理科数学高考真题分类汇编 第三讲函数的概念和性质答案

合集下载

高中数学第三章函数的概念与性质真题(带答案)

高中数学第三章函数的概念与性质真题(带答案)

高中数学第三章函数的概念与性质真题单选题1、函数y =√2x +4x−1的定义域为( )A .[0,1)B .(1,+∞)C .(0,1)∪(1,+∞)D .[0,1)∪(1,+∞) 答案:D分析:由题意列不等式组求解由题意得{2x ≥0x −1≠0,解得x ≥0且x ≠1,故选:D2、若定义在R 上的偶函数f (x )满足f (2−x )=−f (x ),且当1≤x ≤2时,f (x )=x −1,则f (72)的值等于( ) A .52B .32C .12D .−12答案:D分析:根据f (x )是偶函数以及f (2−x )=−f (x )求出f (x )的周期,再结合周期、奇偶性和f (2−x )=−f (x )即可将自变量的范围转化到[1,2]之间. ∵函数f (x )是偶函数, ∴f (−x )=f (x ), 又∵f (2−x )=−f (x ), ∴f (2−x )=−f (−x ), ∴f (x +2)=−f (x ),∴f (x +4)=−f (x +2)=−[−f (x )]=f (x ), ∴函数f (x )的周期为4,∴f (72)=f (72−4)=f (−12)=f (12)=−f (2−12)=−f (32)=−12.故选:D.3、下列函数的最小值为2的是( ) A .y =x2+2x B .y =2√x 2+4C.y=x+3+1x+3(x>−3)D.y=x−1+1x−1(x>2)答案:C分析:根据基本不等式及对勾函数的性质逐项分析即得.对于A,当x<0时,函数y=x2+2x没有最小值,故A错误;对于B,y=2√x2+4=√x2+4+√x2+4,因为√x2+4≥2,根据对勾函数的性质可得y=√x2+4+√x2+4≥52,故B错误;对于C,因为x>−3,x+3>0,所以y=x+3+1x+3≥2,当且仅当x=−2取等号,故C正确;对于D,y=x−1+1x−1≥2,当且仅当x=2取等号,又x>2,故等号不成立,故D错误.故选:C.4、下列图形能表示函数图象的是()A.B.C.D.答案:D分析:根据函数的定义,判断任意垂直于x轴的直线与函数的图象的交点个数,即可得答案.由函数的定义:任意垂直于x轴的直线与函数的图象至多有一个交点,所以A、B显然不符合,C在x=0与函数图象有两个交点,不符合,只有D符合要求.故选:D5、已知f(x+1)=x−5,则f(f(0))=()A.−9B.−10C.−11D.−12答案:D分析:根据f (x +1)=x −5,利用整体思想求出f (x )的解析式,求得f (0),从而即求出f(f (0)). 解:因为f (x +1)=x −5=(x +1)−6, 所以f (x )=x −6, f (0)=−6,所以f(f (0))=f (−6)=−12. 故选:D .6、已知函数f(x)={x 2+2,x <12x +a 2,x ≥1,若f(f(0))=4a ,则实数a =( )A .12B . 45C .2D .9 答案:C分析:由函数的解析式可得f(f(0))=f(2)=4+a 2=4a ,求解可得答案. ∵函数f(x)={x 2+2,x <12x +a 2,x ≥1,∴f(0)=2,则f(f(0))=f(2)=4+a 2=4a , 即(a −2)2=0,解可得:a =2. 故选:C7、设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则 A .f (log 314)>f (2−32)>f (2−23) B .f (log 314)>f (2−23)>f (2−32)C .f (2−32)>f (2−23)>f (log 314) D .f (2−23)>f (2−32)>f (log 314) 答案:C解析:由已知函数为偶函数,把f (log 314),f (2−32),f (2−23),转化为同一个单调区间上,再比较大小. ∵f (x )是R 的偶函数,∴f (log 314)=f (log 34).∵log34>log33=1,1=20>2−23>2−32,∴log34>2−23>2−32,又f(x)在(0,+∞)单调递减,∴f(log34)<f(2−23)<f(2−32),∴f(2−32)>f(2−23)>f(log31),故选C.4小提示:本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.<0,且f(2)=0,则不8、定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)x2−x1等式xf(x)>0的解集是()A.(−2,2)B.(−2,0)∪(2,+∞)C.(−∞,−2)∪(0,2)D.(−∞,−2)∪(2,+∞)答案:C分析:依题意可得f(x)在[0,+∞)上单调递减,根据偶函数的性质可得f(x)在(−∞,0)上单调递增,再根据f(2)=0,即可得到f(x)的大致图像,结合图像分类讨论,即可求出不等式的解集;解:因为函数f(x)满足对任意的x1,x2∈[0,+∞),(x1≠x2),有f(x2)−f(x1)<0,x2−x1即f(x)在[0,+∞)上单调递减,又f(x)是定义在R上的偶函数,所以f(x)在(−∞,0)上单调递增,又f(2)=0,所以f(−2)=f(2)=0,函数的大致图像可如下所示:所以当−2<x <2时f (x )>0,当x <−2或x >2时f (x )<0, 则不等式xf(x)>0等价于{f(x)>0x >0或{f(x)<0x <0,解得0<x <2或x <−2,即原不等式的解集为(−∞,−2)∪(0,2); 故选:C 多选题9、下列函数中,在(0,+∞)上单调递增且图像关于y 轴对称的是( ) A .f (x )=x 3B .f (x )=x 2C .f (x )=√x D .f (x )=|x | 答案:BD分析:根据单调性与奇偶性可得答案关于A 选项,函数f (x )=x 3为奇函数,其图像关于原点对称,故A 错误;关于B 选项,函数f (x )=x 2为偶函数,其图像图像关于y 轴对称,且函数f (x )在(0,+∞)上单调递增,故B 正确;关于C 选项,函数f (x )=√x 的定义域是[0,+∞),故函数f (x )为非奇非偶函数,故C 错误;关于D 选项,函数f (x )=|x |的定义域为R ,f (−x )=|−x |=|x |=f (x ),所以函数f (x )为偶函数,当x >0时,f (x )=x ,所以函数f (x )在(0,+∞)上单调递增,故D 正确. 故选:BD.10、已知函数f(x)=x α图像经过点(4,2),则下列命题正确的有( ) A .函数为增函数B .函数为偶函数C .若x >1,则f(x)>1D .若0<x 1<x 2,则f (x 1)+f (x 2)2<f (x 1+x 22)答案:ACD分析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由√x >1可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.将点(4,2)代入函数f(x)=x α得:2=4α,则α=12. 所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x >1时,√x >1,即f(x)>1,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 正确.故选:ACD.小提示:本题主要考查了幂函数的性质,11、已知幂函数f(x)=(m +95)x m ,则下列结论正确的有( ) A .f (−32)=116 B .f(x)的定义域是RC .f(x)是偶函数D .不等式f (x −1)≥f (2)的解集是[−1,1)∪(1,3] 答案:ACD分析:首先求函数的解析式,再根据幂函数的性质,判断定义域,奇偶性,以及解不等式. 因为函数是幂函数,所以m +95=1,得m =−45,即f (x )=x −45,f (−32)=[(−2)5]−45=(−2)−4=116,故A 正确;函数的定义域是{x |x ≠0},故B 不正确; ∵f (−x )=f (x ),所以函数是偶函数,故C 正确;函数f (x )=x −45在(0,+∞)是减函数,不等式f (x −1)≥f (2)等价于|x −1|≤2,解得:−2≤x −1≤2,且x −1≠0,得−1≤x ≤3,且x ≠1,即不等式的解集是[−1,1)∪(1,3],故D 正确. 故选:ACD12、已知函数f (x )=bx+a x+2在区间(−2,+∞)上单调递增,则a ,b 的取值可以是( )A .a =1,b >32B .a >4,b =2 C .a =−1,b =2D .a =2,b =−1 答案:AC分析:分离常数得f (x )=b +a−2b x+2,若f (x )在(−2,+∞)单调递增,则满足a −2b <0,检验选项即可求解.f (x )=bx+a x+2=b +a−2b x+2在(−2,+∞)上单调递增,则满足:a −2b <0,即a <2b ,故a =1,b >32满足,a =−1,b =2满足, 故选:AC13、设函数f (x )={ax −1,x <ax 2−2ax +1,x ≥a ,f (x )存在最小值时,实数a 的值可能是( )A .−2B .−1C .0D .1 答案:ABC分析:根据函数解析式,分a >0、a =0、a <0三种情况讨论,当a <0时根据二次函数的性质只需函数在断点处左侧的函数值不小于右侧的函数值即可; 解:因为f (x )={ax −1,x <ax 2−2ax +1,x ≥a,若a>0,当x<a时f(x)=ax−1在(−∞,a)上单调递增,当x→−∞时f(x)→−∞,此时函数不存在最小值;若a=0,则f(x)={−1,x<0x2+1,x≥0,此时f(x)min=−1,符合题意;若a<0,当x<a时f(x)=ax−1在(−∞,a)上单调递减,当x≥a时f(x)=x2−2ax+1,二次函数y=x2−2ax+1对称轴为x=a,开口向上,此时f(x)在[a,+∞)上单调递增,要使函数f(x)存在最小值,只需{a<0a2−1≥a2−2a2+1,解得a≤−1,综上可得a∈(−∞,−1]∪{0}.故选:ABC填空题14、若函数y=2x+3x+2的值域是____.答案:(-∞,2)∪(2,+∞)分析:利用分离常数法去求函数y=2x+3x+2的值域即可∵y=2−1x+2,∴y≠2,∴函数的值域是:(-∞,2)∪(2,+∞).所以答案是:(-∞,2)∪(2,+∞)15、函数的图象是两条线段(如图),它的定义域为[−1,0)∪(0,1],则不等式f(x)−f(−x)>−1的解集为________.答案:[−1,0)∪(12,1]分析:首先求得函数的解析式,然后利用函数的解析式分类讨论即可求得最终结果.解:当x∈[−1,0)时,设线段所在直线的方程为y=kx+b,线段过点(﹣1,0),(0,1),根据一次函数解析式的特点,可得出方程组 {−k +b =0b =1,解得 {b =1k =1 .故当x ∈[﹣1,0)时,f (x )=x +1;同理当x ∈(0,1]时,f (x )=x −1;当x ∈[﹣1,0)时,不等式f (x )﹣f (﹣x )> −1可化为:x+1﹣(−x −1)> −1,解得:x >−32,∴﹣1≤x <0.当x ∈(0,1]时,不等式f (x )﹣f (﹣x )>﹣1可化为:x −1﹣(−x +1)> −1,解得:x >12,∴12<x ≤1,综上所述,不等式f (x )﹣f (﹣x )>﹣1的解集为 [−1,0)∪(12,1]. 所以答案是:[−1,0)∪(12,1]16、已知幂函数f(x)=(m 2−m −1)x m 的图象关于y 轴对称,则f(m)=___________. 答案:4分析:根据幂函数的知识求得m 的可能取值,根据f (x )图象关于y 轴对称求得m 的值,进而即得. 由于f (x )是幂函数,所以m 2−m −1=1,解得m =2或m =−1. 当m =2时,f (x )=x 2,图象关于y 轴对称,符合题意.当m =−1时,f (x )=x −1=1x ,图象关于原点对称,不符合题意.所以m 的值为2,∴. f(x)=x 2,f(2)=22=4. 所以答案是:4. 解答题17、已知函数f(x)=x+bax 2+1是定义在[−1,1]上的奇函数,且f(1)=12. (1)求a ,b 的值;(2)判断f(x)在[−1,1]上的单调性,并用定义证明. 答案:(1)a =1,b =0; (2)证明见解析分析:(1)根据已知条件,f(x)为奇函数,利用f(0)=0可以求解出参数b ,然后带入到f(1)=12即可求解出参数a ,得到函数解析式后再去验证函数是否满足在[−1,1]上的奇函数即可;(2)由第(1)问求解出的函数解析式,任取x 1,x 2∈[−1,1],x 1<x 2,做差f(x 1)−f(x 2),通过因式分解判断差值f(x 1)−f(x 2)的符号,即可证得结论. (1)由已知条件,函数f(x)=x+b ax 2+1是定义在[−1,1]上的奇函数,所以f(0)=b =0,f(1)=1a+1=12,所以a =1,所以f(x)=xx 2+1,检验f(−x)=−x (−x)2+1=−x x 2+1=−f(x),为奇函数,满足题意条件;所以a =1,b =0. (2)f(x)在[−1,1]上单调递增,证明如下: 任取x 1,x 2∈[−1,1],x 1<x 2,f(x 1)−f(x 2)=x 1x 12+1−x 2x 22+1=x 1(x 22+1)−x 2(x 12+1)(x 12+1)(x 22+1)=x 1x 22+x 1−x 2x 12−x 2(x 12+1)(x 22+1)=x 1x 2(x 2−x 1)−(x 2−x 1)(x 12+1)(x 22+1)=(x 1x 2−1)(x 2−x 1)(x 12+1)(x 22+1);其中x 1x 2−1<0,x 1−x 2<0,所以f(x 1)−f(x 2)<0⇒f(x 1)<f(x 2), 故f(x)在[−1,1]上单调递增.18、若函数f(x)的定义域为,求g(x)=f(x +m)+f(x −m)(m >0)的定义域. 答案:分类讨论,答案见解析.分析:根据复合函数的定义域的求法,建立不等式组即可得到结论.解:∴f(x)的定义域为,∴g(x)=f(x +m)+f(x −m)中的自变量x 应满足{0⩽x +m ⩽1,0⩽x −m ⩽1,即{−m ⩽x ⩽1−m,m ⩽x ⩽1+m.当1−m =m ,即m =12 时,x =12 ;当1−m >m ,即0<m <12 时,m ⩽x ⩽1−m ,如图:[0,1][0,1]当1−m<m,即m>12时,x∈∅,如图综上所述,当0<m<12时,g(x)的定义域为[m,1−m];当m=12时,g(x)的定义域为{12};当m>12时,函数g(x)不存在.小提示:本题主要考查函数定义域的求法,根据复合函数的定义域之间的关系是解决本题的关键,属于中档题.。

(精选试题附答案)高中数学第三章函数的概念与性质真题

(精选试题附答案)高中数学第三章函数的概念与性质真题

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质真题单选题1、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.2、已知幂函数y=f(x)的图象过点P(2,4),则f(3)=()A.2B.3C.8D.9答案:D分析:先利用待定系数法求出幂函数的解析式,再求f(3)的值解:设f(x)=xα,则2α=4,得α=2,所以f(x)=x2,所以f(3)=32=9,故选:D3、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项.对于A ,f (x )=−x 为R 上的减函数,不合题意,舍.对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D ,f (x )=√x 3为R 上的增函数,符合题意,故选:D.4、函数f (x )在(−∞,+∞)上是减函数,且a 为实数,则有( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+1)<f (a )D .f (a 2−a )<f (a )答案:C分析:利用a =0可排除ABD ;根据函数单调性和a 2+1>a 恒成立可知C 正确.当a =0时,ABD 中不等式左右两侧均为f (0),不等式不成立,ABD 错误;∵a 2+1−a >0对于a ∈R 恒成立,即a 2+1>a 恒成立,又f (x )为R 上的减函数,∴f (a 2+1)<f (a ),C 正确.故选:C.5、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立;“函数g (x )=2x −m 2⋅2−x 为奇函数”,则g (x )=−g (−x ),即2x −m 2⋅2−x =−(2−x −m 2⋅2x )=m 2⋅2x −2−x ,解得:m =±1,故必要性不成立,故选:A .6、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可求出答案.解:∵函数f (x )=x ln (x +√a +x 2)为偶函数,x ∈R ,∴设g (x )=ln (x +√a +x 2)是奇函数,则g (0)=0,即ln √a =0,则√a =1,则a =1.故选:B .7、设函数f(x)=x 2+2(4−a)x +2在区间(−∞,3]上是减函数,则实数a 的取值范围是( )A .a ≥−7B .a ≥7C .a ≥3D .a ≤−7答案:B分析:根据二次函数的图象和性质即可求解.函数f(x)的对称轴为x=a−4,又∵函数在(−∞,3]上为减函数,∴a−4⩾3,即a⩾7.故选:B.小提示:本题考查由函数的单调区间求参数的取值范围,涉及二次函数的性质,属基础题.8、若函数y=f(x)在R上单调递增,且f(2m−3)>f(−m),则实数m的取值范围是()A.(−∞,−1)B.(−1,+∞)C.(1,+∞)D.(−∞,1)答案:C分析:由单调性可直接得到2m−3>−m,解不等式即可求得结果.∵f(x)在R上单调递增,f(2m−3)>f(−m),∴2m−3>−m,解得:m>1,∴实数m的取值范围为(1,+∞).故选:C.9、已知f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则实数a的取值范围是()A.(0,4)B.(1,+∞)C.(12,52)D.(1,52)答案:D分析:根据函数自变量的定义域以及函数单调递减列式,求出a的取值范围. ∵f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则{2a−3>a−2−2<a−2<2−2<2a−3<2,解得1<a<52故选:D..10、已知f(x+1)=x−5,则f(f(0))=()A.−9B.−10C.−11D.−12答案:D分析:根据f(x+1)=x−5,利用整体思想求出f(x)的解析式,求得f(0),从而即求出f(f(0)).解:因为f(x+1)=x−5=(x+1)−6,所以f(x)=x−6,f(0)=−6,所以f(f(0))=f(−6)=−12.故选:D.填空题11、设函数f(x)=x3+(x+1)2x2+1在区间[−2,2]上的最大值为M,最小值为N,则(M+N−1)2022的值为______. 答案:1分析:先将函数化简变形得f(x)=x 3+2xx2+1+1,然后构造函数g(x)=x3+2xx2+1,可判断g(x)为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M+N=2,从而可求得结果由题意知,f(x)=x 3+2xx2+1+1(x∈[−2,2]),设g(x)=x 3+2xx2+1,则f(x)=g(x)+1,因为g(−x)=−x 3−2xx2+1=−g(x),所以g(x)为奇函数,g(x)在区间[−2,2]上的最大值与最小值的和为0,故M+N=2,所以(M+N−1)2022=(2−1)2022=1.所以答案是:112、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x −13,再求出f(−18)的值得解. 设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13. 所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平.13、若函数f (x )={−x 2+x,x >00,x =0ax 2+x,x <0是奇函数,则实数a 的值为___________.答案:1分析:利用奇函数的性质进行求解.若f(x)是奇函数,则有f (−x )=−f (x ).当x >0时,−x <0,则f (−x )=a (−x )2+(−x )=ax 2−x ,又当x >0时,f (x )=−x 2+x ,所以−f (x )=x 2−x ,由f (−x )=−f (x ),得ax 2−x =x 2−x ,解得a =1.所以答案是:1.14、设函数f (x )={x,x ≤1,(x −1)2+1,x >1,则不等式f (1−|x |)+f (2)>0的解集为________. 答案:(−3,3)分析:根据分段函数的单调性,把问题中的函数值大小比较转化为自变量大小比较,从而求得解集. 由函数解析式知f(x)在R 上单调递增,且−f(2)=−2=f(−2),则f (1−|x |)+f (2)>0⇒f (1−|x |)>−f (2)=f(−2),由单调性知1−|x |>−2,解得x ∈(−3,3)所以答案是:(−3,3)小提示:关键点点睛:找到函数单调性,将函数值大小比较转化为自变量大小比较即可.15、已知函数f(x)=x3+3x,若f(a+3)+f(a−a2)>0恒成立,则实数a的取值范围是________. 答案:(−1,3)分析:先判断函数f(x)的奇偶性和单调性,根据奇偶性和单调性脱掉f,再解不等式即可.f(x)=x3+3x的定义域为R,因为f(−x)=−x3−3x=−(x3+3x)=−f(x),所以f(x)=x3+3x为奇函数,因为y=x3和y=3x都是R上的增函数,所以f(x)=x3+3x在R上单调递增,由f(a+3)+f(a−a2)>0可得f(a+3)>−f(a−a2)=f(a2−a),可得a+3>a2−a,即a2−2a−3<0,解得:−1<a<3,所以实数a的取值范围是(−1,3),所以答案是:(−1,3).解答题16、判断下列函数的奇偶性:(1)f(x)=x4−2x2;(2)f(x)=x5−x;(3)f(x)=3x;1−x2(4)f(x)=|x|+x.答案:(1)偶函数(2)奇函数(3)奇函数(4)非奇非偶函数分析:(1)利用偶函数的定义可判断函数的奇偶性;(2)利用奇函数的定义可判断函数的奇偶性;(3)利用奇函数的定义可判断函数的奇偶性;(4)利用反例可判断该函数为非奇非偶函数.(1)f(x)的定义域为R,它关于原点对称.f(−x)=(−x)4−2(−x)2=x4−2x2=f(x),故f(x)为偶函数. (2)f(x)的定义域为R,它关于原点对称.f(−x)=(−x)5−(−x)=−x5+x=−f(x),故f(x)为奇函数. (3)f(x)的定义域为(−∞,−1)∪(−1,1)∪(1,+∞),它关于原点对称. f(−x)=−3x=−f(x),故f(x)为奇函数.1−(−x)2(4)f(1)=|1|+1=2,f(−1)=0,故f(1)≠f(−1),f(−1)≠−f(1),故f(x)为非奇非偶函数. 17、已知f(x)=1(x∈R,x≠-2),g(x)=x2+1(x∈R).x+2(1)求f(2),g(2)的值;(2)求f(g(3))的值;(3)作出f(x),g(x)的图象,并求函数的值域.答案:(1)14,5;(2)112;(3)图见解析,f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞). 分析:(1)将2代入f (x ),g (x )计算即得;(2)先求出g (3),再将所求得的值代入f (x )计算得解;(3)用描点法作出f (x ),g (x )的图象,根据图象求出它们的值域.(1)f (2)=12+2=14,g (2)=22+1=5;(2)g (3)=32+1=10,f (g (3))=f (10)=110+2=112;(3)函数f (x )的图象如图:函数g (x )的图象如图:观察图象得f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞).18、已知幂函数f (x )=(2m 2−5m +3)x m 的定义域为全体实数R.(1)求f (x )的解析式;(2)若f (x )>3x +k −1在[−1,1]上恒成立,求实数k 的取值范围.答案:(1)f (x )=x 2(2)(−∞,−1)分析:(1)根据幂函数的定义可得2m 2−5m +3=1,结合幂函数的定义域可确定m 的值,即得函数解析式;(2)将f (x )>3x +k −1在[−1,1]上恒成立转化为函数g (x )=x 2−3x +1−k 在[−1,1]上的最小值大于0,结合二次函数的性质可得不等式,解得答案.(1)∵f (x )是幂函数,∴2m 2−5m +3=1,∴m =12或2.当m =12时,f (x )=x 12,此时不满足f (x )的定义域为全体实数R ,∴m =2,∴f (x )=x 2.(2)f (x )>3x +k −1即x 2−3x +1−k >0,要使此不等式在[−1,1]上恒成立,令g (x )=x 2−3x +1−k ,只需使函数g (x )=x 2−3x +1−k 在[−1,1]上的最小值大于0. ∵g (x )=x 2−3x +1−k 图象的对称轴为x =32,故g (x )在[−1,1]上单调递减, ∴g (x )min =g (1)=−k −1,由−k −1>0,得k <−1,∴实数k 的取值范围是(−∞,−1).19、若函数f(x)的定义域为[0,1],求g(x)=f(x +m)+f(x −m)(m >0)的定义域.答案:分类讨论,答案见解析.分析:根据复合函数的定义域的求法,建立不等式组即可得到结论.解:∴f(x)的定义域为[0,1],∴g(x)=f(x +m)+f(x −m)中的自变量x 应满足{0⩽x +m ⩽1,0⩽x −m ⩽1,即{−m ⩽x ⩽1−m,m ⩽x ⩽1+m.当1−m =m ,即m =12 时,x =12 ;当1−m >m ,即0<m <12 时,m ⩽x ⩽1−m ,如图:当1−m<m,即m>12时,x∈∅,如图综上所述,当0<m<12时,g(x)的定义域为[m,1−m];当m=12时,g(x)的定义域为{12};当m>12时,函数g(x)不存在.小提示:本题主要考查函数定义域的求法,根据复合函数的定义域之间的关系是解决本题的关键,属于中档题.。

答案第3讲 函数的概念和性质--高考数学习题和答案

答案第3讲 函数的概念和性质--高考数学习题和答案

③当 0 < − a < 1,此时 m =f (− a ) =b − a2 ,= M f= (0) b 或 M = f (1) =1+ a + b ,
2
2
4
M − m =a2 或 M − m =1+ a + a2 .综上, M − m 的值与 a 有关,与 b 无关.选 B.
4
4
12.C【解析】由题意 g(x) 为偶函数,且在 (0, +∞) 上单调递增,
<
0, b
> 0 ,又函数图象间断的
横坐标为正,∴ −c > 0 ,故 c 0 .
22.B【解析】 f (x) 为奇函数, g(x) 为偶函数,故 f (x) g(x) 为奇函数, f (x) | g(x) |为
奇函数,| f (x) | g(x) 为偶函数,| f (x) g(x) |为偶函数,故选 B.
有 3 个零点,故③错误.
当= sin x 1,= sinx 1 时, f ( x) 取得最大值 2,故④正确,
故正确的结论是①④. 故选 C.
3.D【解析】:
因为
f
(x) =
sin x + x cos x + x2
, x ∈[−π,π] ,所以
f
(−x)
=− sin x − x
cos (−x) + x2
2
选项 C.故选 D.
9.C【解析】解法一 ∵ f (x) 是定义域为 (−∞, +∞) 的奇函数, f (−x) =− f (x) .
且 f (0) = 0 .∵ f (1− x) = f (1+ x) ,∴ f (= x) f (2 − x) , f (−x)= f (2 + x)

理科数学2010-2019高考真题分类训练专题二函数概念与基本初等函数第三讲函数的概念和性质答案

理科数学2010-2019高考真题分类训练专题二函数概念与基本初等函数第三讲函数的概念和性质答案

专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1. C 【解析】 ()f x 是定义域为R 的偶函数,所以331(log )(log 4)4f f =,因为33log 4log 31>=,2303202221--<<<=,所以23323022log 4--<<<,又()f x 在(0,)+∞上单调递减,所以233231(2)(2)(log )4f f f -->>. 故选C .2. C 【解析】()sin sin |i |sin s n f x x x x x f x -=-+-=+=()(),则函数()f x 是偶函数,故①正确.当π,π2x ⎛⎫∈⎪⎝⎭时, sin sin sin sin x x x x ==,, 则sin sin 2sin f x x x x =+=()为减函数,故②错误. 当0πx ≤≤,sin sin sin sin 2sin f x x x x x x =+=+=(), 由0f x =()得2sin 0x =,得0x =或πx =, 由()f x 是偶函数,得在[π0-,)上还有一个零点πx =-,即函数()f x 在[]ππ-,上有3个零点,故③错误.当sin 1sin 1x x ==,时,()f x 取得最大值2,故④正确, 故正确的结论是①④. 故选C . 3.D 【解析】: 因为()2sin cos x xf x x x+=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x xf x f x x x x x --+-===--++,所以()f x 为[ππ]-,上的奇函数,因此排除A ; 又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ; 故选D .4. B 【解析】 因为332()2()()2222x x x xx x f x f x ----==-=-++,所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .5. D 【解析】由函数1x y a =,1log 2a y x ⎛⎫=+ ⎪⎝⎭,单调性相反,且函数1log 2a y x ⎛⎫=+ ⎪⎝⎭图像恒过1,02⎛⎫ ⎪⎝⎭可各满足要求的图象为D .故选D .6.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 7.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .8.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .9.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 10.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 11.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .12.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .13.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .14.D 【解析】当11x -剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=, 所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .15.D 【解析】当0x ?时,令函数2()2xf x x e =-,则()4xf x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=>,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .16.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B . 17.D【解析】∵函数y =[0,)+∞,不关于原点对称,所以函数y =非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.18.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.19.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.20.B 【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.21.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.22.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .23.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 24.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 25.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 26.B 【解析】四个函数的图象如下显然B 成立.27.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .28.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.29.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x xf x -=-,则()22(22)()xx x x f x f x ---=-=--=-,所以()f x =22x x --为奇函数,排除选项C ;选项D 中()22xxf x -=+, 则()22()xx f x f x --=+=,所以()22x x f x -=+为偶函数,选D .30.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .31.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.32.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.33.D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,22x x x ax ≤⎧⎨-≥⎩且0ln(1)x x ax >⎧⎨+≥⎩,由202x x x ax≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B , 当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D . 34.C 【解析】是奇函数的为3y x =与2sin y x =,故选C .35.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.36.A 【解析】()()112f f ---=-.37.A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D . 38.C 【解析】1y x=是奇函数,xy e -=是非奇非偶函数,而D 在(0,)+∞单调递增.选C . 39.B 【解析】由已知两式相加得,()13g =. 40.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以(lg(lg 2))f =3,故选C .41.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +)=a +-[a +]=-=f (),故f ()在R 上为周期函数.故选D .42.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取=-1,y =1113--=32>0,故再排除B ;当→+∞时,3-1远远大于3的值且都为正,故331x x -→0且大于0,故排除D ,选C . 43.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .44.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .45.B 【解析】210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩Q 或故选B .46.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .47.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 48.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,2xy -=在(0,)+∞上为减函数.49.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.50.A 【解析】当0a >时,由()(1)0f a f +=得220a+=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .51.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.52.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .53.B 【解】 由()()f x f x -=得()y f x =是偶函数,所以函数()y f x =的图象关于y 轴对称,可知B ,D 符合;由(2)()f x f x +=得()y f x =是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B . 54.A 【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A .55.C 【解析】∵()21200=+=f ,∴()()()a a f f f 2422202+=+==.于是,由()()a f f 40=得2424=⇒=+a a a .故选C . 56.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.57.A 【解析】∵()f x 是R 上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-. 58. [1,7]-【解析】 由2760x x +-…,得2670x x --…,解得17x-剟.所以函数y =[1,7]-.59. 3a =-【解析】解析:ln 2(ln 2)e (ln 2)8a f f --=-=-=-,得28a -=,3a =-.60. 0]-∞(,【解析】①根据题意,函数e e x x f x a -=+(), 若f x ()为奇函数,则f x f x -=-()(),即=e e e e x x x x a a --+-+() ,所以()()+1e e 0x x a -+=对x ∈R 恒成立.又e e 0x x -+>,所以10,1a a +==-.②函数e e x x f x a -=+(),导数e e x x f x a -'=-(). 若()f x 是R 上的增函数,则()f x 的导数e 0e x x f x a -'-≥=()在R 上恒成立,即2e x a ≤恒成立,而2e >0x ,所以a ≤0,即a 的取值范围为0]-∞(,.61.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞. 62【解析】因为函数()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos242f f f f f π=-===. 63.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.64.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.65.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112xx +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞. 66.1[1,]2-【解析】因为31()2e ()exx f x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-, 即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 67.①④【解析】①()2()2x x xx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质;②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质; ③3()xxe f x e x =⋅,令3()xg x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)x x e f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.68.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=---=-≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <,综上可得,实数a 的取值范围是9(,]2-∞. 69.13(,)22【解析】由()f x 是偶函数可知,()0-∞,单调递增;()0+∞,单调递减 又()(12a f f ->,(f f=可得,12a -<112a -<1322a <<. 70.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=, 由59()()22f f -=可得11210a -+=,则35a =, 则()()()325311155f a f f a ==-=-+=-+=-. 71.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.72.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.73.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解; 当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-. 74.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].75.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==.76.32-【解析】函数3()ln(1)x f x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)x xe ax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e +==+, 即32361xax x x e e e e+=+,整理得32331(1)x ax x x e e e ++=+,所以230ax x +=, 即32a =-. 77.1【解析】2311()()4()21222f f =-=-⨯-+=.78.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a .79.【答案】(Ⅱ)x(或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可)【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b +-=--, 令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b ⇒+=+,可取()0)f x x =>. (Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.80.(]0,1【解析】2110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1. 81.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x <<=.82.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞, 故362a a -=⇔=-.83.32【解析】331113()(2)()()1222222f f f f =-=-==+=. 84.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3a f x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =. 85.34-【解析】30,2212,2a a a a a a >-+=---=-, 30,1222,4a a a a a a <-+-=++=- . 86.①③【解析】∵11(,)x y a =,22(,)x yb =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于①1111212(),((1))((1),(1))f m x y f a b f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--()(1)()f a f b λλ=+-,具有性质P 的映射,同理可验证③符合,②不符合,答案应填.87.①②④【解析】①0)2(2)2(2)22()2(111====⋅=---f f f f m m m m Λ,正确; ②取]2,2(1+∈m m x ,则]2,1(2∈m x ;m m x x f 22)2(-=,从而 x x f x f x f m m m -====+12)2(2)2(2)(Λ,其中,Λ,2,1,0=m ,从而),0[)(+∞∈x f ,正确;③122)12(1--=++n m n f ,假设存在n 使9)12(=+n f , ∵121[2,2)n n n ++∈,∴1(21)22121n n n n f ++=--=-,∴219,210n n +==, 这与n Z ∈矛盾,所以该命题错误;④根据前面的分析容易知道该选项正确;综合有正确的序号是①②④.88.-1【解析】设(),()x x g x x h x e ae -==+,∵()g x 为奇函数,由题意()h x 也为奇函数.所以(0)0h =,解得1a =-.。

(精选试题附答案)高中数学第三章函数的概念与性质知识汇总笔记

(精选试题附答案)高中数学第三章函数的概念与性质知识汇总笔记

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质知识汇总笔记单选题1、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( )A .32B .12C .2D .3 答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α,因为幂函数的图像过点(3,√3),所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A2、设函数f(x)=1−x 1+x ,则下列函数中为奇函数的是( )A .f (x −1)−1B .f (x −1)+1C .f (x +1)−1D .f (x +1)+1答案:B分析:分别求出选项的函数解析式,再利用奇函数的定义即可.由题意可得f(x)=1−x 1+x =−1+21+x ,对于A ,f (x −1)−1=2x −2不是奇函数;对于B ,f (x −1)+1=2x 是奇函数;对于C ,f (x +1)−1=2x+2−2,定义域不关于原点对称,不是奇函数; 对于D ,f (x +1)+1=2x+2,定义域不关于原点对称,不是奇函数. 故选:B 小提示:本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.3、已知幂函数的图象经过点P (4,12),则该幂函数的大致图象是( ) A .B .C .D .答案:A 分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB 即可.设幂函数为y =x α,因为该幂函数得图象经过点P (4,12), 所以4α=12,即22α=2−1,解得α=−12,即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x −12在(0,+∞)上为减函数,所以排除B ,故选:A4、若函数y =√ax 2+4x +1的值域为[0,+∞),则a 的取值范围为( )A .(0,4)B .(4,+∞)C .[0,4]D .[4,+∞)答案:C分析:当a =0时易知满足题意;当a ≠0时,根据f (x )的值域包含[0,+∞),结合二次函数性质可得结果. 当a =0时,y =√4x +1≥0,即值域为[0,+∞),满足题意;若a ≠0,设f (x )=ax 2+4x +1,则需f (x )的值域包含[0,+∞),∴{a >0Δ=16−4a ≥0,解得:0<a ≤4; 综上所述:a 的取值范围为[0,4].故选:C.5、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的( )条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案.要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立;“函数g (x )=2x −m 2⋅2−x 为奇函数”,则g (x )=−g (−x ),即2x −m 2⋅2−x =−(2−x −m 2⋅2x )=m 2⋅2x −2−x ,解得:m =±1,故必要性不成立,故选:A .6、已知三次函数f(x)=2x 3+3ax 2+bx +c(a,b,c ∈R ),且f(2020)=2020,f(2021)=2021,f(2022)=2022,则f(2023)=( )A .2023B .2027C .2031D .2035答案:D分析:根据题意,构造函数g (x )=f (x )−x ,根据g (2020)=g (2021)=g (2022)=0可以知道g (x )=2(x −2020)(x −2021)(x −2022),进而代值得到答案.设g (x )=f (x )−x ,则g (2020)=g (2021)=g (2022)=0,所以g (x )=2(x −2020)(x −2021)(x −2022),所以g (2023)=2×3×2×1=12,所以f(2023)=12+2023=2035.故选:D.7、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B 8、已知f (2x +1)=4x 2+3,则f (x )=( ).A .x 2−2x +4B .x 2+2xC .x 2−2x −1D .x 2+2x +3答案:A分析:利用配凑法直接得出函数的解析式.因为f (2x +1)=4x 2+3=(2x +1)2−2(2x +1)+4,所以f (x )=x 2−2x +4.故选:A9、函数y =√2x +4x−1的定义域为( )A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D10、设函数f(x)=x2+2(4−a)x+2在区间(−∞,3]上是减函数,则实数a的取值范围是()A.a≥−7B.a≥7C.a≥3D.a≤−7答案:B分析:根据二次函数的图象和性质即可求解.函数f(x)的对称轴为x=a−4,又∵函数在(−∞,3]上为减函数,∴a−4⩾3,即a⩾7.故选:B.小提示:本题考查由函数的单调区间求参数的取值范围,涉及二次函数的性质,属基础题.填空题11、对于定义域为D的函数f(x),若存在x0∈D,使f(x0)=x0,则称点(x0,x0)为f(x)图象上的一个不动点.由此,函数f(x)=4x的图象上不动点的坐标为_________.答案:(−2,−2)、(2,2)分析:由不动点的定义,结合函数解析式求出不动点坐标.由题设,函数定义域为{x|x≠0},令f(x)=4x=x,则x=±2,所以函数不动点坐标为(−2,−2)、(2,2).所以答案是:(−2,−2)、(2,2)12、函数f(x)=√1−2x +3x2x+1的定义域________.答案:(−∞,−1)∪(−1,12)分析:根据函数f(x)的解析式,列出使解析式有意义的不等式,求出解集即可.由f(x)=√1−2x 3x2x+1可得:{1−2x>0x+1≠0解得:x<12,且x≠−1,∴函数f(x)=√1−2x +3x2x+1的定义域为:(−∞,−1)∪(−1,12),所以答案是:(−∞,−1)∪(−1,12)13、函数y=√x2−2x−3的值域是_________.答案:[0,+∞).分析:求出函数定义域,结合二次函数性质可得.x2−2x−3≥0,解得x≤−1或x≥3,在此条件下,y≥0.所以答案是:[0,+∞).14、设m为实数,若函数f(x)=x2−mx+m+2(x∈R)是偶函数,则m的值为__________.答案:0分析:根据函数的奇偶性的定义可得答案.解:因为函数f(x)=x2−mx+m+2(x∈R)是偶函数,所以f(−x)=f(x),所以(−x)2−m(−x)+m+2=x2−mx+m+2,得2mx=0,所以m=0,所以答案是:0.15、已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,f(x)+g(x)=2⋅3x,则函数f(x)=_____.答案:3x+3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x,结合两函数的奇偶性可得f(x)−g(x)=2⋅3−x,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x );所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x ,两式相加得, 2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x .故答案为:3x +3−x .小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式.解答题16、已知函数f (x )=−x 2+mx −m .(1)若函数f (x )的最大值为0,求实数m 的值.(2)若函数f (x )在[−1,0]上单调递减,求实数m 的取值范围.(3)是否存在实数m ,使得f (x )在[2,3]上的值域恰好是[2,3]?若存在,求出实数m 的值;若不存在,说明理由. 答案:(1)m =0或m =4;(2)m ⩽−2;(3)存在,m =6分析:(1)配方后得最大值,由最大值为0可解得m 的值;(2)由对称轴在区间的左侧可得;(3)分类讨论求函数f(x)在[2,3]上的最大值和最小值,由最大值为3最小值为2求解m 的值.(1)f(x)=−(x −m 2)2−m +m 24,则最大值−m +m 24=0,即m 2−4m =0,解得m =0或m =4. (2)函数f(x)图象的对称轴是x =m 2,要使f(x)在[−1,0]上单调递减,应满足m 2⩽−1,解得m ⩽−2.(3)①当m 2⩽2,即m ⩽4时,f(x)在[2,3]上递减,若存在实数m ,使f(x)在[2,3]上的值域是[2,3],则{f(2)=3,f(3)=2,即{−4+2m −m =3,−9+3m −m =2,,此时m 无解. ②当m 2⩾3,即m ⩾6时,f(x)在[2,3]上递增,则{f(2)=2,f(3)=3,即{−4+2m −m =2,−9+3m −m =3, 解得m =6. ③当2<m 2<3,即4<m <6时,f(x)在[2,3]上先递增,再递减,所以f(x)在x =m 2处取得最大值,则f (m 2)=−(m 2)2+m ⋅m 2−m =3,解得m =−2或6,舍去.综上可得,存在实数m =6,使得f(x)在[2,3]上的值域恰好是[2,3].小提示:本题考查二次函数的性质,考查二次函数的最值,对称轴,单调性等性质,掌握二次函数的图象与性质是解题关键.17、已知函数f (x )=x +1x .(1)请判断函数f (x )在(0,1)和(1,+∞)内的单调性,并证明在(1,+∞)的单调性;(2)若存在x ∈[14,12],使得x 2−ax +1≥0成立,求实数a 的取值范围. 答案:(1)f (x )在(0,1)上递减,在(1,+∞)递增,证明见解析(2)(−∞,174]分析:(1)利用单调性的定义判断证明即可;(2)问题转化为存在x ∈[14,12],a ≤x +1x ,所以只要求出f (x )=x +1x 的最大值即可求解.(1)f (x )在(0,1)上递减,在(1,+∞)递增,证明:任取x 1,x 2∈(1,+∞),且x 1<x 2,则f(x 2)−f(x 1)=x 2+1x 2−x 1−1x 1 =(x 2−x 1)+x 1−x 2x 1x 2=(x 2−x 1)(1−1x 1x 2)=(x 2−x 1)x 1x 2−1x 1x 2 因为1<x 1<x 2,所以x 2−x 1>0,x 2x 1−1>0,所以f(x 2)−f(x 1)>0,即f(x 2)>f(x 1),所以f (x )在(1,+∞)上单调递增,(2)由存在x ∈[14,12],使得x 2−ax +1≥0成立, 得存在x ∈[14,12],使得a ≤x +1x 成立,由(1)可知f (x )=x +1x 在x ∈[14,12]上递减, 所以当x =14时,f (x )取得最大值,即f (x )max =14+114=174, 所以a ≤174,即实数a 的取值范围为(−∞,174] 18、已知______,且函数g (x )=x+b2x 2+a .①函数f (x )=x 2+(2−a )x +4在定义域[b −1,b +1]上为偶函数;②函数f (x )=ax +b (a >0)在[1,2]上的值域为[2,4].在①,②两个条件中,选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题.(1)判断g (x )的奇偶性,并证明你的结论;(2)设ℎ(x )=−x −2c ,对任意的x 1∈R ,总存在x 2∈[−2,2],使得g (x 1)=ℎ(x 2)成立,求实数c 的取值范围. 答案:(1)选择条件见解析,a =2,b =0;g (x )为奇函数,证明见解析;(2)[−78,78].分析:(1)若选择①,利用偶函数的性质求出参数a,b ;若选择②,利用单调性得到关于a,b 的方程,求解即可;将a,b 的值代入到g(x)的解析式中,再根据定义判断函数的奇偶性;(2)将题中条件转化为“g(x)的值域是f(x)的值域的子集”即可求解.(1)选择①.由f (x )=x 2+(2−a )x +4在[b −1,b +1]上是偶函数,得2−a =0,且(b −1)+(b +1)=0,所以a =2,b =0.所以g (x )=x2x 2+2.选择②.当a >0时,f (x )=ax +b 在[1,2]上单调递增,则{a +b =22a +b =4,解得{a =2b =0 , 所以g (x )=x 2x 2+2.g (x )为奇函数.证明如下:g (x )的定义域为R.因为g (−x )=−x 2x 2+2=−g (x ),所以g (x )为奇函数.(2)当x >0时,g (x )=12x+2x ,因为2x +2x ≥4,当且仅当2x =2x ,即x =1时等号成立,所以0<g (x )≤14;当x <0时,因为g (x )为奇函数,所以−14≤g (x )<0;当x =0时,g (0)=0,所以g (x )的值域为[−14,14]. 因为ℎ(x )=−x −2c 在[−2,2]上单调递减,所以函数ℎ(x )的值域是[−2−2c,2−2c ]. 因为对任意的x 1∈R ,总存在x 2∈[−2,2],使得g (x 1)=ℎ(x 2)成立,所以[−14,14]⊆[−2−2c,2−2c ],所以{−2−2c ≤−142−2c ≥14,解得−78≤c ≤78. 所以实数c 的取值范围是[−78,78].19、已知幂函数f(x)=x m 2−m−2(m ∈Z)是偶函数,且在(0,+∞)上是减函数,求函数f (x )的解析式.答案:f(x)=x−2分析:根据幂函数的单调性,可知m2−m−2<0,又m∈Z,则m=0,1,再根据函数f(x)是偶函数,将m= 0,1分别代入验证可得答案.因为幂函数f(x)在区间(0,+∞)上单调递减,则m2−m−2<0,得m∈(−1,2),又∵m∈Z,∴m=0或1.因为函数f(x)是偶函数,将m=0,1分别代入,当m=0时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.当m=1时,m2−m−2=−2,函数为f(x)=x−2是偶函数,满足条件.∴f(x)的解析式为f(x)=x−2.。

2020年高考数学考点3函数的概念及性质

2020年高考数学考点3函数的概念及性质

考点3函数的概念及性质1. ( 2020 •陕西高考理科• T 5)已知函数f (x)2x 1 x 12' '「若f(f(0))=4a ,则实数a =( x ax,x 1.1 (A)丄2 【命题立意】4(B) 4(C) 2 (D5本题考查分段函数的函数值问题,考查考生思维的逻辑性。

【思路点拨】f(x)2x2x1,x 1,1.f (0) 2 f (f (0)) 4 2a 4 2a 4a a【规范解答】C. 因为ax, xf (x)2x2x1,x 1,1.ax, x所以f (0) 202, f (f (0)) f(2) 4 2a,4 2a 4a, 2.2. (2020 •广东高考文科3) 若函数f(x)= 3x+3 x与g(x)= 3x 3 x的定义域均为尺则(A . f(x)与g(x)均为偶函数-f(x) 为奇函数,g(x)为偶函数C • f(x)与g(x)均为奇函数•f(x)为偶函数.g(x)为奇函数【命题立意】本题考查函数奇偶性的定义及判定。

【思路点拨】因为定义域均为R,所以只需研究 f ( x)与f (x)的关系和g( x)与g(x)的关系即可判断.【规范解答】选D. f ( x) 3 x3x f(x) g( x) 3 x 3x g(x)故选D3. (2020 •广东高考理科3) 若函数f(x) =3x+3-x与g (x) =3x-3-x的定义域均为只,则(A. f (x)与g (x)均为偶函数B. f (x)为偶函数, g ( x )为奇函数A. f (x)与g (x)均为奇函数B. f ( x)为奇函数, g (x)为偶函数【命题立意】本题考查函数奇偶性的定义及判定。

【思路点拨】因为定义域均为R,所以只需研究f( x)与f (x)的关系和g( x)与g(x)的关系即可判断.【规范解答】x) 3 x 3x f (x) g( x) 3 x 3x g(x)故选B4.(2020 •安徽高考理科・T 4)若f X是R上周期为5的奇函数,且满足f 1 1, f 2A、一1B、1 C—2【命题立意】 本题主要考查函数的奇偶性、周期性,考查考生的化归转化能力。

高中数学第三章函数的概念与性质考点总结(带答案)

高中数学第三章函数的概念与性质考点总结(带答案)

高中数学第三章函数的概念与性质考点总结单选题1、已知f (x −2)=x 2+1,则f (5)=( )A .50B .48C .26D .29答案:A分析:利用赋值法,令x =7即可求解.解:令x =7,则f (5)=f (7−2)=72+1=50.故选:A.2、下列图形中,不能表示以x 为自变量的函数图象的是( )A .B .C .D .答案:B分析:根据函数的定义判断即可.B 中,当x >0时,y 有两个值和x 对应,不满足函数y 的唯一性,A ,C ,D 满足函数的定义,故选:B3、设f (x )是定义域为R 的奇函数,且f (1+x )=f (−x ).若f (−13)=13,则f (53)=()A .−53B .−13C .13D .53答案:C分析:由题意利用函数的奇偶性和函数的递推关系即可求得f (53)的值. 由题意可得:f (53)=f (1+23)=f (−23)=−f (23), 而f (23)=f (1−13)=f (13)=−f (−13)=−13, 故f (53)=13.故选:C.小提示:关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.4、函数y =3√x 4−13的图像大致是( )A .B .C .D .答案:A 分析:利用x =2时y >0排除选项D ,利用x =−2时y <0排除选项C ,利用x =12时y <0排除选项B ,所以选项A 正确.函数y =3√x 4−13的定义域为{x |x ≠±1}当x =2时,y =3√24−13=√153>0,可知选项D 错误;当x =−2时,y =3()43=√153<0,可知选项C 错误; 当x =12时,y =(12)3√(2)4−13=−12√603<0,可知选项B 错误,选项A 正确. 故选:A 5、函数f (x )=x +4x+1在区间[−12,2]上的最大值为( ) A .103B .152C .3D .4答案:B分析:利用换元法以及对勾函数的单调性求解即可.设t =x +1,则问题转化为求函数g (t )=t +4t −1在区间[12,3]上的最大值.根据对勾函数的性质,得函数g (t )在区间[12,2]上单调递减,在区间[2,3]上单调递增,所以g (t )max =max {g (12),g (3)}=max {152,103}=152. 故选:B6、函数f (x )在(−∞,+∞)上是减函数,且a 为实数,则有( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+1)<f (a )D .f (a 2−a )<f (a )答案:C分析:利用a =0可排除ABD ;根据函数单调性和a 2+1>a 恒成立可知C 正确.当a =0时,ABD 中不等式左右两侧均为f (0),不等式不成立,ABD 错误;∵a 2+1−a >0对于a ∈R 恒成立,即a 2+1>a 恒成立,又f (x )为R 上的减函数,∴f (a 2+1)<f (a ),C 正确.故选:C.7、“n =1”是“幂函数f (x )=(n 2−3n +3)⋅x n 2−3n 在(0,+∞)上是减函数”的一个( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要答案:A分析:由幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数,可得{n 2−3n+3=1n2−3n<0,由充分、必要条件的定义分析即得解由题意,当n=1时,f(x)=x−2在(0,+∞)上是减函数,故充分性成立;若幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数,则{n 2−3n+3=1n2−3n<0,解得n=1或n=2故必要性不成立因此“n=1”是“幂函数f(x)=(n2−3n+3)⋅x n2−3n在(0,+∞)上是减函数”的一个充分不必要条件故选:A8、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D多选题9、设函数f(x)={ax−1,x<ax2−2ax+1,x≥a,f(x)存在最小值时,实数a的值可能是()A.2B.-1C.0D.1答案:BC分析:分a=0,a>0和a<0三种情况讨论,结合二次函数的性质,从而可得出答案. 解:当x≥a时,f(x)=x2−2ax+1=(x−a)2−a2+1,所以当x≥a时,f(x)min=f(a)=−a2+1,若a=0,则f(x)={−1,x<0x2+1,x≥0,所以此时f(x)min=−1,即f(x)存在最小值,若a>0,则当x<a时,f(x)=ax−1,无最小值,若a<0,则当x<a时,f(x)=ax−1为减函数,则要使f(x)存在最小值时,则{−a 2+1≤a2−1a<0,解得a≤−1,综上a=0或a≤−1.故选:BC.10、已知偶函数y=f(x)(x∈R),有∀x1,x2∈(−∞,0]时,(x1−x2)⋅(f(x1)−f(x2))<0成立,则f(2ax)< f(2x2+1)对任意的x∈R恒成立的一个必要不充分条件是()A.−√2≤a≤√2B.−1<a<1C.0<a<√2D.−2<a<2答案:AD分析:由题意可判断函数在(−∞,0]为单调递减函数,在(0,+∞)上单调递增函数,只需|2ax|<2x2+1恒成立,分离参数,利用基本不等式即可求出a的取值,再结合必要不充分条件的概念可解.当∀x1,x2∈(−∞,0]时,(x1−x2)(f(x1)−f(x2))<0成立,则函数在(−∞,0]为单调递减函数,又函数y=f(x),x∈R为偶函数,则函数y=f(x)在(0,+∞)上单调递增函数,f(2ax)<f(2x2+1)对任意的x∈R恒成立,所以|2ax|<2x2+1,当x=0时,不等式恒成立,当x≠0时,2|a|<2x2+1|x|=2|x|+1|x|,又2|x|+1|x|≥2√2|x|⋅1|x|=2√2,当且仅当2|x|=1|x|时取等号,则2|a|<2√2,即|a|<√2,解得−√2<a<√2,由必要不充分条件的概念可知选项A、D正确,选项B、C错误.故选:AD11、下列各组函数是同一组函数的是()A.f(x)=2x与g(x)=√4x2B.f(x)=|x|x与g(x)={C.f(x)=2x2+1与g(t)=2t2+1D.f(x)=x与g(x)=√x33答案:BCD分析:由同一函数的定义域、对应法则都相同,即可判断选项中的函数是否为同一函数.A:g(x)=√4x2=2|x|,f(x)=2x,定义域相同,但对应法则不同,不同函数;B:f(x)=|x|x={,g(x)={,定义域和对应法则都相同,同一函数;C:f(x)=2x2+1与g(t)=2t2+1,定义域和对应法则都相同,同一函数;D:g(x)=√x33=x,f(x)=x,,定义域和对应法则都相同,同一函数;故选:BCD.12、幂函数f(x)=(m2−5m+7)x m2−6在(0,+∞)上是增函数,则以下说法正确的是()A.m=3B.函数f(x)在(−∞,0)上单调递增C.函数f(x)是偶函数D.函数f(x)的图象关于原点对称答案:ABD分析:根据幂函数的定义与性质得到方程(不等式)组,解得m=3,即可得到f(x),从而判断可得;解:因为幂函数f(x)=(m2−5m+7)x m2−6在(0,+∞)上是增函数,所以{m 2−5m+7=1m2−6>0,解得m=3,所以f(x)=x3,所以f(−x)=(−x)3=−x3=−f(x),故f(x)=x3为奇函数,函数图象关于原点对称,所以f(x)在(−∞,0)上单调递增;故选:ABD13、[多选题]下列四个图形中,可能是函数y=f(x)的图象的是()A.B.C.D.答案:AD分析:根据函数定义判断.在A,D中,对于定义域内每一个x都有唯一的y与之对应,满足函数关系;在B,C中,存在一个x有两个y与之对应的情况,不满足函数关系,故选:AD.填空题14、已知a∈{−4,−1,−12,13,12,1,2,3},若函数f(x)=x a在(0,+∞)上单调递减,且为偶函数,则a=______.答案:−4分析:根据幂函数的单调性知a<0,即可确定a的可能值,讨论a并判断对应f(x)奇偶性,即可得结果. 由题知:a<0,所以a的值可能为−4,−1,−12.当a=−4时,f(x)=x−4=x14(x≠0)为偶函数,符合题意.当a=−1时,f(x)=x−1=1x(x≠0)为奇函数,不符合题意.当a=−12时,f(x)=x−12=√x,定义域为(0,+∞),则f(x)为非奇非偶函数,不符合题意.综上,a=−4.所以答案是:−415、已知函数f(x)={−x +4,x ≤0x 2,x >0,若f(m)=4,则m =___________. 答案:0或2分析:对函数值进行分段考虑,代值计算即可求得结果.由题意可得{m ≤0−m +4=4 或{m >0m 2=4, ∴m =0或m =2,所以答案是:0或2.小提示:本题考查由分段函数的函数值求自变量,属简单题.16、已知函数f (x )={|x 2−2x |,x ≤36−x,x >3,若a 、b 、c 、d 、e (a <b <c <d <e )满足f (a )=f (b )=f (c )=f (d )=f (e ),则M =af (a )+bf (b )+cf (c )+df (d )+ef (e )的取值范围为______.答案:(0,9)解析:设f (a )=f (b )=f (c )=f (d )=f (e )=t ,作出函数f (x )的图象,可得0<t <1,利用对称性可得a +d =b +c =2,由f (e )∈(0,1)可求得5<e <6,进而可得出M =−e 2+2e +24,利用二次函数的基本性质可求得M 的取值范围.作出函数f (x )的图象如下图所示:设f (a )=f (b )=f (c )=f (d )=f (e )=t ,当0<x <2时,f (x )=2x −x 2=−(x −1)2+1≤1,由图象可知,当0<t <1时,直线y =t 与函数y =f (x )的图象有五个交点,且点(a,t )、(d,t )关于直线x =1对称,可得a +d =2,同理可得b +c =2,由f(e)=6−e=t∈(0,1),可求得5<e<6,所以,M=af(a)+bf(b)+cf(c)+df(d)+ef(e)=(a+b+c+d+e)f(e)=(e+4)(6−e)=−e2+2e+24=−(e−1)2+25∈(0,9).因此,M的取值范围是(0,9).所以答案是:(0,9).小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.解答题17、已知幂函数f(x)=(m−1)2x m2−4m+2在(0,+∞)上单调递增,函数g(x)=2x−k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,设p:x∈A,q:x∈B,若p是q成立的必要条件,求实数k的取值范围.(3)设F(x)=f(x)−kx+1−k2,且|F(x)|在上单调递增,求实数k的取值范围.答案:(1)m=0;(2)0≤k≤1;(3)[−1,0]∪[2,+∞)分析:(1)由幂函数的定义(m−1)2=1,再结合单调性即得解.(2)求解f(x),g(x)的值域,得到集合A,B,转化命题p是q成立的必要条件为B⊆A,列出不等关系,即得解.(3)由(1)可得F(x)=x2−kx+1−k2,根据二次函数的性质,分类讨论k2≤0和k2≥1两种情况,取并集即可得解.(1)由幂函数的定义得:(m−1)2=1,⇒m=0或m=2,当m=2时,f(x)=x−2在(0,+∞)上单调递减,与题设矛盾,舍去;当m=0时,f(x)=x2在(0,+∞)上单调递增,符合题意;[0,1]综上可知:m =0.(2)由(1)得:f(x)=x 2,当x ∈[1,2)时,f(x)∈[1,4),即A =[1,4),当x ∈[1,2)时,g(x)∈[2−k,4−k ),即B =[2−k,4−k ),由命题p 是q 成立的必要条件,则B ⊆A ,显然B ≠∅,则{2−k ≥14−k ≤4,即{k ≤1k ≥0, 所以实数k 的取值范围为:0≤k ≤1.(3)由(1)可得F(x)=x 2−kx +1−k 2,二次函数的开口向上,对称轴为x =k 2, 要使|F(x)|在上单调递增,如图所示:或即{k 2≤0F(0)≥0或{k 2≥1F(0)≤0,解得:−1≤k ≤0或k ≥2. 所以实数k 的取值范围为:[−1,0]∪[2,+∞) 小提示:关键点点睛:本题考查幂函数的定义及性质,必要条件的应用,已知函数的单调性求参数,理解p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集是解题的关键,考查学生的分析试题能力与分类讨论思想,及数形结合思想,属于较难题.18、为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量f (t )(单位:mg/m 3)与时间t (单位:ℎ)的函数关系为f (t )={kt,0<t <121kt ,t ≥12,当消毒12(ℎ)后,测量得药物释放量等于1(mg/m 3);而实验表明,当药物释放量小于34(mg/m 3)对人体无害.(1)求k 的值;(2)若使用该消毒剂对房间进行消毒,求对人体有害的时间有多长? [0,1]答案:(1)k =2;(2)724ℎ. 分析:(1)把t =12代入即可求得k 的值;(2)根据f (t )≥34,通过分段讨论列出不等式组,从而求解. (1)由题意可知f (12)=112k=1,故k =2;(2)因为k =2,所以f (t )={2t,0<t <1212t ,t ≥12, 又因为f (t )≥34时,药物释放量对人体有害,所以{0<t <122t ≥34或{t ≥1212t ≥34,解得38≤t <12或12≤t ≤23,所以38≤t ≤23, 由23−38=724,故对人体有害的时间为724ℎ.。

(精选试题附答案)高中数学第三章函数的概念与性质知识点归纳总结(精华版)

(精选试题附答案)高中数学第三章函数的概念与性质知识点归纳总结(精华版)

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质知识点归纳总结(精华版)单选题1、已知偶函数f (x )在[0,+∞)上单调递增,且f (−3)=0,则xf (x −2)>0的解集是( )A .{x|−3<x <3}B .{x|−1<x <0或x >5}C .{x|0<x <5}D .{x|x <−5或x >1}答案:B分析:根据函数的性质推得其函数值的正负情况,由xf (x −2)>0可得到相应的不等式组,即可求得答案. 因为f (x )是偶函数且在[0,+∞)上单调递增,f (−3)=0,故f (3)=0,所以当x <−3或x >3时,f (x )>0,当−3<x <3时,f (x )<0.所以xf (x −2)>0等价于{x >0x −2>3或x −2<−3 或{x <0−3<x −2<3, 解得x >5或−1<x <0,所以不等式的解集为{x|−1<x <0或x >5},故选:B .2、若函数f (x )=2x+m x+1在区间[0,1]上的最大值为52,则实数m =( ) A .3B .52C .2D .52或3答案:B分析:函数f (x )化为f (x )=2+m−2x+1,讨论m =2,m >2和m <2时函数的单调性,运用单调性可得最小值,解方程即可得到所求值.函数f (x )=2x+m x+1,即f (x )=2+m−2x+1,x ∈[0,1],当m=2时,f(x)=2不成立;当m−2>0,即m>2时,f(x)在[0,1]递减,可得f(0)为最大值,即f(0)=0+m1=52,解得m=52成立;当m−2<0,即m<2时,f(x)在[0,1]递增,可得f(1)为最大值,即f(1)=2+m2=52,解得m=3不成立;综上可得m=52.故选:B.3、幂函数y=x a,y=x b,y=x c,y=x d在第一象限的图像如图所示,则a,b,c,d的大小关系是()A.a>b>c>d B.d>b>c>a C.d>c>b>a D.b>c>d>a答案:D分析:根据幂函数的性质,在第一象限内,x=1的右侧部分的图像,图像由下至上,幂指数增大,即可判断;根据幂函数的性质,在第一象限内,x=1的右侧部分的图像,图像由下至上,幂指数增大,所以由图像得:b>c>d>a,故选:D4、已知函数f(x+1)的定义域为(−1,1),则f(|x|)的定义域为()A.(−2,2)B.(−2,0)∪(0,2)C .(−1,0)∪(0,1)D .(−12,0)答案:B分析:根据抽象函数定义域的求法求得正确答案.依题意函数f (x +1)的定义域为(−1,1),−1<x <1⇒0<x +1<2,所以0<|x |<2,解得−2<x <0或0<x <2,所以f (|x |)的定义域为(−2,0)∪(0,2).故选:B5、函数f (x )=√x−2(x −3)0的定义域是( )A .[2,+∞)B .(2,+∞)C .(2,3)∪(3,+∞)D .[3,+∞)答案:C分析:由分母中根式内部的代数式大于0,0指数幂的底数不为0联立不等式组求解.由{x −2>0x −3≠0 ,解得x >2且x ≠3.∴函数f(x)=√x−2(x −3)0的定义域为(2,3)∪(3,+∞).故选:C .6、设函数f(x)=x 2+2(4−a)x +2在区间(−∞,3]上是减函数,则实数a 的取值范围是()A .a ≥−7B .a ≥7C .a ≥3D .a ≤−7答案:B分析:根据二次函数的图象和性质即可求解.函数f(x)的对称轴为x =a −4,又∵函数在(−∞,3]上为减函数,∴a −4⩾3,即a ⩾7.故选:B.小提示:本题考查由函数的单调区间求参数的取值范围,涉及二次函数的性质,属基础题.7、已知f (x )是一次函数,2f (2)−3f (1)=5,2f (0)−f (−1)=1,则f (x )=( )A .3x +2B .3x −2C .2x +3D .2x −3答案:B分析:设函数f (x )=kx +b(k ≠0),根据题意列出方程组,求得k,b 的值,即可求解.由题意,设函数f (x )=kx +b(k ≠0),因为2f (2)−3f (1)=5,2f (0)−f (−1)=1,可得{k −b =5k +b =1,解得k =3,b =−2, 所以f (x )=3x −2.故选:B.8、函数f(x)=0√x−2 )A .[2,+∞)B .(2,+∞)C .(2,3)∪(3,+∞)D .[2,3)∪(3,+∞)答案:C分析:要使函数有意义,分母不为零,底数不为零且偶次方根被开方数大于等于零.要使函数f(x)=0√x−2有意义,则{x −3≠0x −2>0,解得x >2且x ≠3, 所以f(x)的定义域为(2,3)∪(3,+∞).故选:C.小提示:具体函数定义域的常见类型:(1)分式型函数,分母不为零;(2)无理型函数,偶次方根被开方数大于等于零;(3)对数型函数,真数大于零;(4)正切型函数,角的终边不能落在y 轴上;(5)实际问题中的函数,要具有实际意义.9、函数y =√x +4+1x+1的定义域为( )A .[−4,−1)B .[−4,−1)∪(−1,+∞)C .(−1,+∞)D .[−4,+∞)答案:B分析:偶次开根根号下为非负,分式分母不为零,据此列出不等式组即可求解.依题意{x +4≥0x +1≠0 ,解得{x ≥−4x ≠−1, 所以函数的定义域为[−4,−1)∪(−1,+∞).故选:B .10、下列四组函数中,表示相同函数的一组是( )A .f(x)=x 2−x x ,g (x )=x −1B .f(x)=√x 2,g(x)=(√x)2C . f (x )=x 2−2,g (t )=t 2-2D .f (x )=√x +1⋅√x −1,g(x)=√x 2−1答案:C分析:根据相同函数的判断原则进行定义域的判断即可选出答案.解:由题意得:对于选项A :f(x)=x 2−x x 的定义域为{x|x ≠0},g(x)=x −1的定义域为R ,所以这两个函数的定义域不同,不表示相同的函数,故A 错误;对于选项B :f(x)=√x 2的定义域为R ,g(x)=(√x)2的定义域为{x|x ≥0},所以这两个函数的定义域不同,不表示相同的函数,故B错误;对于选项C:f(x)=x2−2的定义域为R,g(t)=t2−2的定义域为R,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;对于选项D:f(x)=√x+1⋅√x−1的定义域为{x|x≥1},g(x)=√x2−1的定义域为{x|x≤−1或x≥1},所以这两个函数的定义域不同,不表示相同的函数,故D错误.故选:C填空题11、已知函数y=ax2-2x+3在[2,+∞)上是减函数,则实数a的取值范围是________.答案:(-∞,0]分析:根据实数a是否为零,结合一次函数、二次函数的单调性分类讨论进行求解即可.当a=0时,y=-2x+3满足题意;当a≠0时,则{a<0,1a≤2,⇒a<0,综上得a≤0.所以答案是:(-∞,0]12、设函数f(x)={x,x≤1,(x−1)2+1,x>1,则不等式f(1−|x|)+f(2)>0的解集为________.答案:(−3,3)分析:根据分段函数的单调性,把问题中的函数值大小比较转化为自变量大小比较,从而求得解集.由函数解析式知f(x)在R上单调递增,且−f(2)=−2=f(−2),则f(1−|x|)+f(2)>0⇒f(1−|x|)>−f(2)=f(−2),由单调性知1−|x|>−2,解得x∈(−3,3)所以答案是:(−3,3)小提示:关键点点睛:找到函数单调性,将函数值大小比较转化为自变量大小比较即可.13、已知函数f(x)=x2−4x+3,g(x)=mx+3−2m,若对任意x1∈[0,4],总存在x2∈[0,4],使f(x1)=g (x 2)成立,则实数m 的取值范围为______.答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2,综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞).所以答案是:(−∞,−2]∪[2,+∞)14、已知定义域为[1−3a,a +1]的奇函数f (x )=x 3+bx 2+x ,则f (3x +b )+f (x +a )≥0的解集为_______. 答案:[−14,23]分析:根据奇函数的性质及定义域的对称性,求得参数a ,b 的值,求得函数解析式,并判断单调性. f (3x +b )+f (x +a )≥0等价于f (3x )≥−f (x +1)=f [−(x +1)],根据单调性将不等式转化为自变量的大小关系,结合定义域求得解集.由题知,f (−x )=−x 3+bx 2−x =−f (x )=−x 3−bx 2−x ,所以2bx 2=0恒成立,即b =0.又因为奇函数的定义域关于原点对称,所以1−3a +(a +1)=0,解得a =1,因此f (x )=x 3+x ,x ∈[−2,2],由y =x 3单调递增,y =x 单调递增,易知函数f (x )单调递增,故f (3x +b )+f (x +a )≥0等价于f (3x )+f (x +1)≥0等价于f (3x )≥−f (x +1)=f [−(x +1)]即{3x ≥−(x +1)−2≤3x ≤2−2≤x +1≤2,解得x ∈[−14,23].所以答案是:[−14,23] 15、函数y =log 0.4(−x 2+3x +4)的值域是________.答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4),则−x 2+3x +4>0,解得:−1<x <4,所以函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4), 则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数,由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞).所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.解答题16、在①f (x +1)=f (x )+2x −1,②f (x +1)=f (1−x ),且f (0)=3,③f (x )≥2恒成立,且f (0)=3这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数f (x )的图像经过点(1,2),______.(1)求f (x )的解析式;(2)求f (x )在[−1,+∞)上的值域.答案:(1)f (x )=x 2−2x +3(2)[2,+∞)分析:(1)若选条件①,设f (x )=ax 2+bx +c (a ≠0),用待定系数法求得a,b,c 即可;若选条件②,设f (x )=ax 2+bx +c (a ≠0),根据对称轴是x =1,结合条件列方程求得a,b,c 即可;若选条件③,设f (x )=ax 2+bx +c (a ≠0).,根据条件f (x )min =f (1)=2,列方程求得a,b,c 即可.(2)直接由(1)中解析式,求二次函数在[−1,+∞)上的值域即可.(1)选条件①.设f (x )=ax 2+bx +c (a ≠0),则f (x +1)=a (x +1)2+b (x +1)+c =ax 2+(2a +b )x +a +b +c .因为f (x +1)=f (x )+2x −1,所以ax 2+(2a +b )x +a +b +c =ax 2+bx +c +2x −1,所以{2a =2a +b =−1 ,解得{a =1b =−2.因为函数f (x )的图像经过点(1,2), 所以f (1)=a +b +c =1−2+c =2,得c =3.故f (x )=x 2−2x +3. 选条件②.设f (x )=ax 2+bx +c (a ≠0),则函数f (x )图像的对称轴为直线x =−b 2a .由题意可得{−b 2a =1f (0)=c =3f (1)=a +b +c =2 ,解得{a =1b =−2c =3 .故f (x )=x 2−2x +3. 选条件③设f (x )=ax 2+bx +c (a ≠0).因为f (0)=3,所以c =3.因为f (x )≥2=f (1)恒成立,所以{f (1)=a +b +3=2−b 2a =1 ,解得{a =1b =−2, 故f (x )=x 2−2x +3.(2)由(1)可知f (x )=x 2−2x +3=(x −1)2+2.因为x ≥−1,所以(x −1)2≥0, 所以(x −1)2+2≥2.所以f (x )在[−1,+∞)上的值域为[2,+∞).17、用定义证明f(x)=x +1x +2在[1,+∞)上单调递增.答案:证明见解析.分析:利用定义法证明函数在某区间上的单调性,按步骤求解即可. 证明:任取x 1,x 2∈[1,+∞),且x 1<x 2.因为f (x 1)−f (x 2)=(x 1+1x 1+2)−(x 2+1x 2+2) =(x 1−x 2)(x 1x 2−1)x 1x 2.又1≤x 1<x 2,所以x 1x 2>1,x 1−x 2<0.有x 1x 2>0,(x 1−x 2)(x 1x 2−1)<0,所以f (x 1)−f (x 2)<0,即f (x 1)<f (x 2).所以函数f(x)=x +1x +2在[1,+∞)上单调递增. 18、已知函数f(x)=√x +3+1x+2.(1)求函数的定义域;(2)求f(−23)的值; (3)当a >0时,求f(a),f(a −1)的值.答案:(1){x|x ≥−3且x ≠−2}(2)√213+34(3)√a +3+1a+2,√a +2+1a+1分析:(1)由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解;(2)直接取x =−23代入得答案; (3)分别取x =a 及x =a −1代入求解.(1)由题意{x +3≥0x +2≠0,解得x ≥−3且x ≠−2, ∴函数f (x )的定义域为{x|x ≥−3且x ≠−2}.(2)f (−23)=√3−23+12−23=√213+34. (3) f (a )=√a +3+1a+2,f (a −1)=√a −1+3+1a−1+2=√a +2+1a+1.19、已知幂函数f(x)=(k 2−k −1)x k (k ∈R),且在区间(0,+∞)内函数图象是上升的.(1)求实数k 的值;(2)若存在实数a ,b 使得函数f (x )在区间[a ,b ]上的值域为[a ,b ],求实数a ,b 的值.答案:(1)2;(2)a =0,b =1.分析:(1)根据幂函数的定义先求出k 的可能值,再根据幂函数的单调性判断正确的k 值;(2)根据函数f(x)的单调性即可判断f(x)的取值情况,列出式子即可求解.(1)f(x)=(k 2−k −1)x k (k ∈R)为幂函数,∴k 2−k −1=1,解得k =−1或k =2,又f(x)在区间(0,+∞)内的函数图象是上升的,∴k >0,∴k =2;(2)∵存在实数a ,b 使得函数f(x)在区间[a,b]上的值域为[a,b],且f(x)=x 2,∴{f(a)=a f(b)=b ,即{a 2=a b 2=b, ∵a <b ,∴a =0,b =1.小提示:本题考查幂函数的定义和单调性的运用,考查函数最值的求法,是一道基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二 函数概念与基本初等函数Ⅰ第三讲 函数的概念和性质答案部分1.B 【解析】当0<x 时,因为0--<xxe e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B . 2.D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或2x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .3.D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .4.C 【解析】解法一 ∵()f x 是定义域为(,)-∞+∞的奇函数,()()-=-f x f x .且(0)0=f .∵(1)(1)-=+f x f x ,∴()(2)=-f x f x ,()(2)-=+f x f x ∴(2)()+=-f x f x ,∴(4)(2)()+=-+=f x f x f x ,∴()f x 是周期函数,且一个周期为4,∴(4)(0)0==f f ,(2)(11)(11)(0)0=+=-==f f f f ,(3)(12)(12)(1)2=+=-=-=-f f f f ,∴(1)(2)(3)(50)120(49)(50)(1)(2)2+++⋅⋅⋅+=⨯++=+=f f f f f f f f , 故选C .解法二 由题意可设()2sin()2f x x π=,作出()f x 的部分图象如图所示.由图可知,()f x 的一个周期为4,所以(1)(2)(3)(50)+++⋅⋅⋅+f f f f , 所以(1)(2)(3)(50)120(1)(2)2+++⋅⋅⋅+=⨯++=f f f f f f ,故选C . 5.D 【解析】由函数()f x 为奇函数,得(1)(1)1f f -=-=,不等式1(2)1f x --≤≤即为(1)(2)(1)f f x f --≤≤,又()f x 在(,)-∞+∞单调递减,所以得121x --≥≥,即13x ≤≤,选D . 6.B 【解析】函数()f x 的对称轴为2a x =-, ①当02a-≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a<-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B .7.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .8.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .9.D 【解析】当11x-剟时,()f x 为奇函数,且当12x >时,(1)()f x f x +=,所以(6)(511)(1)f f f =⨯+=.而3(1)(1)[(1)1]2f f =--=---=, 所以(6)2f =,故选D .10.D 【解析】当0x ?时,令函数2()2x f x x e =-,则()4xf x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合 条件的图像为D .11.B 【解析】由()()2f x f x -=-得()()2f x f x -+=,可知()f x 关于()01,对称, 而111x y x x+==+也关于()01,对称, ∴对于每一组对称点0i i x x '+= =2i i y y '+, ∴()111022m m miiiii i i mx y x ym ===+=+=+⋅=∑∑∑,故选B . 12.D【解析】∵函数y =[0,)+∞,不关于原点对称,所以函数y =非奇非偶函数,排除A ;因为|sin |y x =为偶函数,所以排除B ;因为cos y x =为偶函数,所以排除C ;因为()xxy f x e e -==-,()()()x x x x f x e e e e f x ---=-=--=-,所以()x x y f x e e -==-为奇函数.13.D 【解析】选项A 、C 为偶函数,选项B 中的函数是奇函数;选项D 中的函数为非奇非偶函数.14.A 【解析】由题意可知,函数()f x 的定义域为(1,1)-,且12()lnln(1)11x f x x x+==---,易知211y x=--在(0,1)上为增函数,故()f x 在(0,1)上为增函数,又()ln(1)ln(1)()f x x x f x -=--+=-,故()f x 为奇函数.15.B 【解析】因为是上的增函数,令,所以,因为,()f x R x x f =)(x a x g )1()(-=1>a所以是上的减函数,由符号函数知,.16.C 【解析】∵2()()ax bf x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N的横坐标均为正,∴0b x a =->,20by c=>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.17.B 【解析】()f x 为奇函数,()g x 为偶函数,故()f x ()g x 为奇函数,()f x |()g x |为奇函数,|()f x |()g x 为偶函数,|()f x ()g x |为偶函数,故选B .18.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或. 19.D 【解析】由()(2)f x f a x =-可知,准偶函数的图象关于y 轴对称,排除A ,C ,而B 的对称轴为y 轴,所以不符合题意;故选D . 20.C 【解析】由已知得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,又0(1)63f c <-=-≤,所以69c <≤. 21.B 【解析】四个函数的图象如下显然B 成立.22.C 【解析】用x -换x ,得32()()()()1f x g x x x ---=-+-+,化简得32()()1f x g x x x +=-++,令1x =,得(1)(1)1f g +=,故选C .23.A 【解析】因为[(1)]1f g =,且||()5x f x =,所以(1)0g =,即2110a ⋅-=,解得1a =.)(x g R 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩24.D 【解析】函数()1f x x =-和2()f x x x =+既不是偶函数也不是奇函数,排除选项A和选项B ;选项C 中()22x xf x -=-,则()22(22)()xx x x f x f x ---=-=--=-,所以()f x =22x x --为奇函数,排除选项C ;选项D 中()22xxf x -=+, 则()22()xx f x f x --=+=,所以()22x x f x -=+为偶函数,选D .25.D 【解析】2()1,()1f f πππ=+-=-,所以函数()x f 不是偶函数,排除A ;因为函数()x f 在(2,)ππ--上单调递减,排除B ;函数()x f 在(0,)+∞上单调递增,所以函数()f x 不是周期函数,选D .26.A 【解析】当102x ≤≤时,令1()cos 2f x x π=≤,解得1132x ≤≤,当12x >时, 令1()212f x x =-≤,解得1324x <≤,故1334x ≤≤.∵()f x 为偶函数,∴1()2f x ≤的解集为3113[,][,]4334--⋃,故1(1)2f x -≤的解集为1247[,][,]4334⋃.27.D 【解析】11lg 2lg lg(2)lg1022+=⨯==,()()3)13()]1f x f x x x +-=-++--+3)3)2x x =++ln 33)2x x ⎡⎤=+⎣⎦2ln (3)2x ⎡⎤=-+⎣⎦ln122=+=.28.D 【解析】∵||=,∴由||≥得,且,由可得,则≥-2,排除A ,B , 当=1时,易证对恒成立,故=1不适合,排除C ,故选D . 29.C 【解析】是奇函数的为与,故选C .()f x 22,0ln(1),0x x x x x ⎧-≤⎨+>⎩()f x ax 22x x x ax ≤⎧⎨-≥⎩0ln(1)x x ax >⎧⎨+≥⎩202x x x ax≤⎧⎨-≥⎩2a x ≥-a a ln(1)x x +<0x >a 3y x =2sin y x =30.C 【解析】1010x x +>⎧⎨-≠⎩,∴11x x >-⎧⎨≠⎩.31.A 【解析】()()112f f ---=-.32.A 【解析】本题考查的是对数函数的图象.由函数解析式可知,即函数为偶函数,排除C ;由函数过点,排除B ,D . 33.C 【解析】1y x=是奇函数,xy e -=是非奇非偶函数,而D 在单调递增.选C . 34.B 【解析】由已知两式相加得,()13g =. 35.C 【解析】因为21(lg(log 10))(lg())(lg(lg 2))5lg 2f f f ==-=,又因为 ()()8f x f x +-=,所以(lg(lg 2))(lg(lg 2))5(lg(lg 2))8f f f -+=+=,所以3,故选C .36.D 【解析】由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D .37.C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .38.B 【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .39.B 【解析】∵π是无理数 ∴g (π)=0 则(())f g π=f (0)=0 ,故选B .40.B 【解析】故选B .41.D 【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D正确,因此选D .)()(x f x f -=)0,0((0,)+∞(lg(lg 2))f =210,11,100 2.40,x x x x x +>⎧⎪+≠∴-<<<≤⎨⎪-≥⎩或42.A 【解析】12log (21)0x +>,所以0211x <+<,故102x -<<. 43.B 【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,在(0,)+∞上为减函数.44.B 【解析】令函数()()24g x f x x =--,则()()20g x f x ''=->,所以()g x 在R 上为增函数,又(1)(1)240g f -=-+-=,所以不等式可转化为()(1)g x g >-,由()g x 的单调性可得1x >-.45.A 【解析】当0a >时,由()(1)0f a f +=得220a +=,无解;当0a <时,由()(1)0f a f +=得120a ++=,解得3a =-,故选A .46.A 【解析】∵))(12()(a x x xx f -+=为奇函数,∴(1)(1)0f f -+=,得12a =.47.A 【解析】因为)(x f 是定义在R 上的奇函数,且当0x …时,2()2f x x x =-,∴2(1)(1)2(1)(1)3f f =--=-⨯-+-=-,选A .48.B 【解】 由得是偶函数,所以函数的图象关于轴对称,可知B ,D 符合;由得是周期为2的周期函数,选项D 的图像的最小正周期是4,不符合,选项B 的图像的最小正周期是2,符合,故选B . 49.A 【解析】因为311x +>,所以()()22log 31log 10x f x =+>=,故选A . 50.C 【解析】∵,∴.于是,由得.故选. 51.B 【解析】()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.52.A 【解析】∵是上周期为5的奇函数,∴(3)(4)(2)(1)(2)(1)211f f f f f f -=---=-+=-+=-.53.[2,)+∞【解析】要使函数()f x 有意义,则2log 10x -≥,即2x ≥,则函数()f x 的定义域是[2,)+∞.2xy -=()()f x f x -=()y f x =()y f x =y (2)()f x f x +=()y f x =()21200=+=f ()()()a a f f f 2422202+=+==()()a f f 40=2424=⇒=+a a a C ()f x R54()f x 满足(4)()f x f x +=(x ∈R ),所以函数()f x 的最小正周期是4.因为在区间(2,2]- 上,cos ,02,2()1||,20,2x x f x x x π⎧<⎪⎪=⎨⎪+<⎪⎩≤-≤,所以1((15))((1))()cos242f f f f f π=-===. 55.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.56.sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.57.1(,)4-+∞【解析】当12x >时,不等式为12221x x-+>恒成立;当102x <≤,不等式12112x x +-+>恒成立; 当0x ≤时,不等式为11112x x ++-+>,解得14x >-,即104x -<≤;综上,x 的取值范围为1(,)4-+∞.58.1[1,]2-【解析】因为,所以函数是奇函数,因为,所以数在上单调递增,又,即,所以, 即,解得,故实数的取值范围为. 59.①④【解析】①()2()2x x xx ee f x e -=⋅=在R 上单调递增,故()2x f x -=具有M 性质; ②()3()3x x x x e e f x e -=⋅=在R 上单调递减,故()3xf x -=不具有M 性质;③3()xxe f x e x =⋅,令3()x g x e x =⋅,则322()3(2)xxxg x e x e x x e x '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,31()2e ()e xx f x x f x x -=-++-=-()fx 22()32e e 320x x f 'x x x -=-++≥-+≥()f x R 21)02()(f f a a +-≤2())2(1a a f f ≤-221a a ≤-2120a a +-≤112a -≤≤a 1[1,]2-∴3()x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④2()(2)xxe f x e x =+,令()()22x g x e x =+,则22()(2)2[(1)1]0x x x g x e x e x e x '=++⋅=++>,∴2()(2)x x e f x e x =+在R 上单调递增,故2()2f x x =+具有M 性质.60.9(,]2-∞【解析】∵[1,4]x ∈,∴4[4,5]x x+∈ ①当5a ≥时,44()2224f x a x a a x a a x x =--+=----≤, 所以()f x 的最大值245a -=,即92a =(舍去) ②当4a ≤时,44()5f x x a a x x x=+-+=+≤,此时命题成立.③当45a <<时,max ()max{|4|,|5|}f x a a a a =-+-+,则|4||5||4|5a a a a a a -+-+⎧⎨-+=⎩≥或|4||5||5|5a a a a a a -+<-+-+=, 解得92a =或92a <, 综上可得,实数a 的取值范围是9(,]2-∞.61.13(,)22【解析】由是偶函数可知,单调递增;单调递减 又,可得,. 62.25-【解析】由题意得511()()222f f a -=-=-+,91211()()225210f f ==-=,由59()()22f f -=可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 63.1【解析】由题意()ln(())==-=-f x x x f x x x ,=x ,解得1a =.()f x ()0-∞,()0+∞,()(12a f f ->(f f =12a -112a -<∴1322a <<64.0、3【解析】∵(3)1f -=,(1)0f =,即((3))0f f -=.又()f x 在(,0)-∞上单调递减,在(0,1)上单调递增,在上单调递减,在)+∞上单调递增,所以min ()min{(0),3f x f f ==.65.32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得2b =-,12a =,则13222a b +=-=-.66.(1,2]【解析】因为6,2()3log ,2a x x f x x x -+⎧=⎨+>⎩≤,所以当2x ≤时,()4f x ≥;又函数()f x 的值域为[4,)+∞,所以13log 24a a >⎧⎨+⎩≥,解得12a <≤,所以实数a 的取值范围为(1,2].67.3【解析】∵函数()f x 的图像关于直线2x =对称,所以()(4)f x f x =-,()(4)f x f x -=+,又()()f x f x -=,所以()(4)f x f x =+,则(1)(41)(3)3f f f -=-==. 68.32-【解析】函数3()ln(1)xf x e ax =++为偶函数,故()()f x f x -=, 即33ln(1)ln(1)xxeax e ax -+-=++,化简得32361ln 2ln xax x x e ax e e e+==+,即32361x ax x xe e e e+=+,整理得32331(1)x ax x xe e e ++=+,所以230ax x +=, 即32a =-. 69.1【解析】2311()()4()21222f f =-=-⨯-+=.70.(-∞结合图形(图略),由()()2f f a ≤,可得()2f a -≥,可得a .71.【答案】(Ⅱ)x (或填(Ⅰ)k (Ⅱ)2k x ,其中12,k k 为正常数均可) 【解析】过点(,())a f a ,(,())b f b -的直线的方程为()()()()f a f b y f a x a a b+-=--,令0y =得()()()()af b bf a c f a f b +=+.()()()()af b bf a f a f b +=+()()()()a b bf a af b ⇒=+,可取()0)f x x =>. (Ⅱ)令调和平均数2()()()()ab af b bf a a b f a f b +=++,得()()()()ab ba af b bf a a b f a f b ++=++,可 取()(0)f x x x =>.72.【解析】,求交集之后得的取值范围. 73.(),2-∞【解析】由分段函数1x ≥,1122log log 10x ≤=;1x <,10222x <<=.74.6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩…可知()f x 的单调递增区间为[,)2a -+∞, 故362a a -=⇔=-. 75.【解析】. 76.1【解析】因为,所以,又因为, 所以,所以,.77.34-【解析】, . 78.①③【解析】∵11(,)x y a =,22(,)x y b =,R λ∈,所以1212(1)((1),(1))x x y y λλλλλλ+-=+-+-a b对于① (]0,12110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或x (]0,132331113()(2)()()1222222f f f f =-=-==+=10x =>(1)lg10f ==230()3a f x x t dt x a =+=+⎰3(0)f a =31a =1a =30,2212,2a a a a a a >-+=---=-30,1222,4a a a a a a <-+-=++=-1111212(),((1))((1),(1))f m x y f ab f x x y y λλλλλλ=-+-=+-+-12121122(1)(1)()(1)()x x y y x y x y λλλλλλ=+----=-+--。

相关文档
最新文档