(完整版)双积分AD转换器

合集下载

AD、DA转换

AD、DA转换

5V
/每1个最低有效位 个最低有效位
(2) D/A的组成 的组成 由三部分电路组成
电阻网络 模拟电子开关 求和运算放大器
1、权电阻D/A变换器 、权电阻 变换器
这种变换器由“电子模拟开关” 这种变换器由“电子模拟开关”、“权电阻求和网 运算放大器” 基准电源”等部分组成。 络”、“运算放大器”和“基准电源”等部分组成。
模-数转换:模拟信号→数字信号: 数字信号: 数转换:模拟信号 数字信号 A/D转换器 (ADC:Analog Digital Converter) 转换器 数-模转换:数字信号→模拟信号: 模拟信号: 模转换:数字信号 模拟信号 D/A转换器 (DAC:Digital Analog Converter) 转换器
uo 控 制 逻 辑
时钟 清 0、置数 、 “1”状态是否保留 状态是否保留 控制端 清 0、置数 、 CP、(移位命令 、 移位命令 移位命令)
D / A
1 0 0 0
数码寄存器
1 0 0 0
移位寄存器
原理框图
3、双积分型ADC 、双积分型
双积分型ADC是一种电压双积分型ADC是一种电压-时间间接型模数转换器 ADC是一种电压 主要有积分器、比较器、 主要有积分器、比较器、计数器和控制电路组成 工作过程由对基准源和样值两次积分完成。 工作过程由对基准源和样值两次积分完成。
∞ C - +
B A
这种A/D 这种A/D 变 D1 换器的优点是转 换速度快, 换速度快,缺点 D0 是所需比较器数 目多, 数字输出 目多,位数越多 矛盾越突出。 矛盾越突出。
逻辑状态关系表
输入电压
uxLeabharlann 比较器输入编码器输出
A B C D E F G D2 D1 D0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0

AD转换器

AD转换器

6)内部具有三态输出缓冲器,可直接与8位、 12位或16位微处理器直接相连。 7)具有+10.000V的高精度内部基准电压源, 只需外接一只适当阻值的电阻,便可向DAC 部分的解码网络提供参考输入。内部具有 时钟产生电路,不须外部接线。 8 ) 需 三 组 电 源 : + 5 V、VCC(+12V~+ 15V)、VEE(-12V~-15V)。 由 于 转 换 精 度高,所提供电源必须有良好的稳定性,并 进行充分滤波,以防止高频噪声的干扰。
按输出方式分可分为:并行、串行、串并行。 按转换原理可分为:计数式、双积分式、逐次 逼近式。 按转换速度可分为:低速(转换时间≥1s)、 中速(转换时间≤lms)、高速(转换时间 ≥1μ s)和超高速(转换时间≤1ns) 按转换精度和分辨率可分为:3位、4位、8位、 10位、12位、14位、16位
能将模拟电压成正比的转换成数字量。
是模拟信号和数字信号接口的关键部件。
2、应用
雷达、通信、电子对抗、声纳、卫星、导弹、测控系统、地 震预测、医疗、仪器仪表、图像和音频等领域。
一、A/D转换的一般步骤及基本原理 3、 A/D转换的一般步骤
A/D转换过程为:采样、保持、量化和编码。
(1)采样与保持
一、A/D转换的一般步骤及基本原理
3、高于8位的并行输出A/D转换器接口
接口的一般形式
数据分两次输入,需增加一个并行接口。除此之外,其接口 形式和工作原理与8位ADC相同。
图2-32Байду номын сангаас
高于8位ADC接口的一般形式
【例2】 ADC574与8031/8051 PC机接口设计
(1).硬件连线 接口可以采用查询和中断二种控制方式。
(2).软件设计

AD转换器实验分析

AD转换器实验分析
实际应用在工业控制和智能化仪表中常由单片机进行实时控制及实时ad转换器实验1实验目的了解ad转换器adc0809工作原理掌握ad在工业控制和智能化仪表中常由单片机进行实时控制及实时数据处理被控制或测量对象的有关参量往往是连续变化的模拟量如温度速度压力等单片机要处理这些信号先将模拟量转换成数字量这一过程为模数ad转换
MOVX A,@DPTR ;读入状态
JNB ACC.7, TEST ;判断EOC状态,EOC=0继续查询
MOV DPTR,#0CFA0H ;EOC=1,转换完毕
MOVX A,@DPTR ;读入数据
3.转换得到的二进制数字量通过P1口送到发光二极管显示。
A/D转换器实验
2)程序流程如图4所示。
开始 启动A/D转换 读入状态信息
单片机原理与应用课程实验
实验六、A/D转换器实验
实验重点:硬件设计、程序设计、现象分析 实验难点:实际应用
A/D转换器实验
在工业控制和智能化仪表中,常由单片机进行实时控制及实时数 据处理,被控制或测量对象的有关参量往往是连续变化的模拟量, 如温度、速度、压力等,单片机要处理这些信号,先将模拟量转换 成数字量,这一过程为模/数(A/D)转换。
1、实验目的
了解A/D转换器ADC0809工作原理,掌握 A/D转换程序设计方法及与89C51连接的接口 电路设计方法。
A/D转换器实验
2、实验要求(1必做,2为选做)
1)利用实验机上的ADC0809做一个通道A/D转换器,实 验机上的电位器提供模拟量输入,编制程序,将模拟量转 换成二进制数字量,并用发光二极管显示(采用查询、延 时或中断方式转换);若在LED数码管显示ADC0809转换 结果,程序如何编写。 3)内容1)改为8通道轮流采集,在LED数码管显示,程序 如何编写。

电气检测技术(新9)AD转换原理

电气检测技术(新9)AD转换原理
电阻网DAC中,输入数字量经数字电路控制一组电子 模拟开关的通、断,决定电阻网的分压或分流之比值(解 码),使输出电压或电流与输入数字量成确定的正比关系。
25
1) ai为输入数字量,接CPU的DBUS。可选用 不同的代码,常用的DAC采用二进制码。
2)触发器构成的缓冲寄存器(锁存器),锁存 CPU送来的数据。得到和暂存对应的输出电压。
压分辨率为5V/255≈20mV;10位DAC的分辨率为 5V/1023≈5mV。 位数越多,分辩率越高,转换的精度也越高。
2
测量系统用ADC的主要类型:
1、适用于数字仪器、仪表的ADC; 这类产品多半设计成BCD码输出,转换速度 一般较低(每秒转换十几次)。
2、适用测量系统作模/数接口部件的ADC。 这类产品的转换速度较高,多半以二进制代码 (含双极性代码)输出,常设计成带有三态 输出锁存器,能方便实现与微处理器直接接口。
18
3、应用
产品种类多,转换能力有很大的差异; 有8Bit、10Bit、12Bit、14Bit、16Bit等。 在这些不同转换能力的ADC中,又包括有并行输 出的ADC,以及输出为串行的ADC。 常见的8Bit的有NS公司的ADC0801、DC0802、 ADC0803、ADC0804系列及ADC0808、 ADC0809系列 10Bit有AD公司的AD574,MAXIM公司 MAX1425、MAX1426 12Bit有AD公司的AD7888,MAXIM公司 MAX170、MAX172
有些DAC芯片内无缓冲寄存器,此时须外接, 如74LS273、373等锁存器。
26
3) 模拟开关按输入的数字量接通或断开解码 网相应支路的电流或电压;对它的要求比接通或 断开开关量的电子开关更高。希望动作快;接通 电阻很小,断开电阻很大,且稳定性好。在DAC 中有电压型开关和恒流型电流开关之分。

3位半AD转换7017

3位半AD转换7017

3位半数字表头芯片ICL7107中文资料3位半数字表头芯片ICL7107中文资料3位半数字表头芯片ICL7107中文资料(1) 31/2位双积分型A/D转换器ICL7107功能与特点① ICL7107是31/2位双积分型A/D转换器,属于CMoS大规模集成电路,它的最大显示值为士1999,最小分辨率为100uV,转换精度为0.05士1 个字。

② 能直接驱动共阳极LED数码管,不需要另加驱动器件,使整机线路简化,采用士5V两组电源供电,并将第21脚的GND接第30脚的IN 。

③ 在芯片内部从V+与COM之间有一个稳定性很高的2.8V基准电源,通过电阻分压器可获得所需的基准电压V REF。

④ 能通过内部的模拟开关实现自动调零和自动极性显示功能。

⑤ 输入阻抗高,对输入信号无衰减作用。

⑥ 整机组装方便,无需外加有源器件,配上电阻、电容和LED共阳极数码管,就能构成一只直流数字电压表头。

⑦ 噪音低,温漂小,具有良好的可靠性,寿命长。

⑧ 芯片本身功耗小于15mw(不包括LED)。

⑨ 不设有一专门的小数点驱动信号。

使用时可将LED共阳极数数码管公共阳极接V+.⑩ 可以方便的进行功能检查。

图1 ICL7107的引脚图及典型电路。

(2) ICL7107引脚功能及主要电气参数V+和V-分别为电源的正极和负极,au-gu,aT-gT,aH-gH:分别为个位、十位、百位笔画的驱动信号,依次接个位、十位、百位LED显示器的相应笔画电极。

Bck:千位笔画驱动信号。

接千位LEO显示器的相应的笔画电极。

PM:液晶显示器背面公共电极的驱动端,简称背电极。

Oscl-OSc3 :时钟振荡器的引出端,外接阻容或石英晶体组成的振荡器。

第38脚至第40脚电容量的选择是根据下列公式来决定:Fosl = 0.45/RCCOM :模拟信号公共端,简称“模拟地”,使用时一般与输入信号的负端以及基准电压的负极相连。

TEST :测试端,该端经过500欧姆电阻接至逻辑电路的公共地,故也称“逻辑地”或“数字地”。

AD转换器(8)

AD转换器(8)

A/D转换器一.主要技术指标1.分辨率能分辨出的最小模拟输入量的能力。

即输出变化一个LSB所对应的模拟输入电压的变化量。

例:8位数据输出,满度5V的A/D转换器,其分辨率是:5/255=19.5mv更多是直接采用数据位数来表示A/D分辨率。

例如8位、10位、12位等。

也有采用10进制位来表示分辨率。

例如3位半(0000—1999),4位半(00000-19999)等。

2.精度A/D转换后所得结果相对实际值的准确程度。

由于量化效应,设模拟量在一个Δ范围内只对应一个数字量输出。

这个Δ理论上应等于分辨率(一个LSB)。

但实际上,由于误差的存在,这个范围一般大于分辨率Δ(一个LSB)。

超出一个LSB部分即为精度的大小。

3.转换时间.完成一次A/D转换所需要的时间.快的:几个ns—几百个ns慢的:几个ms—几百个ms4. 温度系数和增益系数5.对电源电压变化的抑制比常见A/D转换器见表10-3二.A/D转换器的工作原理1.A/D转换的4个步骤采样—保持—量化—编码a.采样是将时间上连续的模拟量,以一定的时间间隔取其值,使其变为时间上离散,但大小仍然连续的模拟量.实际采样保持过程分析采样原理框图及实际采样电路图.b.保持即将采样得到的模拟信号保持下来。

即使在S(t)=0时,输出不变为0,而是保持采样瞬间的最后值。

分析保持电路原理。

实际上,采样过程与保持过程一样均需一定时间。

见上图。

c.量化和编码量化即用基本的量化电平个数来表示采—保所得的模拟电压。

(见上4图中的量化、编码图)由于模拟量的值不可能刚好为0q、1q、2q、……等,在量化时会产生误差—量化误差。

编码就是把已经量化的模拟值,用二进制、BCD码等来表示三.常见A/D转换方法速度最快的是直接比较法,常见AD转换有逐次逼近、双积分、计数法及电压-频率转换法等。

1.逐次逼近三部分:1。

比较器 2。

控制输出 3。

D/A转换分析逐次逼近AD原理,这种方法A/D转换时间是固定的,与输入电压无关。

AD转换电路

AD转换电路

A/D 转换电路导读:A/D 转换器(ADC )是将模拟信号转换成数字信号的电路。

本章将介绍A/D 转换的基本概念和原理电路,重点介绍集成芯片中的常用转换方法:逐次逼近型和V —T 双积分型转换电路,常用集成ADC 芯片,并给出典型应用实例。

0.1 A/D 转换的基本概念A/D 转换过程包括取样、保持、量化和编码4个步骤,一般,前2个步骤在取样-保持电路中1次性完成,后2个步骤在A/D 转换电路中1次性完成。

1.取样和取样定理我们知道,要确定(表示)1条曲线,理论上应当用无穷多个点,但有时却并非如此。

比如1条直线,取2个点即可。

对于曲线,只是多取几个点而已。

将连续变化的模拟信号用多个时间点上的信号值来表示称为取样,取样点上的信号值称为样点值,样点值的全体称为原信号的取样信号。

1个取样信号示例如图1.1.1-1(b)所示。

取样时间可以是等间隔的,也可以自适应非等时间间隔取样。

问题是:对于频率为f 的信号,应当取多少个点,或者更准确地说应当用多高的频率进行取样?取样定理将回答这个问题:只要取样频率f S 大于等于模拟信号中的最高频率f max 的2倍,利用理想滤波器即可无失真地将取样信号恢复为原来的模拟信号。

这就是说,对于1个正弦信号,每个周期只要取2个样点值即可,条件是必须用理想滤波器复原信号。

这就是著名的山农(Shannon )取样定理,用公式表示即为max S 2f f ≥(12.1-1)在工程上,一般取max S )5~4(f f ≥。

2.取样-保持取样后的样点值必须保存下来,并在取样脉冲结束之后到下1个取样脉冲到来之前保第12章A/D转换电路249持不变,以便ADC电路在此期间内将该样点值转换成数字量,这就是所谓取样-保持。

常用的取样-保持电路芯片有LF198等,其保持原理主要是依赖于电容器C上的电压不能突变而实现保持功能的。

3.量化与编码注意,取样保持后的样点值仍是连续的模拟信号,为了用数字量表示,必须将其化成某个最小数量单位△的整数倍。

AD和DA转换器

AD和DA转换器

A/D 和D/A 转换器在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。

传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。

这种模拟量到数字量的转换称为模-数(A/D)转换。

处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。

A/D 变换器简称为ADC 和D/A 变换器简称为DAC 是数字系统和模拟系统的接口电路。

第一节 基本概念一、D/A 变换D/A 变换器一般由变换网络和模拟电子开关组成。

输入n 位数字量D (=D n-1…D 1D 0)分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。

(1)变换网络变换网络一般有权电阻变换网络、R-2RT 型电阻变换网络和权电流变换网络等几种。

ⅰ、权电阻变换网络权电阻变换网络如图8-1所示,每一个电子开关S i 所接的电阻R i 等于2n-1-i R (i=0~n-1),即与二进制数的位权相似,R 0=2n-1R ,R n-1=R 。

对应二进制位D i =1时,电子开关S i 合上,R i 上流过的电流 I i =V REF /R i 。

令V REF /2n-1R=I REF ,则有 I i =2i I REF ,即R i 上流过对应二进位权倍的基准电流,R i 称为权电阻。

权电阻网络中的电阻从R 到2n-1R 成倍增大,位数越多阻值越大,很难保证精度。

图8-1 权电阻D/A 变换器ⅱ、R-2R 电阻变换网络R-2R 电阻网络中串联臂上的电阻为R ,並联臂上的电阻为2R ,如图8-2所示。

从每个並联臂2R 电阻往后看,电阻都为2R ,所以流过每个与电子开关S i 相连的2R 电阻的电流I i 是前级电流I i+1的一半。

因此, I i =2i I 0=2i I REF /2n ,即与二进制i 位权成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双积分式A/D转换器
1. A/D转换器概述
1.1 A/D转换器的基本概念
A/D转换器是模拟量输入通道的核心部件。

它是一个把模拟量转换成数字量的装置,采样和量化主要就是通过A/D转换器来实现。

在检测系统中,将传感器获取的模拟信号经放大、处理之后,将模拟信号转换成数字信号送入计算机进行处理。

1.2 A/D转换器的分类
A/D转换器芯片种类繁多,根据输出数字信号的有效数可分为4位、8位、10位、12位、16位等;从机构原理上看,可以分为计数式、逐次逼近式和双积分式。

下面将就双积分式进行简要说明。

2. 双积分式A/D转换器
2.1双积分式A/D转换器的组成
双积分式A/D转换器电路主要由积分器、比较器、计数器、和标准电压源组成。

其电路原理图2.1所示:
图2.1 双积分A/D转换器电路图
2.2双积分式A/D转换器的工作原理
双积分式A/D转换器在“转换开始”信号控制下,模拟输入电压在固定时间内向电容充电(正向积分),固定积分时间对应于n个时钟脉冲充电的速率与输入电压成正比。

当固定时间一到,控制逻辑将模拟开关切换到标准电压端,由于标准电压与输入电压极性相反,电容器开始放电(反向积分),放电期间计数器计数脉冲多少反映了放电时间的长短,从而决定了模拟输入电压的大小。

输入电压大,则放电时间长。

当电容器放电完毕,比较器输出信号使计数器停止计数,并由控制逻辑发出“转换结束”信号,完成一次A/D转换。

双积分式A/D 转换器的工作原理如图2.2所示:
图2.2 双积分式A/D 转换器的工作原理
2.3双积分式A/D 转换器的公式推导 从图2.2中可以看出,对标准电压进行反向积分的时间t 正比于输入模拟电压,输入模拟电压越大,反向积分所需要的时间越长。

因此,只要用标准的高频时钟脉冲测定反向积分所花费的时间,就可以得到输入模拟电压所对应的数字量,即实现了A/D 转换。

首先,电路对输入的未知模拟量V IN 进行固定时间t 0的积分,积分器输出为:
IN t IN H V t RC
dt V RC V 00)1(10==⎰ (2.1) V H 与输入模拟电压V IN 平均值成正比,然后转换为对标准电压进行反向积分,经过时间t ,积分器输出为0。

010
=-⎰dt V RC V t REF H (2.2) 即:
REF H V t RC V •=
1 由此得出:
0t V V t REF IN •= (2.3) 若将对V IN 的积分时间记为2000t ∆,则有:
t
t V V REF IN ∆=20000 (2.4)
3. 双积分式A/D转换器的特点及应用
这种转换方式的优点是消除干扰和电源噪声的能力强、精度搞,但是缺点是转换速度慢,通常在10-50次/秒。

因此,适合于信号变化缓慢,模拟量输入速率要求低,转换精度要求较高且现场干扰较严重的场合。

常用的双积分式A/D转换器有3位半(相当于二进制11位分辨率)精度,典型的产品有MC14433、ICL7106/ICL7107/ICL7126系列。

ICL7135为4位半(相当于14位二进制分辨率)精度,具有自校零、自动极性、单参考电压、动态字位扫描BCD码输出、自动量程控制信号输出等功能。

AD7550/AD7552/AD7555系列中,AD7550为13位二进制补码输出,AD7552为符号位加12位二进制码输出,AD7555为5位半(BCD)精度,动态字位扫描BCD码输出。

主要参考文献
[1] 刘士荣工业控制计算机系统及其应用[M] 机械工业出版社
[2] 蒋心怡吴汉松易曙光计算机控制技术[M] 清华大学出版社北京交通大学出版社
[3] 林敏计算机控制技术及工程应用[M] 国防工业出版社
[4] 侯进计算机控制系统[M] 电子工业出版社。

相关文档
最新文档