中考数学二次函数章节总结与复习.doc
初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理二次函数是中学数学中非常重要的一个内容,也是中考数学中的重点。
下面是对初中数学中考复习二次函数知识点的总结和归纳整理。
一、二次函数的定义1. 二次函数的一般形式:y = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
2.二次函数的图像为抛物线,开口方向与a的正负有关。
-当a>0时,抛物线开口向上。
-当a<0时,抛物线开口向下。
二、二次函数的性质1.对称轴:二次函数的对称轴与抛物线的开口方向垂直,其方程为x=-b/2a。
2.顶点:二次函数的顶点位于对称轴上,其坐标为(-b/2a,f(-b/2a))。
-当a>0时,顶点是抛物线的最低点。
-当a<0时,顶点是抛物线的最高点。
3. 判别式:对于二次函数y = ax² + bx + c,其判别式Δ = b² -4ac表示方程ax² + bx + c = 0的根的情况。
-当Δ>0时,方程有两个不相等的实根。
-当Δ=0时,方程有两个相等的实根。
-当Δ<0时,方程没有实根。
4.单调性:-当a>0时,二次函数在对称轴左侧单调递增,右侧单调递减。
-当a<0时,二次函数在对称轴左侧单调递减,右侧单调递增。
三、二次函数的图像特征1.a的正负决定了抛物线的开口方向。
2.,a,的大小决定了抛物线的陡峭程度,a,越大抛物线越陡峭。
3.当b=0时,抛物线经过原点。
4.当c=0时,抛物线经过x轴。
5.当a>0时,函数值在顶点处取得最小值。
6.当a<0时,函数值在顶点处取得最大值。
四、二次函数的方程求解1. 解二次方程ax² + bx + c = 0的一般步骤:- 利用判别式Δ = b² - 4ac判断方程的根的情况。
-若Δ>0,方程有两个不相等的实根,可以用求根公式x₁=(-b+√Δ)/2a和x₂=(-b-√Δ)/2a求解。
(2021年整理)中考数学复习——二次函数知识点总结

(完整)中考数学复习——二次函数知识点总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)中考数学复习——二次函数知识点总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)中考数学复习——二次函数知识点总结的全部内容。
中考复习专题——二次函数知识点总结二次函数知识点:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2。
二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数的基本形式1。
二次函数基本形式:2y ax =的性质:结论:a 的绝对值越大,抛物线的开口越小。
总结:2。
2y ax c=+的性质:结论:上加下减。
总结:3。
()2y a x h =-的性质:结论:左加右减。
总结:()2y a x h k =-+的性质:总结:二次函数图象的平移1。
平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数且a ≠ 0。
二次函数是初中数学中的重要内容,掌握了二次函数的知识,能够帮助我们理解函数的基本概念、图像和性质,同时也是后续学习函数、解析几何和微积分等内容的基础。
一、二次函数的定义和基本性质1.二次函数是一个以抛物线形状为特征的函数,其图像在平面直角坐标系中呈现出对称轴和顶点。
2.对于任意的a、b、c,二次函数的图像都存在对称轴,并且过对称轴的顶点。
3.当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
4. 当Δ=b²-4ac>0时,二次函数的图像与x轴有两个不同的交点,即该二次函数的解存在两个不同的实根;当Δ=0时,二次函数的图像与x轴有一个交点,即该二次函数的解存在一个实根;当Δ<0时,二次函数的图像与x轴没有交点,即该二次函数无实根。
5. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x) =ax²+bx+c。
二、二次函数的图像与平移1. 对于y=ax²+bx+c,当a>0时,整个二次函数图像上移a个单位;当a<0时,整个二次函数图像下移a个单位。
2. 对于y=ax²+bx+c,当c>0时,整个二次函数图像上移c个单位;当c<0时,整个二次函数图像下移c个单位。
3. 对于y=ax²+bx+c,当b>0时,整个二次函数图像向左平移b个单位;当b<0时,整个二次函数图像向右平移b个单位。
三、二次函数的解和性质1.根据二次函数的定义,可以用求根公式计算二次函数的解,即x=(-b±√Δ)/(2a)。
2.根据二次函数的判别式Δ的大小,可以判断二次函数的解的情况,进而判断图像的开口方向和顶点的位置。
3.根据二次函数的顶点坐标和开口方向,可以确定二次函数的整个图像。
中考数学-二次函数知识点总结

中考数学二次函数知识点【一】二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0,可以为零.二次函数的定a≠,而b c义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.【二】二次函数的基本形式1. 二次函数基本形式:2=的性质:y axa 的绝对值越大,抛物线的开口越小。
y ax c=+的性质:上加下减。
3.()2=-的性质:y a x h左加右减。
=-+的性质:y a x h k【三】二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 【四】二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 【五】二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 【六】二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:。
中考数学--二次函数知识点总结

欢m二次函数知识点总结二次函数知识点:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b是一次项系数,c 是常数项.二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
b i n a .c o m总结:3. ()2y a x h =-的性质:结论:左加右减。
总结:4. ()2y a x h k =-+的性质:o m .c n /b e i j i n g s t u d y总结:二次函数图象的平移平 1. 移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
请将2y ax bx c =++配成()2y a x h k =-+。
总结:从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.迎访问h t t p ://b l og .si n a .c o m .c n /b e i j i n g s tu d y 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.欢迎访问h tt p ://b l o g .si n a.c o m .c n /be i j i n g s t ud y ⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba -<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.总结:3. 常数项c ⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.二、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;欢迎访问h t t p://b l og .si n a .c o m.c n /b e i j i n g s t u d y ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数与一元二次方程: 1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.。
中考数学复习专题二次函数知识点归纳

二次函数知识点归纳一、二次函数概念1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:oo结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.总结:3. ()2y a x h =-的性质:结论:左加右减。
总结:4. ()2y a x h k =-+的性质:总结: a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c ,y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k =-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
专题08二次函数的图象与性质(讲)-2019年中考数学二轮复习

备战2019年中考二轮讲练测(精选重点典型题)专题08 二次函数的图象与性质(讲案)一讲考点——考点梳理(一)二次函数的定义形如2y ax bx c =++(其中0a ≠,a 、b 、c 是常数)的式子,称y 是x 的二次函数. (二)二次函数的性质(1)a 决定抛物线的开口方向①0a >⇔开口向上;②0a <⇔开口向下. (2)c 决定抛物线与y 轴交点的位置①0c >⇔图象与y 轴交点在x 轴上方;②0c =⇔图象过原点;③0c <⇔图象与y 轴交点在x 轴下方. (3)a b 、决定抛物线对称轴的位置(对称轴:2bx a=-) ①a b 、同号⇔对称轴在y 轴左侧;②0b =⇔对称轴是y 轴;③a b 、异号⇔对称轴在y 轴右侧,简记为:左同右异中为0.(4)顶点坐标24()24b ac b a a --,.(5)24b ac ∆=-决定抛物线与x 轴的交点情况. ①△>0⇔抛物线与x 轴有两个不同交点; ②△=0⇔抛物线与x 轴有唯一的公共点(相切); ③△<0⇔抛物线与x 轴无公共点.(6)二次函数是否具有最大、最小值由a 判断.①当a>0时,抛物线有最低点,函数有最小值;②当a<0时,抛物线有最高点,函数有最大值. (7)242a b a b c a b c ±±+±+、、 的符号的判定:x yO-112a-b 2a+b①若对称轴在直线x=1的左侧,则2a b +与a 同号,若对称轴在直线x=1的右侧,则2a b +与a 异号,若对称轴为直线x=1,则2a b +=0,简记为:1的两侧判2a b +,左同右异中为0;②若对称轴在直线1x =-的左侧,则2a b -与a 异号,若对称轴在直线1x =-的右侧,则2a b -与a 同号,若对称轴为直线1x =-,则2a b -=0,简记为:-1的两侧判2a b -,左异右同中为0; ③当1x =时,y a b c =++,所以a b c ++的符号由1x =时,对应的函数值y 的符号决定; 当1x =-时,y a b c =-+,所以a b c -+的符号由1x =-时,对应的函数值y 的符号决定; 当2x =时,42y a b c =++,所以42a b c ++的符号由2x =时,对应的函数值y 的符号决定; 当2x =-时,42y a b c =-+,所以42a b c -+的符号由2x =-时,对应的函数值y 的符号决定; 简记为:表达式,请代值,对应y 值定正负; 对称轴,用处多,三种式子a 相约;y 轴两侧判a b 、,左同右异中为0;1的两侧判2a b +,左同右异中为0; 1两侧判2a b -,左异右同中为0. (三)二次函数的解析式①一般式:2y ax bx c =++()0≠a ,用于已知三点,求抛物线的解析式.②顶点式:2()y a x h k =-+,用于已知顶点坐标或最值或对称轴,求抛物线的解析式.③交点式:()()21x x x x a y --=,其中1x 、2x 是二次函数与x 轴的两个交点的横坐标.若已知对称轴和在x 轴上的截距,也可用此式. (四)二次函数的增减性当0a >时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大;当0a <时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少.(五)二次函数图象的平移 方法一:顶点法二次函数的平移实际上是顶点的平移,故可以把原抛物线化为顶点式,通过顶点的平移来寻找答案。
新初中数学二次函数知识点总复习附解析(2)

新初中数学二次函数知识点总复习附解析(2)一、选择题1.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】【详解】 解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把(m ,0)(m≠0)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm+b <a ,即m (am+b )+b <a ,∴④正确;即正确的有3个,故选B .考点:二次函数图象与系数的关系2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.4.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列4个结论:①abc <0;②2a +b =0;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.【详解】①由抛物线的对称轴可知:﹣>0,∴ab<0,∵抛物线与y轴的交点在正半轴上,∴c>0,∴abc<0,故①正确;②∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确.③∵(0,c)关于直线x=1的对称点为(2,c),而x=0时,y=c>0,∴x=2时,y=c>0,∴y=4a+2b+c>0,故③正确;④由图象可知:△>0,∴b2﹣4ac>0,故②正确;故选:D.【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点是(1,n),且与x的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是()A .1B .2C .3D .4【答案】C【解析】【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y >0,即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2b a=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;∵抛物线与直线y=n 有一个公共点,∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.故选C .【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.6.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.7.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D .当m<0时,函数在x>14时,y 随x 的增大而减小 【答案】D【解析】 分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、首先求得对称轴,利用二次函数的性质解答即可;D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答.详解:因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m];A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣12﹣12m, |x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确; C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.8.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a -=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.9.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m ,设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.10.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C 与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.12.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a-),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣3故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.13.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-1 2x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m 【答案】D 【解析】 【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D . 【详解】解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩,72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =-21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-,整理得28150x x -+=, 解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的 坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.14.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣x2=﹣1B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选D.【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键. 15.二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y =ax 2+bx +c 有最小值,最小值为﹣3;(2)当﹣12<x <2时,y <0;(3)已知点A (x 1,y 1)、B (x 2,y 2)在函数的图象上,则当﹣1<x 1<0,3<x 2<4时,y 1>y 2.上述结论中正确的结论个数为( ) A .0 B .1C .2D .3【答案】B 【解析】 【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断. 【详解】解:(1)函数的对称轴为:x =1,最小值为﹣4,故错误,不符合题意; (2)从表格可以看出,当﹣12<x <2时,y <0,符合题意; (3)﹣1<x 1<0,3<x 2<4时,x 2离对称轴远,故错误,不符合题意; 故选择:B . 【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.16.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( ) A .4 B .3 C .2D .1【答案】B 【解析】 【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④. 【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确; ∵抛物线的对称轴为直线x=1,且抛物线开口向上, ∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形, 则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半, ∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c , ∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c ∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+=解得:72c =或4c = ∵4c <,∴72c =,故④错误, ∴正确的有①②③, 故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.17.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误 【答案】A 【解析】 【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误. 【详解】解:①∵顶点坐标为1,2m ⎛⎫⎪⎝⎭,12n <∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1),∴点(1-n ,y 1)与2322n y ⎛⎫-⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确;②把1,2m ⎛⎫⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++,∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-<⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确; 故选A . 【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.18.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:(1)4a +2b +c <0;(2)方程ax 2+bx +c =0两根都大于零;(3)y 随x 的增大而增大;(4)一次函数y =x +bc 的图象一定不过第二象限.其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x 轴的交点为x=1.x=3,都大于0,故(2)正确 ,由图像知(3)错误,由图象开口向上,a >0,与y 轴交于正半轴,c >0,对称轴x=﹣=1,故b <0,bc <0,即可判断一次函数y =x +bc 的图象.【详解】①由x =2时,y =4a +2b +c ,由图象知:y =4a +2b +c <0,故正确;②方程ax 2+bx +c =0两根分别为1,3,都大于0,故正确; ③当x <2时,由图象知:y 随x 的增大而减小,故错误; ④由图象开口向上,a >0,与y 轴交于正半轴,c >0,x=﹣=1>0,∴b <0,∴bc <0,∴一次函数y =x +bc 的图象一定过第一、三、四象限,故正确; 故正确的共有3个, 故选:C . 【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.19.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论: ①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x =﹣2b a>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确;②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确; ④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④. 故选:C .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.20.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位B.向上平移3个单位C.向右平移3个单位D.向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数思维导图
一、二次函数的定义:
1.一般地,如果y=ax_+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.特别地,当a≠0,b=c=0时,y=ax_是二次函数的特殊形式。
2.二次函数的三种基本形式:
(1)一般式:y=ax_+bx+c(a,b,c是常数,a≠0);
六、二次函数与一元二次方程的关系:
二次函数y=ax_+bx+c的图象和x轴交点有三种情况:
有两个交点,有一个交点,没有交点;
当二次函数y=ax_+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,
即一元二次方程ax2+bx+c=0的根。
二次函数与一元二次方程的关系
七、二次函数的应用:
(2)顶点式:y=a(x-h)_+k(a≠0),由顶点式可以直接写出二次函数的顶点坐标是(h,k);
(3)交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是图象与x轴交点的横坐标。
二、二次函数的图象和性质:
二次函数的图像和性质
三、二次函数y=ax_+bx+c(a ≠ 0)的图象特征与系数a,b,c的关系:
2.顶点式:y=a(x-h)_+k(a≠0)
若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式y=a(x-h)_+k(a≠0),将已知条件代入,求出待定系数的值,最后将解析式化为一般式。
3.交点式:y=a(x-x1)(x-x2)(a≠0)
若已知二次函数图象与x轴的两个交点的坐标,则设交点式y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a的值,最后将解析式化为一般式。
1.二次函数的应用包括以下两个方面:
(1)用二次函数表示实际问题变量之间的关系,解决最大化问题(即最值问题);
(2)利用二次函数的图象求一元二次方程的近似根及一元二次不等式的解集。
2.一般步骤:
(1)找出问题中的变量和常量以及它们之间的函数关系;
(2)列出函数关系式,并确定自变量的取值范围;
(3)利用二次函数的图象及性质解决实际问题;
图像特征与系数a,b,c的关系
四、二次函数图象的平移:
任意抛物线y=a(x-h)_+k可以由抛物线y=ax_经过平移得到,具体平移方法如下:
二次函数图象的平移
五、二次函数表达式的求法:
1.一般式:y=ax2+bx+c (a≠ 0)
若已知代入,求出a,b,c的值。
(4)检验结果的2+bx+c(a≠0)的图象与系数a,b,c的关系:
例题3
考点四、抛物线的几何变换:
例题4
考点五、二次函数表达式的确定:
例题5
考点六、二次函数与一元二次方程:
例题6
考点七、二次函数的应用:
例题7
例题7解答过程
考点八、二次函数与几何的综合:
例题8
例题9