rf ic 工艺技术
光电子封装技术[1]
![光电子封装技术[1]](https://img.taocdn.com/s3/m/07733959be23482fb4da4caa.png)
光电子器件的封装技术
吴懿平 博士 华中科技大学 教授/博导;上海交通大学 特聘教授
光电子封装是光电子器件、电子元器件及功能应用材料的系统集成。光电子封装在光通 信系统中可分为如下级别的封装:芯片 IC 级的封装、器件封装、模块封装、系统板封装、子 系统组装和系统组装。光电子器件的封装技术来自于市场驱动,光通信的发展需要光器件满 足如下需要:更快的传输速率,更高的性能指标、更小的外形尺寸;增加光电集成的水平和 程度;低成本的封装工艺技术。从早期的双列直插、蝶形封装到同轴封装以及微型化的 Mini-DiL 封装、SFF(Small Form Factor)封装,都是顺应上述需要。而射频(RF)和混合信 号封装技术、倒装芯片技术(FC)促进了高速光电子器件的发展。光模块封装的形式也在实 际应用中从分离模块封装发展为收发合一模块封装, 从多引脚输出的封装形式 (如: 19 SC 双 插拔)发展为 SFF 小型化封装形式,引脚封装逐步被热插拔封装取代,同时,从热插拔的封 装形式(GBIC)发展为 SFP 的小型化封装形式。本文主要介绍光通信领域中的光电子有源器 件及模块的封装技术。 一、光电子器件封装形式 1 光电子器件和模块的封装形式 光电子器件和模块的封装形式,根据其应用的广度可以分为商业标准封装和客户要求的 专有封装。其中商业标准封装又可分为同轴 TO 封装、同轴器件封装、光电子组件组装和光电 子模块封装等几种。 对于同轴器件封装来说有同轴尾纤式器件(包括:同轴尾纤式激光器、同轴尾纤式探测 器、尾纤型单纤双向器件)和同轴插拔式器件(包括:同轴插拔式激光器、同轴插拔式探测 器、同轴插拔式单纤双向器件) 。其封装接口的结构有 SC 型、FC 型、LC 型、ST 型、MU-J 等形式。 光电子组件封装的封装结构形式有双列直插式封装 (DIP) 、 蝶形封装(Butterfly Packaging)、 小型化双列直插式封装(Mini-DIL)等几种。 光电子模块封装的结构形式有:19 SC 双端插拔型收发合一模块、19 双端尾纤型收发 合一模块,以及 SFF、SFP、GBIC、XFP、ZEN-Pak、X2 等多厂家协议标准化的封装类型。 此外,还有各种根据客户需要设计的专有封装。 2 光电子器件和模块的封装工艺 光电子器件、组件和模块在封装过程中涉及到的工艺按照封装工艺的阶段流程和程序, 可以具体细分为: 驱动及放大芯片(IC)封装:这类封装属于普通微电子封装工艺。这类封装的主要形式 有小外形塑料封装(SOP 或 SOIC) ;塑料有引线封装(PLCC) 、陶瓷无引线封装(LCCC) ; 方形扁平封装(QFP)球栅阵列封装(BGA)以及芯片尺寸封装(CSP 或 uBGA) 。 裸芯片(Die)封装:这类封装包括各种 IC 及半导体发光和接收器件,主要形式有:板载 芯片(COB) ;载带自动键合(TAB) ;倒装芯片(Flip Chip)等。目前,在光电子器件及组件 中发光和接收的裸片与集成芯片(IC)或 I/O 外引线的连接,就是基于陶瓷板载芯片的共晶焊 接或胶结以及金丝球键合(Bonding) 。 器件或组件(Device &. Component)封装:这类封装是指将上述板载芯片如何与光纤或 连接器进行耦合封装,从而达到光互连的目的。 模块封装:这类封装就是传统的 SMD 封装,即将光器件或组件与 PCB 板电互连,然后 通过各种 MSA 协议或客户指定的外壳进行封装的工艺形式。
短距离无线通讯(芯片)技术概述

短距离无线通讯(芯片)技术概述一、各种短距离无线通信使用范围与特性比较无线化是控制领域发展的趋势,尤其是工作于ISM频段的短距离无线通信得到了广泛的应用,各种短距离无线通信都有各自合适的使用范围,本文简介几种常见的无线通讯技术。
关键字:短距离无线通信,红外技术,蓝牙技术,802.11b,无线收发工业应用中,现阶段基本上都是以有线的方式进行连接,实现各种控制功能。
各种总线技术,局域网技术等有线网络的使用的确给人们的生产和生活带来了便利,改变了我们的生活,对社会的发展起到了极大的推动作用。
有线网络速度快,数据流量大,可靠性强,对于基本固定的设备来说无疑是比较理想的选择,的确在实际应用中也达到了比较满意的效果。
但随着射频技术、集成电路技术的发展,无线通信功能的实现越来越容易,数据传输速度也越来越快,并且逐渐达到可以和有线网络相媲美的水平。
而同时有线网络布线麻烦,线路故障难以检查,设备重新布局就要重新布线,且不能随意移动等缺点越发突出。
在向往自由和希望随时随地进行通信的今天,人们把目光转向了无线通信方式,尤其是一些机动性要求较强的设备,或人们不方便随时到达现场的条件下。
因此出现一些典型的无线应用,如:无线智能家居,无线抄表,无线点菜,无线数据采集,无线设备管理和监控,汽车仪表数据的无线读取等等。
1.几种无线通信方式的简介生产和生活中的控制应用往往是限定到一定地域范围内,比如:主机设备和周边设备的互联互通,智能家居房间内的电器控制,餐厅或饭店内的无线点菜系统,厂房内生产设备的管理和监控等0~200米的范围内,本文着重探讨短距离无线通信实用技术,主要有:红外技术,蓝牙技术,802.11b无线局域网标准技术,微功率短距离无线通信技术,现简介如下:1.1 红外技术红外通信技术采用人眼看不到的红外光传输信息,是使用最广泛的无线技术,它利用红外光的通断表示计算机中的0-1逻辑,通常有效作用半径2米,发射角一般不超过20度,传统速度可达4 Mbit/s,1995年IrDA(InfraRed Data Association)将通信速率扩展到的高达16Mbit/s ,红外技术采用点到点的连接方式,具有方向性,数据传输干扰少,速度快,保密性强,价格便宜,因此广泛应用于各种遥控器,笔记本电脑,PDA,移动电话等移动设备,但红外技术只限于两台设备通讯,无法灵活构成网络,而且红外技术只是一种视距传输技术,传输数据时两个设备之间不能有阻挡物,有效距离小,且无法用于边移动边使用的设备。
解读R F ID技术

以具有很多种不同的分类。一般来讲,可 以按照如下的方式进行分类。
电
计算机系统
田1 RFID系统工作原理简圈
万方数据
研究·探讨l Research/Discussion
3.1.根据标签的供电形式分为——有源、 无源和半有源系统
有源系统的标签使用标签内的电池 来供电,系统识别距离较长,可达几十米 甚至上百米,但其寿命有限并且成本较 高,另外,由于标签带有电池,因此,有 源标签的体积较大,无法制成薄卡(比如 信用卡标签)。无源射频标签不含电池, 它把耦合的读写器发射的电磁场能量作为 自己的能量,其重量轻、体积小、寿命非 常长、成本低廉,并可制成各种各样的薄 卡或挂扣卡,但它的读写距离一般是几十 厘米到数十米,且需要有较大的发射功 率。半有源系统的标签带有电池,但是电 池只起到激活系统的作用,标签一旦被激 活,无须电池供电,即可进入无源标签工 作模式。 3.2根据标签的工作频率可以分为——低 频,高频,超高频和微波系统
1980年以来,低频RFID技术一直用 于近距离的门禁管理。由于其信噪比较 低,使识读距离受到很大限制。低频系统 防冲撞性能差,多标签同时识读慢,性能 也容易受其他电磁环境的影响。13.56MHz 高频RFID速度较快,可以实现多标签同 时识读,形势多样,价格合理,但是高频 RFID产品对可导媒介(如液体、高湿和 碳介质等)穿透性很差,由于其频率特 性,识别距离较短。860~960MHz超高
将来的保安系统均可应用射频卡,一 卡可以多用,比如作工作证、出入证、停 车卡、饭店住宿卡甚至旅游护照等等,好 处是简化手续、提高工作效率、安全。
5 RFID在我国的应用前景 RT]D技术作为一种新兴的自动识别
技术,在我国射频识别产品的市场潜力
射频卡(RF卡)简介

射频卡(RF卡)简介[摘要]射频卡(简称RF卡)是一种以无线方式传送数据的集成电路卡片,它具有数据处理及安全认证功能等特有的优点。
★ RF卡在读写时是处于非接触操作状态,避免了由于接触不良所造成的读写错误等误操作,同时避免了灰尘、油污等外部恶劣环境对读写卡的影响。
★ 操作简单、快捷-RF卡采取无线通迅方式,使用时无方向要求,所以使用起来十分方便。
★ 防冲突-RF卡中存有快速防冲突机制,能防止卡片之间出现数据干扰,因此终端可以同时处理多张卡片。
★ 便于一卡多用:RF卡中有多个分区,每个分区又各自有自己的密码,所以可以将不同的分区用于不同的应用,实现一卡多用。
与接触式IC卡相比较,射频卡具有以下优点:★可靠性高-卡与读写器之间无机械接触,避免了由于接触读写而产生的各种故障。
例如:由于粗暴插卡、非卡外物插入、灰尘、油污导致接触不良等原因造成的故障;卡表面无裸露的芯片,无须担心芯片脱落、静电击穿,弯曲损坏等问题;★操作方便、快捷-由于非接触通讯,读写器在1cm-10cm范围内就可以对卡片操作,所以不必象IC卡那样进行插拔工作;非接触卡使用时没有方向性,卡片可以任意方向掠过读写器表面,可大大提高每次使用的速度;★防冲突-射频卡中有快速防冲突机制,能防止卡片之间出现数据干扰,因此读写器可以"同时"处理多张非接触式射频卡;★应用范围广-射频卡的存储器结构特点使它一卡多用;可应用于不同的系统,用户根据不同的应用设定不同的密码和访问条件;★加密性能好-射频卡的序列号是唯一的,制造厂家在产品出厂前已将此序列号固化,不可再更改;射频卡与读写器之间采用双向验证机制,即读写器验证射频卡的合法性,同时射频卡也验证读写器的合法性;处理前,卡要与读写器进行三次相互认证,而且在通讯过程中所有的数据都加密。
此外,卡中各个扇区都有自己的操作密码和访问条件。
RFID射频标签术语微波:波长为0.1—100厘米或频率在1—100GHZ的电磁波。
IC 知 识 简 介

IC 知识简介IC知识一一、IC的分类IC按功能可分为:数字IC、模拟IC、微波IC及其他IC,其中,数字IC是近年来应用最广、发展最快的IC品种。
数字IC就是传递、加工、处理数字信号的IC,可分为通用数字IC和专用数字IC。
通用IC:是指那些用户多、使用领域广泛、标准型的电路,如存储器(DRAM)、微处理器(MPU)及微控制器(MCU)等,反映了数字IC的现状和水平。
专用IC(ASIC):是指为特定的用户、某种专门或特别的用途而设计的电路。
目前,集成电路产品有以下几种设计、生产、销售模式。
1.IC制造商(IDM)自行设计,由自己的生产线加工、封装,测试后的成品芯片自行销售。
2.IC设计公司(Fabless)与标准工艺加工线(Foundry)相结合的方式。
设计公司将所设计芯片最终的物理版图交给Foundry 加工制造,同样,封装测试也委托专业厂家完成,最后的成品芯片作为IC设计公司的产品而自行销售。
打个比方,Fabless相当于作者和出版商,而Foundry相当于印刷厂,起到产业"龙头"作用的应该是前者。
二、世界集成电路产业结构的变化及其发展历程自1958年美国德克萨斯仪器公司(TI)发明集成电路(IC)后,随着硅平面技术的发展,二十世纪六十年代先后发明了双极型和MOS型两种重要的集成电路,它标志着由电子管和晶体管制造电子整机的时代发生了量和质的飞跃,创造了一个前所未有的具有极强渗透力和旺盛生命力的新兴产业集成电路产业。
回顾集成电路的发展历程,我们可以看到,自发明集成电路至今40多年以来,"从电路集成到系统集成"这句话是对IC产品从小规模集成电路(SSI)到今天特大规模集成电路(ULSI)发展过程的最好总结,即整个集成电路产品的发展经历了从传统的板上系统(System-on-board)到片上系统(System-on-a-chip)的过程。
在这历史过程中,世界IC产业为适应技术的发展和市场的需求,其产业结构经历了三次变革。
射频识别技术(RFID)

命令 写数据 读数据
物 理
数据
接 口
能量
(
调 制 解 调
)
数据协议处理器
标签驱动 (射频单元)
芯片 天线
封装
应用程序接口(API)
空中接口(Air Interface)
射频识别系统的工作原理
读写器
应用 系统 应用接口
编码 调制 解码
射频 空中接口 标签
RFID工作原理模型
射频识别系统的工作原理是利用射频标签与射频读 写之间的射频信号及其空间耦合、传输特性,实现对 静止的、移动的待识别物品的自动识别。
ISO 15693 非接触集成电路卡近程卡
ISO 14443 非接触集成电路卡近程卡
ISO 18046 RFID设备性能测试方法
ISO 18047 (有24 数据载体/特征标识符
ISO 15418 UCC应用标识
ISO 15434 大容量ADC媒体用的传送语法
通过发出一系列的隔离指令,使得读出范围内的 多个射频标签逐一或逐批地被隔离(令其睡眠) 出去,最后保留一个处于活动状态的标签与阅读 器建立无冲撞的通信。
6.数据传输 (1)从阅读器向射频标签方向的数据交换
从射频标签存储信息的注入方式来分,可分为有线写入 方式和无线写入方式两种情况。
从阅读器向射频标签是否发送命令来分,可分为射频标 签只能接受能量激励和既接受能量激励也接受阅读器代码命 令。 (2)从射频标签向阅读器方向的数据交换。其工作方式包括:
阅读器向射频标签供给射频能量。 无源标签:工作能量来自阅读器射频能量。 半有源标签:阅读器的射频能量起到唤醒标签转 入工作状态的作用。 有源标签:不需利用阅读器的射频能量。
5.时序 (1)双向系统(阅读器向标签发送命令和数据,标
射频(RF)基础知识

●什么是RF?答:RF 即Radio frequency 射频,主要包括无线收发信机。
2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)?答:EGSM RX: 925-960MHz, TX:880-915MHz;CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。
3. 从事手机Rf工作没多久的新手,应怎样提高?答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。
● 4. RF仿真软件在手机设计调试中的作用是什么?答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。
5. 在设计手机的PCB时的基本原则是什么?答:基本原则是使EMC最小化。
6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意?答:ABB是Analog BaseBand,DBB是Ditital Baseband,MCU往往包括在DBB芯片中。
PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。
将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。
7. DSP和MCU各自主要完成什么样的功能?二者有何区别?答:其实MCU和DSP都是处理器,理论上没有太大的不同。
但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。
8. 刚开始从事RF前段设计的新手要注意些什么?答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。
9. 推荐RF仿真软件及其特点?答:Agilent ADS仿真软件作RF仿真。
压控振荡器的电路设计2

1 绪论1.1 压控振荡器原理及发展现状调节可变电阻或可变电容可以改变波形发生电路的振荡频率,要求波形发生电路的振荡频率与控制电压成正比。
这种电路称为压控振荡器,又称为VCO 或u-f 转换电路。
怎样用集成运放构成压控振荡器呢?我们知道积分电路输出电压变化的速率与输入电压的大小成正比,如果积分电容充电使输出电压达到一定程度后,设法使它迅速放电,然后输入电压再给它充电,如此周而复始,产生振荡,其振荡频率与输入电压成正比,即压控振荡器。
其特性用输出角频率0ω与输入控制电压C u 之间的关系曲线(图1.1)来表示。
图中C u 为零时的角频率,(0ω,0)称为自由振荡角频率;曲线在(0ω,0)处的斜率0K 称为控制灵敏度。
使振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。
在通信或测量仪器中,输入控制电压是欲传输或欲测量的信号(调制信号)。
人们通常把压控振荡器称为调频器,用以产生调频信号。
在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。
图1.1 压控振荡器的控制特性压控振荡器的类型有LC 压控振荡器、RC 压控振荡器和晶体压控振荡器。
对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。
晶体压控振荡器的频率稳定度高,但调频范围窄,RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。
压控振荡器(VCO)是一种振荡频率随外加控制电压变化的振荡器,是频率产生源的关键部件。
频率产生源是大多数电子系统必不可少的组成部分,更是无线通信系统的核心。
在许多现代通信系统中,VCO是可调信号源,用以实现锁相环(PLL)和其他频率合成源电路的快速频率调谐。
VCO已广泛用于手机、卫星通信终端、基站、雷达、导弹制导系统、军事通信系统、数字无线通信、光学多工器、光发射机和其他电子系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rf ic 工艺技术
RF IC(射频集成电路)工艺技术是指在射频电子设备中用到
的一种集成电路制造技术,主要应用于无线通信、雷达、射频识别等领域。
它通过在硅基或其他衬底上制造微小的电子器件和电路来实现射频信号的处理和传输。
RF IC工艺技术是现代
电子通信领域的重要技术之一,具有高频、高速和高性能等特点。
下面我们来详细介绍一下RF IC工艺技术。
首先,射频集成电路的制造需要先选取合适的基片材料。
常用的基片材料有硅、蓝宝石、砷化镓等。
硅基材料是RF IC制造过程中最常用的基片材料,因为它价格相对较低,制造工艺成熟,适合大规模生产。
其次,在RF IC制造过程中,关键的工艺步骤是光刻、薄膜沉积、蚀刻和金属化等。
光刻技术是将设计好的电路图案通过光刻胶覆盖到基片上,然后进行曝光和显影,形成所需的电路图案。
薄膜沉积技术是将特定材料沉积到基片上,形成不同的薄膜层,以实现电子器件的功能。
蚀刻技术则是通过化学或物理方法将不需要的材料蚀刻掉,以形成精确的电路形状。
最后,金属化技术是将金属材料沉积到基片上,形成电路的导线和连接。
另外,RF IC工艺技术中还需要考虑特殊的电磁兼容性(EMC)和无线射频性能。
EMC是指射频电子设备在工作过程中不对
其他设备和环境产生干扰的能力。
为了满足这一要求,RF IC
制造过程中需要进行电磁辐射和电磁感应的仿真和测试,以减小电路的干扰和接收外界的干扰。
同时,RF IC需要具备良好
的无线射频性能,如低噪声、高增益、稳定性等。
这需要在制造过程中优化器件和电路的参数,以满足不同的射频应用需求。
最后,RF IC工艺技术也需要考虑先进的封装技术和测试技术。
封装技术是将制造好的RF IC芯片封装到塑料或金属外壳中,以保护芯片不受外界环境的影响。
同时,封装也可以提供连接芯片与外部电路的接口。
而测试技术则是对封装好的RF IC进行电性能测试和可靠性测试,以保证其工作正常且具有稳定性。
总结来说,RF IC工艺技术是一种专门用于制造射频集成电路
的技术,它涉及到材料选取、工艺步骤、EMC和无线射频性
能等方面。
随着无线通信和射频应用的迅猛发展,RF IC工艺
技术在电子通信领域的重要性日益凸显,不断推动着无线通信技术的创新和进步。