体温=(39.1+39.5+38.5+39+38.9)÷5=195÷5=39 ︒C.(3)∵前一天最后一次测量的体温是38 ︒C,这天的平均体温是39 ︒C,39 ︒C>38 ︒C,∴该病人的体温上升了.注意:本题中明确每次的基准温度是难点,只有第一次测量体温时的基准温度是38 ︒C,而后几次的基准温度均是前一次所测量的实际温度.题型4 正数、负数的规律探究题例6 观察下面依次排列的两组数,请按其规律写出后面的3个数,你能说出第15个数、第101个数、第2017个数分别是什么吗?(1)-1,-2,+3,-4,-5,+6,-7,-8,,,,…;(2)-1,12,-3,14,-5,16,-7,18,,,,….分析:仔细观察每组数的特点,尤其是符号的分布特点,从变化中发现一般规律.由第(1)题所给的依次排列的一组数中的前8个数可知:对于第n个数,当n是3的整数倍时,此数为+n;当n不是3的整数倍时,此数为-n;由第(2)题所给的依次排列的一组数中的前8个数可知:对于第n个数,当n为奇数时,此数为-n;当n为偶数时,此数为1n.解:(1)+9,-10,-11.这组数中的第15个数为+15,第101个数为-101,第2017个数为-2017.(2)-9,110,-11.这组数中的第15个数为-15,第101个数为-101,第2017个数为-2017.点拨:探索规律时,应全面分析题中所给的所有数据,要从符号和数两个方面进行观察,若是分数,还要分别观察分子和分母.要特别注意观察符号的变化规律,这样才能找到这组数的变化规律.中考考点对接考点归纳解读 1:正数和负数的定义,主要考查辨别一个数是正数还是负数,中考题中多以选择题和填空题的形式出现,题目较简单.解读 2:考查运用正数、负数表示具有相反意义的量或考查用正数、负数表示的数的实际意义,题型以选择题、填空题为主.6典型考题中考真题((2016·山东临沂中考·3分)四个数-3,0,1,2,其中负数是().A.-3 B.0 C.1 D.2解析:根据负数的定义来判断.答案:A考题点睛:中考真题和教材练习题均考查了依据正数、负数的定义来辨别正数或负数,需要注意的是0既不是正数也不是负数.中考真题(2016·广州中考·3分)中国人很早开始使用负数,在中国古代数学著作《九章算术》的“方程”一章就正式引入了负数,这在世界数学史上属首次.如果收入100元记作+100元,那么-80元表示().A.支出20元B.收入20元C.支出80元D.收入80元解析:在实际问题中,由于“收入”和“支出”的意义相反,因此在用正负数表示具有相反意义的量时,若收入100元记作+100元,那么-80元表示支出80元,所以选项C正确,答案:C.考题点睛:中考真题与教材练习题都考查了对用正数、负数表示具有相反意义的量的理解,其解决问题的思想方法完全相同,属基础题.小结与警示一、知识结构图示二、前车之鉴易误点1 误认为凡带有正号的数就是正数,凡带有负号的数就是负数.正数前面的“+”号有时可以省略,但省略“+”号后仍是正数;用字母表示数时,带有“+”号或省略“+”号的数不一定是正数,带有“-”号的数不一定是负数.提示:例题见“题型分类剖析”例1.易误点2 对“0”的含义理解不准确.例1 下列说法错误的是().7A.0是自然数B.0是整数C.0是偶数D.某地海拔高度为0 m表示某地没有海拔高度答案:D注意:小学阶段开始学习数的吋候,0表示没有,学习了负数后,0除了表示“没有”外,还是正数与负数的分界.本题D选项中对海拔高度0 m的理解错误,它并不是表示某地没有海拔高度,而是表示某地与海平面一样高.易误点3 对负数表示的意义理解不清.例2 如果上升3 m记作+3 m,那么-4 m表示什么意义?解:-4 m表示下降4 m.注意:本题易错答案为下降-4 m.产生错误的原因是用正数、负数表示具有相反意义的量时,对负数表示的意义理解不清.易误点4 用正数、负数表示具有相反意义的量时忽略了量的单位.例3 如果中午12点记作0时,下午3点记作+3时,那么上午9点记作.解析:中午12点记作0时,中午12点之后几小时记作正几时,则中午12点之前几小时记作负几时,上午9点是中午12点之前3小时,故用-3时表示.答案:-3时注意:把一个量去掉它后面的单位名称后,它就是一个数,而不是一个量了.本题易错答案为-3,因漏掉后面的单位而出错.综合练习1.如果规定每天上午10时记为0时,10时以前记为负,10时以后记为正,且以45分钟为1个时间单位,如9:15记为-1时,10:45记为1时,那么7:45应记为().A.3时B.-3时C.-2.15时D.-7.45时2.在一次跳远测试中,体育老师以达标成绩2.00 m为标准,将高于该成绩的记为正,低于该成绩的记为负.王非跳出了2.12 m,记为+0.12 m;何叶跳出了1.95 m,记为;张平跳出的成绩记为0 m,他实际跳的距离是.3.一个物体沿着东、西两个方向运动,若向东记为正,向西记为负,则:(1)向东运动2 m,记作,向西运动4 m,记作;(2)+3 m表示向运动m,-6 m表示向运动m;(3)物体原地不动时,记作m.4.(“典型例题分析”例4变式)如图所示,某食品包装盒上标有“净含量385 g±5 g”,则这盒食品的合格净含量范围是g~390 g.895.教室高3 m ,教室里课桌高0.8 m ,如果把桌面高度记作0 m ,那么教室顶部和地面的高度分别记作什么?如果把教室顶部的高度记作0 m ,那么桌面和地面的高度分别记作什么?6.(“题型分类剖析”例3变式)如果课桌高度比标准高度高2 mm 记作+2 mm ,那么比标准高度低3 mm 记作什么?现有5张课桌,量得它们的高度比标准高度分别高+1 mm ,-1 mm ,0 mm ,+3 mm ,-1.5 mm ,若规定课桌的高度比标准高度高不超过 2 mm ,低不超过 2 mm 就算合格,则上述5张课桌中有几张合格?1.2 有理数本节概念与方法:有理数,有理数的分类,数轴,相反数,绝对值,有理数的大小比较.教学要求1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小,能对有理数按一定标准进行分类.2.借助数轴理解相反数、绝对值的意义,掌握求一个有理数的相反数、绝对值的方法. 3.知道|a |(a 表示有理数)的含义. 4.初步感悟分类讨论思想和数形结合思想.提前预习内容1.几个定义:10正数:像2%,4,3.5这样大于0的数叫做正数.负数:像-3,-2.7%,-4.5这样在正数前面加上符号“-”(负)的数叫做负数. 非正数包括负数和0; 非负数包括正数和0.2.已学过的几类数:(1)正整数,如1,2,3,…; (2)0;(3)负整数,如 1,-2,-3,…;(4)正分数,如12,13,0.1,35,…; (5)负分数,如-0.5,23-,18-,….知识点突破知识点1 有理数的有关概念★ 整数包括正整数、0、负整数,如-3,-2,0,1,2,3等. ★ 分数包括正分数、负分数,如+113,0.18,-1.35,45-等. 分数都可以化为有限小数或无限循环小数的形式,同时有限小数和无限循环小数又都可以化为分数,如10.254=,10.33= ,10.1428577= .所以有限小数和无限循环小数都属于分数,如3.17,0.3- 等都是分数. ★ 整数和分数统称为有理数. ★ 几个常用数学名词的含义.(1)正整数:既是正数,又是整数的数. (2)负整数:既是负数,又是整数的数. (3)正分数:既是正数,又是分数的数. (4)负分数:既是负数,又是分数的数. (5)非负数:正数和0. (6)非正数:负数和0. (7)非负整数:正整数和0. (8)非正整数:负整数和0. 拓展:任何一个有理数都可以写成nm的形式,其中只有当m ,n 同时满足:① m ,n 是互质的整数;② n ≠0,m ≠1时,nm才表示一个最简分数. 注意:(1)有理数只包括整数和分数,无限不循环小数不能转化成分数,故无限不循环。
中考数学复习指导:有理数计算的常用方法

有理数计算的常用方法关于有理数计算竞赛题,种类繁多,特点各异,解法多样,富有技巧.解题时,需要细心观察,深入探究,缜密分析,全面审视,除了发现题中的特征,还应挖掘题中隐含的规律,正确灵活地使用运算法则、性质和定律,实施“化繁为简,化难为易”的手段,达到准确,快捷解题之目的,根据笔者教学实践,总结出解有理数计算题的十一种常用方法,以供参考.一、凑整法例1计算:2002+98+997+9996+99995.分析题中几个数都与整十、整百、整千……很接近,因此可以凑成整十、整百、整千……来求解.解1 原式=(2002-2-3-4-5)+(98+2)+(997+3)+(9996+4)+(99995+5)=1988+100+1000+10000+100000=113088.例2若S=11+292+3993+49994+599995+6999996+79999997+899999998,则和数S的末四位数字之和是____.分析将题中的每个数凑成“整十”、“整百”、“整千”……来计算,很容易解出,解原式=(11+9)+(292+8)+(3993+7)+(49994+6)+(599995+5)+(6999996+4)+(79999997+3)+(899999998+2)-9+8+7+ (2)=(20+300+4000+50000+600000+7000000+80000000+900000000)-(9+8+7+6+5+4+3+2)=987654320-44=987654276.∴S的末四位数字之和是4+2+7+6=19.二、分组结合法例3计算:1-3+5-7+9-11+…+2009-2011.分析题中从1到201 1,相邻两个数相加是-2,加号和减号交替出现,因此可以运用分组的方法,即依次两个数两个数为一组,每组的得数都是-2,从而很快计算出结果.解原式=(1-3)+(5-7)+…+( 2009-2011)=(-2)×503=-1006.例4计算:1+2-3-4+5+6-7-8+9+10-11-12+…+2005+2006-2007-2008+2009+2010-2011.分析 观察发现,依次四个数四个数为一组,每组中四个数的和为-4,由1至2008共有502组,式中还余3个数,于是得出解法.解1 原式=(-4)×502+2009+2010-2011=-2008+2008=0.本题若再仔细观察又可发现,2-3-4+5=0,6-7-8+9=0,…,即从2开始,每连续4项的和为0,式中的一列数,除去开头1以外,中间能分成502组,后面还余下两个数为2010,-2011,于是又得另一种解法.解2 原式=1+0×502+2010-2011=0.三、分解相约法例5 计算:(10.5×11.7×57×85)÷(1.7×1.9×3×5×7×9×11×13×15).分析 被整式与除式的小数位数相等,可化为整数相除,又被除式与除式部分因数能分解,可采用分解相约.解 原式==111. 四、巧用运算律法 例6 计算:237970.716.6 2.20.7 3.31173118⨯-⨯-÷+⨯+÷. 分析 本题为有理数的混合运算,其中有公因子,可把公因子先提出,然后进行计 算.解 原式五、妙用性质法例7 计算:1÷(2÷3)÷(3÷4)÷…÷(2010÷2011).分析 本题属于一道连除的计算题,可以利用连除性质:a ÷(b ÷c)=a ÷b ×c =a ×c ÷b .先将原式进行分解,再利用交换律使问题得到解决.解 原式=1÷2×3÷3×4÷…÷2010×2011= (1×3×4×...×2011)÷(2×3×4× (2010)=2011÷2=1005.5.六、添项相加法例8 计算:512+256+128+64+32+16+8+4+2+1.分析 经过观察,发现上式的特点是后一项是前一项的一半,因此,如果我们把后一项加上它本身,就可以得到前一项的值,于是添加一个辅助数l (末项),使问题得以顺利解决.解 原式=512+256+128+64+32+16+8+4+(1+1)-1=512+256+…+4+(2+2)-1=…=512+(256+256)-1=512+512-1=1023.七、错位相减法例9 计算:2481621392781243+++++. 分析 观察算式发现,从第二项起,每一项是前一项的23,考虑用错位相减法解.八、活用公式法例10 计算:211133+++ (1013)+. 分析 上式从第二项起,后一项与前一项的比值都是13,因此它是道等比数列求和题.可用公式1(1)1n n a q S q-=-求解,其中S n 表示前n 项的和,n 表示项数,q 表示公比,a 1表示首项,解 原式例11 计算:19492-19502+19512-19522+… +20092-20102+20112.分析 上式除末项外,前面的项顺次每两项构成平方差形式,可用平方差公式分解后再计算.解 原式九、拆项法例12 计算:359173365248163264+++++. 分析 和式中每个相加的分数分子都比分母大1,而分母依次是后一个分母是前一个分母的2倍,于是我们可以先拆项,再相加.解 原式例13 计算:1111121231234++++++++++ (1123100)+++++ . 分析本题可用上法拆项.解 原式十、字母代换法例14计算:(1+0.23+0.34)×(0.23+0.34+0.56)-(1+0.23+0.34+0.56)×(0.23+0.34).分析此题如果用常规方法进行计算,步骤多而且复杂,如果我们把算式中的一部分相同的式子用字母代替,可以化繁为简,化难为易,很快巧算出结果.解设0.23+0.34=a.则原式=(1+a)×(a+0.56)-(1+a+0.56)×a=a+0.56+a2+0.56-a-a2-0.56a=0.56.十一、数形结合法例15 计算:当n无限大时,1+12+1148++…12n+的值.分析建立如下模型,设大正方形的面积为l,当n无限大时,有1+12+1148++…12n+=1.故原式=2(图形请读者自作).例16 求S100=13+23+33+…+1003的值.分析使用计算器虽能求得结果,但是计算量将十分庞大,而利用数形结合法能使本题得以巧解.解先求出13+23+33的值,作出如图.易知13表示第一个┘上黑点的个数,23表示第二个┘上黑点的个数,33表示第三个┘上黑点的个数.图中每行每列黑点的个数均为l+2+3=6,故S3=13+23+33=6×6=36.用式子表示:13=12,13+23=32,13+23+33=62.同理可得S100的图中各行各列的黑点个数为:。
专题03有理数的运算(1) 2022年中考数学真题分项汇编系列2(学生版)

专题03有理数的运算(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·湖南娄底中考真题)2020年中央财政下达义务教育补助经费1695.9亿元,比上年增长8.3%.其中1695.9亿元用科学记数法表示为( )A .1016.95910⨯元B .81695.910⨯元C .101.695910⨯元D .111.695910⨯元2.(2020·内蒙古通辽中考真题)2020年我市初三毕业生超过30000人,将30000用科学记数法表示正确的是( )A .50.310⨯B .4310⨯C .33010⨯D .3万3.(2020·广东广州中考真题)广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为( )A .5152.3310⨯B .615.23310⨯C .71.523310⨯D .80.1523310⨯4.(2020·贵州毕节中考真题)中国的国土面积约为9600000平方千米,用科学记数法表示为( ) A .96×105 B .0.96×107 C .9.6×106 D .9.6×1075.(2020·海南中考真题)从海南省可再生能源协会2020年会上获悉,截至4月底,今年我省风电、光伏及生物质能的新能源发电量约772000000千瓦时.数据772000000可用科学记数法表示为( ) A .677210⨯ B .777.210⨯ C .87.7210⨯ D .97.7210⨯6.(2020·山东东营中考真题)-6的倒数是( ).A .6B .16C .16-D .7.(2020·吉林中考真题)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为( )A .611.0910⨯B .71.10910⨯C .81.10910⨯D .80.110910⨯8.(2020·黑龙江大庆中考真题)天王星围绕太阳公转的轨道半径长约为2 900 000 000km ,数字2 900 000 000用科学记数法表示为( )A .82.910⨯B .92.910⨯C .82910⨯D .100.2910⨯9.(2020·四川眉山中考真题)据世界卫生组织2020年6月26日通报,全球新冠肺炎确诊人数达到941万人,将数据941万人,用科学记数法表示为( )A .29.4110⨯人B .59.4110⨯人C .69.4110⨯人D .70.94110⨯人10.(2020·四川内江中考真题)12的倒数是( ) A . B . C .12 D .12- 11.(2020·四川绵阳中考真题)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( )A .0.69×107B .69×105C .6.9×105D .6.9×10612.(2020·江苏无锡中考真题)﹣7的倒数是( )A .17B .7C .-17D .﹣713.(2020·四川凉山中考真题)(﹣1)2020等于( )A .﹣2020B .2020C .﹣1D .114.(2020·江西中考真题)3-的倒数是( )A .3B .13C .13- D .3-15.(2020·江苏泰州中考真题)-2的倒数是( )A .-2B .12-C .12D .216.(2020·贵州毕节中考真题)3的倒数是( )A .B .C .D .17.(2020·湖北随州中考真题)2020的倒数是( )A .12020B .12020-C .2020D .-202018.(2020·四川宜宾中考真题)我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度是7100米/秒,将7100用科学记数法表示为( )A .7100B .40.7110⨯C .27110⨯D .37.110⨯19.(2020·广东深圳中考真题)2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为( )A .0.15×108B .1.5×107C . 15×107D .1.5×10820.(2020·湖南永州中考真题)永州市现有户籍人口约635.3万人,则“现有户籍人口数”用科学记数法表示正确的是( )A .56.35310⨯人B .563.5310⨯人C .66.35310⨯人D .70.635310⨯21.(2020·广西中考真题)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小空中课堂”是同期全国服务中小学最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为( )A .388.910⨯B .488.910⨯C .58.8910⨯D .68.8910⨯22.(2020·吉林长春中考真题)为了增加青少年的校外教育活动场所,长春市将建成面积约为79000平方米的新少年宫,预计2020年12月正式投入使用.79000这个数用科学记数法表示为( )A .37910⨯B .47.910⨯C .50.7910⨯D .57.910⨯23.(2020·江苏南通中考真题)计算|﹣1|﹣3,结果正确的是( )A .﹣4B .﹣3C .﹣2D .﹣124.(2020·江苏南通中考真题)今年6月13日是我国第四个文化和自然遗产日.目前我国世界遗产总数居世界首位,其中自然遗产总面积约68000km 2.将68000用科学记数法表示为( )A .6.8×104B .6.8×105C .0.68×105D .0.68×10625.(2020·辽宁沈阳中考真题)2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为( ) A .1.09×103 B .1.09×104 C .10.9×105 D .0.109×10526.(2020·云南中考真题)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为( )A .61510⨯B .51.510⨯C .61.510⨯D .71.510⨯27.(2020·山东泰安中考真题)12-的倒数是( ) A . B . C .12- D .1228.(2020·广西玉林中考真题)2的倒数是( )A.2 B.12C.12-D.-229.(2020·西藏中考真题)20+(﹣20)的结果是()A.﹣40 B.0 C.20 D.4030.(2020·西藏中考真题)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×10831.(2020·湖南娄底中考真题)﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.1202032.(2020·山西中考真题)计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是()A.18-B.2C.18D.2-33.(2020·内蒙古中考真题)2020年初,国家统计局发布数据,按现行国家农村贫困标准测算,截至2019年末,全国农村贫困人口减少至551万人,累计减少9348万人.将9348万用科学记数法表示为()A.80.934810⨯B.79.34810⨯C.89.34810⨯D.693.4810⨯二、填空题34.(2020·广西河池中考真题)计算:3﹣(﹣2)=_____.35.(2020·内蒙古呼伦贝尔中考真题)中国的领水面积约为370 000 km2,将数370 000用科学计数法表示为:__________.36.(2020·辽宁鞍山中考真题)据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为________.37.(2020·辽宁朝阳中考真题)在全国上下众志成城抗疫情、保生产、促发展的关键时刻,三峡集团2月24日宣布:在广东、江苏等地投资580亿元,开工建设25个新能源项目,预计提供17万个就业岗位将“580亿元”用科学记数法表示为____________元.38.(2020·辽宁铁岭中考真题)伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000人,将数据450000000科学记数法表示为_____________.39.(2020·江苏泰州中考真题)据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学计数法表示为_______.40.(2020·辽宁丹东中考真题)据有关报道,2020年某市斥资约5 800 000元改造老旧小区,数据5 800 000科学记数法表示为_________.41.(2020·黑龙江鹤岗中考真题)2019年1月1日,“学习”平台全国上线,截至2019年3月17日止,重庆市“学习”APP 注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为________.42.(2020·江苏镇江中考真题)23倒数是________. 43.(2020·江苏镇江中考真题)2020年我国将完成脱贫攻坚目标任务.从2012年底到2019年底,我国贫困人口减少了93480000人,用科学记数法把93480000表示为_____.44.(2020·江苏无锡中考真题)2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000 是__________.45.(2020·内蒙古鄂尔多斯中考真题)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.46.(2020·江苏宿迁中考真题)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为_____.47.(2020·辽宁营口中考真题)长江的流域面积大约是1800000平方千米,1800000用科学记数法表示为_____.48.(2020·山东烟台中考真题)5G 是第五代移动通信技术,5G 网络下载速度可以达到每秒1300000KB 以上,这意味着下载一部高清电影只需1秒,将1300000用科学记数法表示应为__________.49.(2020·广西玉林中考真题)计算:()06--=_________.50.(2020·重庆中考真题)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人,请把数94000000用科学记数法表示为____.51.(2020·湖南益阳中考真题)我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定位于距离地球36000千米的地球同步轨道,将"36000"用科学计数法表示为__________.52.(2020·内蒙古呼和浩特中考真题)“书法艺求课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为___________,并可推断出5月30日应该是星期几____________.53.(2020·内蒙古通辽中考真题)计算:(1)0(3.14)π-= ______;(2)2cos45︒=______;(3)21-= ______.54.(2020·湖北黄石中考真题)据报道,2020年4月9日下午,黄石市重点园区(珠三角)云招商财富推介会上,我市现场共签项目20个,总投资137.6亿元,用科学计数法表示137.6亿元,可写为_____元. 55.(2020·黑龙江穆棱朝鲜族学校中考真题)一周时间有604800秒,604800用科学记数法表示为______. 56.(2020·四川宜宾中考真题)定义:分数n m(m ,n 为正整数且互为质数)的连分数(其中为整数,且等式右边的每一个分数的分子都为1),记作1211....n m a a ∆++=:例如711111....19511119222221177111515222∆====++++++++=,719的连分数是11211122+++,记作71111192122∆+++=,则________________111123∆++=.三、解答题57.(2020·黑龙江大庆中考真题)计算:1015(1)3π-⎛⎫---+ ⎪⎝⎭58.(2020·广西中考真题)计算:()()213142--+÷-⨯.59.(2020·湖南益阳中考真题)“你怎么样,中国便是怎么样:你若光明,中国便不黑暗”。
初中数学知识点归纳完整版免费

初中数学知识点归纳完整版免费中考数学重点知识点梳理1有理数1.有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
“大”减“小”是指绝对值的大小。
2.有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则。
同号得正异号负,一项为零积是零。
3.有理数混合运算的四种运算技巧转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。
凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。
分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。
巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。
2圆1.圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2.垂径定理(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3.圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5.夹在平行线间的两条弧相等。
(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)6.直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
初三数学有理数的加减乘除以及乘方试题答案及解析
初三数学有理数的加减乘除以及乘方试题答案及解析1.我市2014年参加中考的考生人数约为43400人,将43400用科学记数法表示为()A.434×102B.43.4×103C.4.34×104D.0.434×105【答案】C.【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵43400一共5位,∴43400=4.34×104.故选C.【考点】科学记数法.2. 2014的倒数是()A.B.C.D.【答案】A.【解析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以,2014的倒数为. 故选A.【考点】倒数.3. 2013年12月2日凌晨1:30,“嫦娥三号”探测器在四川省西昌卫星发射中心发射升空,它携“玉兔号”月球车首次实现月球软着落和月面巡视勘察,并开展月球形貌与地质构造调查等科学探测,地球到月球的平均距离是384400千米,把384400这个数用科学记数法表示为()A.3844×103B.38.44×103C.3.844×104D.3.844×105【答案】D.【解析】将384400用科学记数法表示为:3.844×105.【考点】科学记数法—表示较大的数4.若一粒米的质量约是0.000012kg,将数据0.000012用科学记数法表示为()A.12×10-4B.1.2×10-6C.1.2×10-5D.1.2×10-4【答案】C.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以:0.000012=1.2×10-5,故选C.【考点】科学记数法—表示较小的数.5.的倒数是()A.B.C.D.【答案】D.【解析】乘积是1的两个数互为倒数.∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选D.【考点】倒数.6.-的相反数是()A.-2B.-C.D.2【答案】C.【解析】根据相反数的定义知:-的相反数是,故选C.【考点】相反数.7.据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为()A.5.78×103B.57.8×103C.0.578×104D.5.78×104【答案】D【解析】5.78万="57" 800=5.78×104.【考点】科学记数法8. -3的相反数是()A.3B.-3C.D.-【答案】A.【解析】根据相反数的意义知:-3的相反数是3.故选A.【考点】相反数.9.下列四个实数中,绝对值最小的数是A.﹣5B.C.1D.4【答案】C.【解析】|-5|=5;||=,|1|=1,|4|=4,绝对值最小的是1.故选C.【考点】实数大小比较.10.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为()A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克【答案】D【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将50 000 000 000用科学记数法表示为5×1010.【考点】科学记数法—表示较大的数.11.下列计算中,正确的是A.3a-2a=1B.(x+3y)2=x2+9y2C.(x5)2=x7D.3--2=【答案】D.【解析】A.3a-2a=a≠1,故本选项错误;B.(x+3y)2=x2++6xy+9y2≠x2+9y2,故本选项错误;C.(x5)2=x10≠x7,故本选项错误;D.3--2=,正确.故选D.【考点】1.合并同类项;2.完全平方公式;3.幂的乘方;4.有理数的乘方.12.观察下列运算过程:S=1+3+32+33+…+32012+32013①,①×3得3S=3+32+33+…+32013+32014②,②﹣①得2S=32014﹣1,S=.运用上面计算方法计算:1+5+52+53+…+52013=.【答案】【解析】首先根据已知设S=1+5+52+53+…+52013①,再将其两边同乘5得到关系式②,②﹣①即可求得答案.解:设S=1+5+52+53+…+52013①,则5S=5+52+53+54…+52014②,②﹣①得:4S=52014﹣1,所以S=.故答案为.13.对实数a、b,定义运算☆如下:a☆b=,例如2☆3=.计算[2☆(﹣4)]×[(﹣4)☆(﹣2)]=.【答案】1【解析】先判断算式a☆b中,a与b的大小,转化为对应的幂运算,再进行乘法运算.解:[2☆(﹣4)]×[(﹣4)☆(﹣2)],=2﹣4×(﹣4)2,=×16,=1.故答案为:1.14.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=b2;当a<b时,a⊕b=a.则当x=2时,(1⊕x)-(3⊕x)的值为.【答案】-2.【解析】首先认真分析找出规律,可以先分别求得(1⊕2)和(3⊕2),再求(1⊕x)•x-(3⊕x)的值.试题解析:按照运算法则可得(1⊕2)=1,(3⊕2)=4,所以(1⊕x)•x-(3⊕x)=1×2-4=-2.考点: 有理数的混合运算.15.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是 ()A.ab>0B.a+b<0C.(b-1)(a+1)>0D.(b-1)(a-1)>0【答案】C【解析】a、b两点在数轴上的位置可知:-1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵-1<a<0,b>1,∴b-1>0,a+1>0,a-1<0故C正确;D错误.所以选C.16.中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8210 000m2,将8210 000用科学记数法表示应为A.821×102B.82.1×105C.8.21×106D.0.821×107【答案】C【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值。
中考数学专题二常见代数式运算考查类型(原卷版全国适用)
常见代数式运算考查类型一、(实数)有理数运算例题1(2021·河北兴隆·二模)小明在解一道有理数混合运算时.一个有理数m 被污染了. 计算:()3312m ÷+⨯-.(1)若2m =.计算:()33212÷+⨯-. (2)若()33132m ÷+⨯-=.求m 的值.(3)若要使()3312m ÷+⨯-的结果为最小正整数.求m 值. 练习题1.(2021·陕西·西安市铁一中学模拟预测)计算:2202112cos608(1)2--︒-.2.(2021·广东·()21332cos30π20212-⎛⎫+︒---- ⎪⎝⎭.3.(2021·甘肃酒泉·()202184cos 451︒+-.法则等知识点.熟知上述各知识点是解题的关键.4.(2021·山东·济宁学院附属中学一模)计算:2021021(1)3cos30(2233)()2--︒-+-. 5.(2021·河南省淮滨县第一中学模拟预测)(1)如果6a =.5b =且a b <.求b a -的值. (2)已知a 、b 互为相反数.c 、d 互为倒数.m 的倒数等于它本身.则()cda b m m m++-的值是多少? (3)已知2142()025a b -++=.求ab 的值. 6.(2021·浙江余杭·三模)下面是圆圆同学计算一道题的过程:()()1111232233434⎡⎤⎛⎫⎛⎫÷-+⨯-=÷-+÷⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()()()23324318246=⨯-⨯-+⨯⨯-=-=.圆圆同学这样算正确吗?如果正确请解释理由.如果不正确.请你写出正确的计算过程. 7.(2020·河北·模拟预测)利用运算律有时能进行简便计算. 例1 98×12=(100-2)×12=1 200-24=1 176.例2 -16×233+17×233=(-16+17)×233=233. 请你参考黑板中老师的讲解.用运算律简便计算:(1)()99915⨯-.(2)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭8.(2021·河北路北·二模)老师课下给同学们留了一个式子:39⨯+-.让同学自己出题.并写出答案.()1小光提出问题:若□代表1-.○代表5.则计算:()3195⨯-+-.()2小丽提出问题:若391⨯+-=.当□代表3-时.求○所代表的有理数.()3小亮提出问题:若391⨯+-<中.若□和○所代表的有理数互为相反数.直接写出□所代表的有理数的取值范围.9.(2021·河北邢台·二模)嘉淇准备完成题目:计算:22713233.发现有一个数“”印刷不清楚.(1)他把“”猜成18.请你计算:2227118333.(2)他妈说:“你猜错了.我看到该题标准答案的结果是32-.”通过计算说明原题中“”是几?10.(2021·安徽·合肥市第四十五中学一模)观察下列等式:①22416-=2+12.②22526-=3+12.③22636-=4+12.④22746-=5+12.…(1)请按以上规律写出第⑥个等式: .(2)猜想并写出第n 个等式: .并证明猜想的正确性. (3)利用上述规律.直接写出下列算式的结果:222222224135236331009736666--------+++⋯+= .二、整式运算与求值例题2(2021·上海·九年级专题练习)小刚在计算一个多项式A 减去多项式2235b b --的差时.因一时疏忽忘了把两个多项式用括号括起来.因此减式后面两项没有变号.结果得到的差是2232b b ++. (1)求这个多项式A .(2)求出这两个多项式运算的正确结果. (3)当2b =-时.求(2)中结果的值. 练习题 1.(2021·河南·二模)先化简.再求值:22222xyy x x y x x y.其中21x =.22y =.2.(2021·四川凉山·二模)先化简.再求值:2(23)(32)(3)2(4)a b b a a b b a b -++-+-+.其中22,2a b =3.(2021·浙江·杭州育才中学二模)已知多项式M =(2x 2+3xy+2y )﹣2(x 2+x+yx+1). (1)当x =1.y =2.求M 的值.(2)若多项式M 与字母x 的取值无关.求y 的值.4.(2021·浙江省杭州市上泗中学二模)已知多项式()()2223221M x xy y x x yx =++-+++.(1)化简M .(2)当1x =.2y =.求M 的值.5.(2021·上海·九年级专题练习)代数式2323(324)(3)a a a a a a +---里的“”是“+.-.×.÷”中某一种运算符号. (1)如果“”是“+”.化简:2323(324)(3)a a a a a a +---.(2)当1a =-时.2323(324)(3)a a a a a a +---2=-.请推算“”所代表的运算符号.6.(2021·河北·石家庄市第四十二中学一模)对于四个整式.A :2x 2.B :mx +5.C :﹣2x .D :n .无论x 取何值.B +C +D 的值都为0. (1)求m 、n 的值. (2)计算A ﹣B +C ﹣D . (3)若B DA C-的值是正数.直接写出x 的取值范围. 7.(2020·河北衡水·模拟预测)请阅读以下步骤.完成问题: ①任意写一个三位数.百位数字比个位数字大2. ②交换百位数字与个位数字.得到一个三位数.③用上述的较大的三位数减去较小的三位数.所得的差为三位数. ④交换这个差的百位数字与个位数字又得到一个三位数. ⑤把③④中的两个三位数相加.得到最后结果. 问题:(1)③中的三位数是 . ④中的三位数是 .⑤中的结果是 .(2)换一个数试试看.所得结果是否一样?如果一样.设这个三位数的百位数字为a 、十位数字为b .用代数式表示这个三位数.并结合你所学的知识解释其中的原因. 8.(2021·河北桥东·二模)甲、乙两人各持一张分别写有整式A 、B 的卡片.已知整式225C a a =--.下面是甲、乙二人的对话:甲:我的卡片上写着整式2410A a a =-+.加上整式C 后得到最简整式D .乙:我用最简整式B 加上整式C 后得到整式2628E a a =-+.(1)求整式D 和B .(2)请判断整式D 和整式E 的大小.并说明理由. 9.(2021·河北兴隆·二模)解方程组老师设计了一个数学游戏.给甲、乙、丙三名同学各一张写有最简代数式的卡片.规则是两位同学的代数式相减等于第三位同学的代数式.甲、乙、丙的卡片如图所示.其中丙同学卡片上的代数式未知.(1)若乙同学卡片上的代数式为一次二项式.求m 的值.(2)若甲同学卡片上的代数式减去乙同学卡片上的代数式等于丙同学卡片上的代数式. ①当丙同学卡片上的代数式为常数时.求m 的值.②当丙同学卡片上的代数式为非负数时.求m 的取值范围. 10.(2021·河北·三模)一般情况下2323ab a b ++=+不成立.但有些数可以使得它成立.例如: 0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”.记为(),a b . (1)填空:(4,9)-_________“相伴数对”(填是或否). (2)若()1,b 是“相伴数对”.求b 的值. (3)若(),m n 是“相伴数对”.求代数式22[42(31)]3m n m n ----的值.三、分式的计算与求值例题3(2021·广东英德·二模)先化简2211121x x x x x x +--÷--+.然后从0.1.1-.2中选取一个你认为合适的数作为x 的值带入求值. 练习题1.(2021·江苏·淮阴中学新城校区一模)先化简.再求值:221112---÷+a a a a a .其中2a =- 2.(2021·河南武陟·一模)先化简.再求值:2222(1)244a a aa a a +--÷--+.其中3a =3.(2021·广东连州·二模)先化简再求值22121()11x x x x x x x++-÷---.其中x 是一元二次方程x 2+2x ﹣3=0的根.4.(2021·广东·桂林华侨初级中学二模)已知12A x =-.224B x =-.2xC x =+.当x =3时.对式子(A -B )÷C 先化简.再求值.5.(2021·山东德城·二模)先化简.再求值:2443(1)11m m m m m -+÷----.请在﹣2≤m ≤1的范围内取一个自己喜欢的数代入求值. 6.(2021·山东惠民·二模)先化简.再求值211()122a a a a a a a a--÷-+++.其中a 82sin 45°-()02021-π7.(2021·湖北鹤峰·模拟预测)先化简.再求值:(1−1m+2)÷(m 2+4m+5m+2−2).其中m 为方程220m m +-=的一根.8.(2021·湖北宜城·模拟预测)先化简.再求值:(2−2xx+1+x −1)÷x 2−xx+1.从0.1-2中选择一个适当的数作为x 值代入.9.(2021·山东乐陵·二模)已知:A =2244(2)11x x x x x -+-÷--.(1)化简A .(2)若点(x ,-3)与点(-4,-3)关于y 轴对称.求A 的值. 10.(2021·广东·一模)先化简.再求值:(53m -+ 13m -)÷2469mm m -+.其中m =3四、与数轴有关的代数计算例题4(2020·河北·中考真题)如图.甲、乙两人(看成点)分别在数轴-3和5的位置上.沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币.再让两人猜向上一面是正是反.而后根据所猜结果进行移动.①若都对或都错.则甲向东移动1个单位.同时乙向西移动1个单位. ②若甲对乙错.则甲向东移动4个单位.同时乙向东移动2个单位. ③若甲错乙对.则甲向西移动2个单位.同时乙向西移动4个单位.(1)经过第一次移动游戏.求甲的位置停留在正半轴上的概率P .(2)从图的位置开始.若完成了10次移动游戏.发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次.且他最终..停留的位置对应的数为m .试用含n 的代数式表示m .并求该位置距离原点O 最近时n 的值.(3)从图的位置开始.若进行了k 次移动游戏后.甲与乙的位置相距2个单位.直接..写出k 的值.练习题 1.(2021·江苏盐城·中考真题)如图.点A 是数轴上表示实数a 的点.(12P .(保留作图痕迹.不写作法) (22和a 的大小.并说明理由.2.(2021·河北迁安·二模)如图.数轴上有A 、B 、C 三个点.它们所表示的数分别为a 、b 、c 三个数.其中0b <.且b 的倒数是它本身.且a 、c 满足()2430c a -++=.(1)计算:22a a c -.(2)若将数轴折叠.使得点A 与点B 重合.求与点C 重合的点表示的数. 3.(2021·河北·九年级专题练习)已知有理数-3.1.(1)在下列数轴上.标出表示这两个数的点.并分别用A.B 表示.(2)若|m |=2.在数轴上表示数m 的点.介于点A.B 之间.在A 的右侧且到点B 距离为5的点表示为n . ①计算m+n -mn.②解关于x 的不等式mx+4<n.并把解集表示在下列数轴上.4.(2020·河北石家庄·一模)如图1.点A .B .C 是数轴上从左到右排列的三个点.分别对应的数为5-.b .4.某同学将刻度尺如图2放置.使刻度尺上的数字0对齐数轴上的点A .发现点B 对应刻度1.8cm .点C 对齐刻度5.4cm .(1)在图1的数轴上.AC =__________个长度单位.数轴上的一个长度单位对应刻度尺上的_______cm .(2)求数轴上点B 所对应的数b 为_________________.(3)在图1的数轴上.点Q 是直线AB 上一点.满足2AQ QB .求点Q 所表示的数. 5.(2021·上海·九年级专题练习)在单位长度为1的数轴上.点A 表示的数为﹣2.5.点B 表示的数为4. (1)求AB 的长度.(2)若把数轴的单位长度扩大30倍.点A 、点B 所表示的数也相应的发生变化: ①此时点A 表示的数为 .点B 表示的数为 . ②已知点M 是线段AB 的三等分点.求点M 所表示的数.6.(2021·河南省淮滨县第一中学三模)数轴上 A .B .C 三个点对应的数分别为 a .b .x .且 A .B 到-2 所对应的点的距离都等于 6.点 B 在点 A 的右侧. (1)请在数轴上表示点 A .B 位置.a= .b= . (2)请用含 x 的代数式表示 CB = .(3)若点 C 在点 B 的左侧.且 CB =8.点 A 以每秒 2 个单位长度的速度沿数轴向右运动.当 AC =2AB 时.求点 A 移动的时间.7.(2021·云南五华·一模)如图所示.甲、乙两人(看成点)分别在数轴-3和5的位置上.沿数轴做移动游戏.每次移动的游戏规则是:两人先猜裁判所抛硬币向上一面的正反.再根据所猜结果进行移动.①若都对或都错.则甲向东移动1个单位.同时乙向西移动1个单位. ②若甲对乙错.则甲向东移动4个单位.同时乙向东移动2个单位. ③若甲错乙对.则甲向西移动2个单位.同时乙向西移动4个单位.(1)用树状图(树状图也称树形图)或列表法中的一种方法.求每次移动游戏中甲猜对的概率P 的值.(2)直接写出经过第一次移动游戏后.甲乙两人相距6个单位的概率.8.(2020·河北邯郸·模拟预测)在数轴上有M 、N 两点.M 点表示的数分别为m .N 点表示的数是n (n >m ).则线段MN 的长(点M 到点N 的距离)可表示为MN =n ﹣m .请用上面材料中的知识解答下面的问题:一个点从数轴上的原点O 开始.先向左移动3cm 到达A 点.再向右移动2cm 到达B 点.然后向右移动4cm 到达C 点.用1cm 表示1个单位长度. (1)请你在数轴上表示出A 、B 、C 三点的位置.并直接写出线段AC 的长度. (2)若数轴上有一点D .且AD =4cm .则点D 表示的数是什么? (3)若将点A 向右移动xcm .请用代数式表示移动后的点所表示的数.(4)若点P 以从点A 向原点O 移动.同时点Q 以与点P 相同的速度从原点O 向点C 移动.试探索:PQ 的长是否会发生改变?如果不变.请求出PQ 的长.如果改变.请说明理由. 9.(2021·山东崂山·二模)【问题提出】1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少? 【阅读理解】为了解决这个问题.我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离.那么1a -可以看做a 这个数在数轴上对应的点到1的距离.12a a -+-就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12a a -+-的最小值. 我们先看a 表示的点可能的3种情况.如图所示:(1)如图①.a 在1的左边.从图中很明显可以看出a 到1和2的距离之和大于1. (2)如图②.a 在1和2之间(包括在1.2上).可以看出a 到1和2的距离之和等于1. (3)如图③.a 在2的右边.从图中很明显可以看出a 到1和2的距离之和大于1.所以a 到1和2的距离之和最小值是1. 【问题解决】(1)36a a -+-的几何意义是______.请你结合数轴探究:36a a -+-的最小值是______.(2)请你结合图④探究:123a a a -+-+-的最小值是______.此时a 为______. (3)123456a a a a a a -+-+-+-+-+-的最小值为______. (4)1232021a a a a -+-+-+⋅⋅⋅+-的最小值为______. 【拓展应用】如图⑤.已知a 到-1.2的距离之和小于4.请写出a 的范围为______.10.(2020·江苏镇江·中考真题)【算一算】如图①.点A 、B 、C 在数轴上.B 为AC 的中点.点A 表示﹣3.点B 表示1.则点C 表示的数为.AC长等于.【找一找】如图②.点M、N、P、Q中的一点是数轴的原点.点A、B 2﹣1、2Q是AB的中点.则点是这个数轴的原点.【画一画】如图③.点A、B分别表示实数c﹣n、c+n.在这个数轴上作出表示实数n的点E(要求:尺规作图.不写作法.保留作图痕迹).【用一用】学校设置了若干个测温通道.学生进校都应测量体温.已知每个测温通道每分钟可检测a 个学生.凌老师提出了这样的问题:假设现在校门口有m个学生.每分钟又有b个学生到达校门口.如果开放3个通道.那么用4分钟可使校门口的学生全部进校.如果开放4个通道.那么用2分钟可使校门口的学生全部进校.在这些条件下.a、m、b会有怎样的数量关系呢?爱思考的小华想到了数轴.如图④.他将4分钟内需要进校的人数m+4b记作+(m+4b).用点A表示.将2分钟内由4个开放通道检测后进校的人数.即校门口减少的人数8a记作﹣8a.用点B表示.①用圆规在小华画的数轴上分别画出表示+(m+2b)、﹣12a的点F、G.并写出+(m+2b)的实际意义.②写出a、m的数量关系:.。
初中数学经典题-有理数及运算
中考数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()( =2007120061......41313121211-++-+-+-=200711-=20072006例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)A OB Ca b c分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解 原式=2132......9897999810099⨯⨯⨯⨯⨯=1001 例4 计算:2-22-23-24-……-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解 原式=2-22-23-24-……-218+219(-1+2) =2-22-23-24-……-218+219=2-22-23-24-……-217+218(-1+2) =2-22-23-24-……-217+218 =…… =2-22+23 =6【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:()()......1111++++b a ab ()()200620061++b a 的值. (提示:此题可看作例1的升级版,求出a 、b 的值代入就成为了例1.) 2、代数式ababb b a a ++的所有可能的值有( )个(2、3、4、无数个) 【参考答案】1、200820072、3字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得35=x ,把x 、y 的值代入2x-4y+6可得答案328.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解 由3x-6y-5=0,得352=-y x所以2x-4y+6=2(x-2y)+6=6352+⨯=328例2已知代数式1)1(++-n n x x ,其中n 为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .分析 当x=1时,可直接代入得到答案.但当x=-1时,n 和(n-1)奇偶性怎么确定呢?因n 和(n-1)是连续自然数,所以两数必一奇一偶.解 当x=1时,1)1(++-n n x x =111)1(++-n n =3当x=-1时,1)1(++-n n x x =1)1()1()1(+-+--n n =1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25…… 752=5625= ,852=7225=(1)找规律,把横线填完整; (2)请用字母表示规律; (3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n (n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:n 1 2 3 … n S 1 5 9 … 4(n-1)+1S 的变化过程 1 1+4=5 1+4+4=9 … 1+4+4+…+4=4(n-1)+1所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61①填空:第11,12,13三个数分别是 , , ; ②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①111-,121,1311-;②20081;③0.2、1+n ×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解 找交点最多的规律:直线条数 2 3 4 … n交点个数 1 3 6 …2)1( n n 交点个数变化过程 1 1+2=3 1+2+3=6 … 1+2+3+…+(n-1)图形 图1 图2 图3 …例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线.A .20B .36C .34D .22分析与解 让直线m 上的4个点和直线n 上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n 上的5个点各确定的一条直线,共22条直线.故选D. 例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM 内,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______.分析 求∠MON 有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC 靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解 因为OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,所以∠MOB=21∠AOB ,∠NOB=21∠COB 所以∠MON=∠M OB-∠N OB=21∠AOB-21∠C OB=21(∠AOB-∠C OB )=21∠AOC=21×80°=40°例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小; O BAM CNOB ACD E图1图2图3(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析 此题看起来较复杂,OC 还要在∠AOB 内绕O 点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE 是∠AOB 的一半,也就是说要求的∠DOE , 和OC 在∠AOB 内的位置无关.解 (1)因为OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC.所以∠DOC=21∠BOC ,∠COE=21∠COA所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA )=21∠AOB因为∠AOB=60°所以∠DOE =21∠AOB= 21×60°=30° (2)由(1)知∠DOE =21∠AOB ,和OC 在∠AOB 内的位置无关.故此时∠DOE 的大小和(1)中的答案相同.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。
2020年中考数学人教版专题复习:有理数的加法
2020年中考数学人教版专题复习:有理数的加法一、学习目标:1. 理解有理数加法的意义,掌握有理数的加法法则,并能运用法则准确地进行有理数的加法运算.2. 掌握有理数加法运算律,并能运用运算律简化运算;运用正负数的实际意义和加法法则解决简单的实际问题.二、重点、难点:重点:有理数的加法法则,利用有理数加法的运算律简化运算.难点:正确掌握有理数的加法运算法则,特别注意异号两数相加时的方法.三、考点分析:有理数的加法是有理数运算的开始,它是进一步学习有理数运算的关键和基础.是从小学数学进入初中数学的一个重要的转折点.对有理数加法的考查主要以和其他内容相结合的形式出现,直接考查的题目不多见.知识梳理1. 有理数的加法运算法则:先确定类型,再确定符号,最后确定绝对值.(1)同号的两数相加,取相同的符号,并把绝对值相加若a >0且b >0,则a +b =+(︱a ︱+︱b ︱);若a <0且b <0,则a +b =-(︱a ︱+︱b ︱).(2)异号的两数相加①若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值 若a >0、b <0且︱a ︱>︱b ︱,则a +b =+(︱a ︱-︱b ︱);若a >0、b <0且︱a ︱<︱b ︱,则a +b =-(︱b ︱-︱a ︱).②若绝对值相等,则和为0,也就是互为相反数的两个数的和为0若a >0、b <0,且︱a ︱=︱b ︱,则a +b =0.(反过来,若a +b =0,说明a 与b 互为相反数.)(3)一个数与0的和仍得这个数,即a +0=a .2. 运用运算律对有理数的加法进行简便运算(1)加法交换律:a +b =b +a ;(2)加法结合律:(a +b )+c =a +(b +c ).典例精析知识点一:有理数的加法例1:计算:(1)(+3)+(+6);(2)(-4)+(-9);(3)(-4)+(+6);(4)(+213)+(-213);(5)(-35)+0.思路分析:题意分析:本题考查有理数的加法法则.解题思路:按照法则先分清类型,再确定和的符号和绝对值.解答过程:(1)(+3)+(+6)=+(3+6)=+9=9;(2)(-4)+(-9)=-(4+9)=-13;(3)(-4)+(+6)=+(6-4)=+2=2;(4)(+213)+(-213)=0;(5)(-35)+0=-35.解题后的思考:运用有理数的加法法则,进行有理数加法运算要遵循的一般步骤为“一观察,二确定,三求和”,即第一步先观察两个加数的符号是同号还是异号,有没有零;第二步确定用哪条法则进行运算;第三步求出结果.例2:填空题:(1)若a <0,b <0,则a +b _____0;(2)若a >0,b >0,则a +b _____0;(3)若a >0,b <0,且︱a ︱<︱b ︱,则a +b _____0;(4)若a >0,b <0,且︱a ︱>︱b ︱,则a +b _____0;(5)若a >0,b <0,且︱a ︱=︱b ︱,则a +b _____0.思路分析:题意分析:根据有理数加法法则填空.解题思路:先根据两个加数的符号确定和的符号,再判断和是大于0还是小于0. 解答过程:(1)因为a <0,b <0,则和的符号不变,所以a +b <0;(2)因为a >0,b >0,则和的符号不变,所以a +b >0;(3)因为a >0,b <0,且︱a ︱<︱b ︱,所以取b 的符号,所以a +b <0;(4)因为a >0,b <0,且︱a ︱>︱b ︱,所以取a 的符号,所以a +b >0;(5)因为a >0,b <0且︱a ︱=︱b ︱,所以a 、b 互为相反数,所以a +b =0. 解题后的思考:异号两数相加,取绝对值较大的加数的符号,而不是取较大的加数的符号.小结:两个有理数相加,和的符号由两个加数的符号共同确定.两个正数相加,和为正数;两个负数相加,和为负数;绝对值不相等的异号两数相加,和的符号与绝对值较大的加数的符号相同;互为相反数的两个数相加,和为0,结果前没有符号.知识点二:运用有理数的加法运算律化简计算例3:计算:(1)-213+5.5+213;(2)-3+5+(-4);(3)-713+612+223;(4)7.2+0.5+5.6+2.3;(5)3+(-2.3)+(-5)+6+7.2.思路分析:题意分析:在有理数的运算中,加法的交换律、结合律仍然成立.解题思路:(1)中-213与213互为相反数,先相加;(2)中把-3和-4两个负数先相加;(3)中-713和223分母相同,先相加;(4)中把7.2、0.5、2.3相加可得到一个整数,先相加;(5)中3、-5、6都是整数,-2.3和7.2都是小数,分别相加.解答过程:(1)-213+5.5+213=(-213+213)+5.5=0+5.5=5.5;(2)-3+5+(-4)=-3+(-4)+5=-7+5=-2;(3)-713+612+223=(-713+223)+612=-143+612=116;(4)7.2+0.5+5.6+2.3=(7.2+0.5+2.3)+5.6=10+5.6=15.6;(5)3+(-2.3)+(-5)+6+7.2=[3+(-5)+6]+[(-2.3)+7.2]=4+4.9=8.9.解题后的思考:在运用运算律时,一定要根据需要灵活运用,以达到简化运算的目的.例4:计算:(1)-316+(-734)+316+7.75;(2)(+1.125)+(-325)+(-18)+(-0.6);(3)(-234)+(+2.47)+(+112)+(-125)+(-1.07);(4)4.4+(-13)+(-13)+(-323)+(-2.4).思路分析:题意分析:本例算式中含有多个加数,且加数有正数,有负数,有小数,也有分数,计算时应进行合理的分类,正确运用运算律.解题思路:(1)-316与316互为相反数,-734与7.75互为相反数,可利用互为相反数之和为0的性质进行计算;(2)将代分数变为小数,凑整进行计算;(3)-234与+112易通分;+2.47、-125、-1.07的和为整数且是0;(4)-13与-323的和为整数,其余三数的和也为整数.解答过程:(1)原式=(-316+316)+(-734+734)=0;(2)原式=[1.125+(-18)]+[-3.4+(-0.6)]=1+(-4)=-3;(3)原式=[(-234)+124]+[2.47+(-1.4)+(-1.07)]=-114+[2.47+(-2.47)]=-114;(4)原式=[(-13)+(-323)]+[4.4+(-13)+(-2.4)]=(-4)+(-11)=-15.解题后的思考:(1)做带分数加法时,可将带分数化为整数和分数两部分,然后分别相加,再把结果相加,但要注意分开的整数部分和分数部分都要保持原带分数的符号.(2)运算符号和性质符号要区分开.如2-(-4)中前一个“-”号是运算符号,后一个“-”号是性质符号.运算中不要出现符号错误.小结:运用有理数的加法运算律时,通常有下列规律:①互为相反数的两个数先相加—“相反数结合法”;②符号相同的两个数先相加—“同号结合法”;③分母相同的数先相加—“同分母结合法”;④几个数相加得整数,则这几个数先相加—“凑整法”;⑤整数与整数、小数与小数相加—“同形结合法”.知识点三:有理数加法运算的综合运用例5:若︱x ︱=3,︱y ︱=2,且x <y ,求x +y 的值.思路分析:题意分析:先根据已知条件确定x 和y 的值,再求和.解题思路:由绝对值的意义可知x =±3,y =±2,要分情况计算x +y 的值.解答过程:因为︱x ︱=3,︱y ︱=2,所以x =±3,y =±2,又因为x <y ,所以x =-3,y =2,或x =-3,y =-2.当x =-3,y =2时,x +y =-3+2=-1;当x =-3,y =-2时,x +y =-3+(-2)=-5.所以x +y 的值是-1或-5.解题后的思考:由于绝对值等于正数的数有两个,所以关于绝对值的运算问题一定要分情况讨论.例6:某摩托车厂本周计划每日生产450辆摩托车,由于工人实行轮休制,每日上班人数不一定相等,实际每日生产量与计划生产量相比情况如下表(增加的辆数记为正,减少的辆数记为负):(1(2)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少?(3)产量最多的一天比产量最少的一天多生产了多少辆?思路分析:题意分析:表格中的正、负数表示该厂每日实际生产摩托车的数量与计划生产摩托车的数量的差值情况,正数表示比计划生产的多,负数表示比计划生产的少.解题思路:(1)每天生产的摩托车数量等于计划每天生产的数量加实际每天的误差.本周三生产的数量为450+(-3)=447(辆).(2)计算出实际每天的误差和就可知道本周总生产量与计划生产量相比是增加还是减少,即误差和为正表示本周总生产量增加,误差和为负表示本周总生产量减少,误差和的绝对值就是增加或减少的数量.(3)由表中数据可知,周五的生产量最大,为450+(+10)=460(辆);周日的生产量最小为450+(-25)=425(辆).周五比周日多生产了460-425=35(辆). 解答过程:(1)450+(-3)=447(辆),即本周三生产了447辆摩托车.(2)(-5)+(+7)+(-3)+(+4)+(+10)+(-9)+(-25)=-21(辆),即本周总生产量与计划生产量相比减少了,减少了21辆.(3)450+(+10)=460(辆),450+(-25)=425(辆),460-425=35(辆),即产量最多的一天(周五)比产量最少的一天(周日)多生产了35辆.解题后的思考:遇到实际生活问题,要从题意出发,分析题目,寻找解决问题的切入点,在利用有理数加法进行计算时也要注意使用运算律使计算简便.小结:有理数加法运算贯穿于整个数学运算过程中,可以说它是解决各类问题的一种工具,有时可以进行多种数学知识的综合运用,也可以用来解决一些实际问题.提分技巧有理数的加法是在小学算术四则运算的基础上,将数的领域扩充到有理数以后学习的.它与小学的算术运算既有联系又有区别,小学的加法运算不需要确定和的符号,运算简单,而有理数的加法,既要确定和的符号,又要计算和的绝对值.实质上,有理数的加法运算,在确定了和的符号后,进行的是算术的加减运算,这里包含有数学的化归思想.同步测试一、选择题1. 计算-2+3的值是( )A . -5B . -1C . 1D . 52. 某天股票A 开盘价18元,上午11∶30跌1.5元,下午收盘时又涨了0.3元,则股票A 这天的收盘价为( )A . 0.3元B . 16.2元C . 16.8元D . 18元3. 计算756+(-513)+214+(-434)=( )A . 18B . -9C . 0D . -184. 足球循环赛中,红队以4∶1胜黄队,黄队以1∶0胜蓝队,蓝队以1∶0胜红队,则红队.黄队.蓝队的净胜球数分别为( )A . 2,-2,0B . 4,2,1C . 3,-2,0D . 4,-2,1 5. 一个数是10,另一个数比10的相反数大2,则这两个数的和为( ) A . 18B . -2C . -18D . 2 6. 若x 是-3的相反数,︱y ︱=5,则x +y 的值为( )A . -8B . 2C . 8或-2D . -8或2 *7. 如果一个有理数与-7的和是正数,那么这个有理数一定是( )A . 负数B . 零C . 7D . 大于7的正数**8. 下列说法中正确的有( )①两正数相加,和为正;②两负数相加,和为负;③异号两数相加,和的符号与较大加数的符号相同;④两数和是正数,则这两个有理数都是正数;⑤两数的和大于每一个加数;⑥若两数的和小于每一个加数,则这两个数都是负数.A . 1个B . 2个C . 3个D . 4个二、填空题9. 比+7大-2的数是__________,比+1的相反数大3的数是__________.10. 数轴上A .B 两点所表示的有理数的和是__________.*11. 若︱a ︱=10,︱b ︱=12,且a >0,b <0,则a +b =__________.*12. 绝对值不小于3,但小于5的所有整数的和是__________.三、计算题13. 计算:(1)(-13)+(-34);(2)12+(-23);(2)(-34)+(+76);(4)(-334)+(+213).*14. 计算:(1)(+8.4)+(-12)+(-8)+(+3.6);(2)(-23)+12+45+(-12)+(-13); (3)12+(-16)+(-112)+(-120)+(-130)+(-142);(4)4.5+[(-2.5)+913+(-1523)]+213.*15. 一只蜗牛从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:cm ):+5,-3,+10,-8,-6,+12,-10.(1)蜗牛最后是否爬回出发点?(2)蜗牛在离开出发点O 最远时是多少cm ?(3)在爬行过程中,如果每爬1cm 奖励两粒芝麻,则蜗牛共得多少粒芝麻?**16. 若︱x -4︱与︱y +2︱互为相反数,求x +y +4的值.试题答案一、选择题1. C2. C3. C4. A5. D6. C 解析:根据题意x =3,y =5或-5,所以x +y =8或-2.7. D 解析:一个有理数与-7相加,和为正数.根据有理数的加法法则,这个数一定是绝对值大于︱-7︱的正数.8. C 解析:①②⑥都正确.③不正确,如2+(-5)=-3,和的符号为“-”,较大加数2的符号为“+”;④⑤也不正确.二、填空题9. 5,210. -111. -2 解析:因为︱a ︱=10,︱b ︱=12,所以a =±10,b =±12.因为a >0,b <0,所以a =10,b =-12,所以a +b =-2.12. 0 解析:可结合数轴观察,绝对值不小于3但小于5的所有整数有:+3和-3,+4和-4.其和为0.三、计算题13.(1)-1112;(2)-16;(3)42;(4)-1712.14.解:(1)原式=[(+8.4)+(+3.6)]+(-12)+(-8)=-8;(2)原式=[(-23)+(-13)]+[12+(-12)]+45=-15;(3)因为-16=13-12,-112=14-13,…,所以原式=12+13-12+14-13+…+17-16=17;(4)原式=4.5+(-2.5)+[(913+213)+(-1523)]=-2.15. 解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0,故是爬回到出发点.(2)12cm .(3)把所有各数绝对值相加,再乘以2,故是108粒.16. 解:因为︱x -4︱≥0,︱y +2︱≥0,由题意得:︱x -4︱+︱y +2︱=0,只有当两个加数都为0时和才能为0.所以︱x -4︱=0,︱y +2︱=0,即x -4=0,y +2=0.所以x =4,y =-2,所以x +y +4=4+(-2)+4=6.解析:此题利用互为相反数的两个数的和为零,以及绝对值的非负性,求出x .y 的值,再利用有理数的加法法则进行计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考里的有理数运算
有理数是初中数学的基础内容,也是整个数学体系的基础组成部分。
随着课程改革的进一步深入,在各地的中考试题中出现了许多构思新、考能力的新题型。
现例举部分典型试题,并加以归类分析,希望对同学们学习有所帮助。
1. 定义新运算
例1. 若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3
×2×1,…,则10098!
!
的值为( )
(A )
50
49。
(B )99!。
(C )9900。
(D )2!。
(05年资阳市实验区)
分析 从题目中可以理解“!”的意义,即n n n n !()()=⨯-⨯-⨯⨯⨯1221…。
那么
10010099989721!=⨯⨯⨯⨯⨯⨯…, 98!=989721⨯⨯⨯⨯…,
所以 1009810099989721989721100999900!!…,…,。
=
⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯= 故选(C )。
例2. 用“”、“”定义新运算:对于任意实数a ,b ,都有a b=a 和a b=b ,例如32=3,
32=2。
则(20062005)(20042003)=__________。
(05年北京海淀区)
解 本题定义的新运算是:对于任意实数a ,b ,都有a b=a 和a b=b ,则 20062005=2006,20042003=2003,
所以(20062005)(20042003)=20062003=2006。
点评 此类题型运算难度不大,但它突破了传统的固有模式,设计别出心裁、标新立异,充分体现了创新的特色;有利于帮助学生实现从模仿到创造性的解决数学问题的思维过程。
2. 程序化运算
例3. 在计算器上按照下面的程序进行操作:
下表中的x 与
上面操作程序中所按的第三个键和第四个键应是_______________。
(05年台州)解按照所给的操作程序,可以得到这样一个等式3x□□=y。
结合表格中数据,
当x=-2时,3×(-2)□□=-5,则□□=+1;
当x=-1时,3×(-1)□□=-2,则□□=+1;
当x=-0时,3×0□□=+1,则□□=+1;
于可以猜想□□分别为“+”和“1”键。
再把x=1,2,3依次代入,结果与相应的y值一致;因而确定以上猜想是正确的。
点评根据新课程标准的要求,学生要能够熟练地掌握和使用计算器。
此种题型以计算器程序的形式呈现在学生面前,有利于考查学生对计算器程序的认识和理解;从而培养学生良好的思维品质,符合时代潮流。
3. 生活化运算
图1
例4. 如图1,时钟的钟面上标有1,2,3……12共12个数,一条直线把钟面分成了两个部分,请你再用一条直线分割钟面,使钟面被分成三个不同的部分且各部分所包含的几个数的和都相等,则其中的两个部分所包含的几个数分别是_________和__________。
(05年宜昌)解钟面上标着1到12这12个连续整数,它们的和为78。
由钟面分成三个不同的部分且各部分所包含的数的和都相等,得
每部分的和必须是78
3
26。
而其中已有部分的数的和为
11+12+1+2=26,
所以只要另外一条直线分成两部分的和分别为26,于是可再作直线l分成的各部分分别为1,2,11,12;3,4,9,10和5,6,7,8。
点评把简单的数学内容放在丰富的生活情境中,体现了数学与生活的联系,反映了数学
的价值,增强了学生用数学的意识,有利于塑造学生的思维能力和思维品质。
4. 探究性运算
例5. 观察下面几个算式:
1+2+1=4,
1+2+3+2+1=9,
1+2+3+4+3+2+1=16,
1+2+3+4+5+4+3+2+1=25,
……
根据你所发现的规律,请你直接写出下面式子的结果:
1+2+3+…+99+100+99+…+3+2+1=_________。
(05年锦州)解观察上面的各算式,可以发现规律:
1+2+3+…+(n-1)+n+(n-1)+…+3+2+1=n2。
当n=100时,1+2+3+…99+100+99+…+3+2+1=1002=10000。
例6. 在同一平面上,1条直线把一个平面分成112
2
2
2++
=个部分,2条直线把一个平面
最多分成222
2
4
2++
=个部分,3条直线把一个平面最多分成
332
2
7
2++
=个部分,那么8条
直线把一个平面最多分成_________部分。
(05年武汉)解根据题中各式可以总结规律:
n条直线把一个平面最多分成n n
22
2
++
个部分,那么,8条直线把一个平面最多分成
882
237
2++
=(个)部分。
点评探究是一种高层次的思维活动,是数学发现过程中的一种创造性思维。
这种题型的出现,对考查学生的数学理解能力、数学探究能力以及基础知识的运用能力提供了一种重要的思维方法。
练习
1. 现规定一种新的运算“*”;a*b=a b,如3*2=32=9,则1
2
*3=_________。
2. 在如图2所示的运算程序中,若输出的数y=3,则输入的数x=_________。
图2
3. 小明设计了一个关于有理数运算的程序:输出的数比该数的相反数小1,小明按此程序输入12后,输出的结果应为___________。
4. 如图3所示,按下列方法将数轴的正半轴绕在一个圆(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数学0、1、2)上:先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1、2、3、4、…所对应的点分别与圆周上1、2、0、1…所对应的点重合。
这样,正半轴上的整数就与圆周上的数学建立了一种对应关系。
(1)圆周上数学a与数轴上的数5对应,则a=_______________;
图3
(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是__________(用含n的代数式表示)。
答案:
1. 1
8。
2. 5或6。
3. -13。
4. 2; 3n+1。