铸铁知识-金相
实验四铸铁金相组织观察

浸蚀剂:4%硝酸酒精溶液
四、实验报告要求
实验结束后,每个学生都要认真地研究分析实验结果, 按要求写好实验报告,交实验指导教师审阅,实验报告 要包括下述内容: 1、简述实验目的
2、整理好实验结果 3、简要说明铸铁的组织特点,并比较白口铸铁、麻口铸 铁、灰口铸铁中碳的形状。 4、比较各类型灰铸铁中石墨的组织形态。 5、根据观察,综合《材料科学基础》、《力学性能》、 《金属材料学》等理论知识,分析各类合金的显微组织 特征以及组织对性能的影响规律。
3
4 5 6 7 8 9
普通灰口铁
可锻铸铁 可锻铸铁 球墨铸铁 球墨铸铁 球墨铸铁 球墨铸铁
铸态
退火 正火 铸态 退火 正火 等温淬火
(P+F)基+ G片
F基+G团絮 P基+G团絮 (P+F少)基+G球 F基+G球 P基+ G球 B下+ G球
10
11 12
蠕墨铸铁
蠕墨铸铁 蠕墨铸铁
铸态
铸态 铸态
F基+G蠕虫状
灰铸铁的成分范围为:
2.5~3.6%C, 1.0~2.5%Si, 0.6~1.2%Mn , ≤ 0.15%S, ≤ 0.15%P 。 (2)铸铁的组织
钢的基体+G(石墨)
灰铸铁齿轮箱
基体组织有铁素体、珠光体和铁素体加珠光体三种。
灰铸 铁的
显微
组织
石 墨 片 的 三 维 形 貌
铁 素 体 灰 铸 铁
珠 光 体 灰 铸 铁
铁 素 体 加 珠 光 体 灰 铸 铁
铸铁金相检验(自编)

2021/5/31
26
珠光体的数量
2021/5/31
27
A
B
2021/5/31
28
A
B
2021/5/31
29
A
B
2021/5/31
30
A
B
2021/5/31
31
A
B
2021/5/31
32
A
B
2021/5/31
33
A
B
2021/5/31
34
A
B
2021/5/31
35
4、碳化物数量
• 抛光试样以2~5%硝酸酒精溶液浸蚀 • 按大多数视场对照标准评级图评定 • 放大倍数100
2021/5/31
13
1. 石墨的形态及识别
202Байду номын сангаас/5/31
14
A型 片状石墨 无方向性均匀分布
2021/5/31
15
B型 菊花状石墨 片状与细小卷曲 片状石墨聚集成菊花状分布
2021/5/31
16
C型 初生的粗大直片状石墨
2021/5/31
17
D型: 细小卷 曲的片 状石墨 在枝晶 间无方 向性分 布
2021/5/31
11
金相检验标准
• 国标:GB/T 7216-2009灰铸铁金相检验 • 美标:ASTM A247-06评定铸铁金相的方
法
• 国际标准:ISO 945-2008铸铁石墨显微组 织的分类
• 其他标准检验。
2021/5/31
12
四、灰铸铁的组织
• 石墨 • 基体组织 • 抛光后观看 • 放大100倍
2021/5/31
球墨铸铁金相试样制备方法与技巧

球墨铸铁金相试样制备方法与技巧
球墨铸铁金相试样制备是一项非常重要的工作,其质量直接影响着试样的金相分析结果。
下面将介绍球墨铸铁金相试样制备方法与技巧。
1.试样制备前的准备
(1)试样必须从球墨铸铁毛坯上取样,切割时不得损伤试样表面,避免影响金相检测结果。
(2)试样应当具有典型的组织结构,并尽量减少试样的变形,如出现变形,可采取磨机处理。
2.试样切割
(1)将试样放置于切割机上,调整好切割刀的高度。
(2)利用钳子夹紧试样,然后开启切割机,沿着试样表面快速切割,避免过度加工导致切屑过多。
(3)切割完毕后,用清洁棉布擦拭试样表面,确保其表面干净。
3.试样研磨
(1)用粗磨片进行初步的研磨,研磨时间不宜过长,以免过度研磨导致试样表面粗糙。
(2)将试样放入细磨片中进行细磨,磨制时间应逐渐加长,直到试样表面光滑细腻。
(3)研磨完毕后,用洁净的棉布擦拭试样表面,确保其表面干净。
4.试样腐蚀
(1)将试样放入腐蚀液中,浸泡一定时间,以使其表面形成一层均匀的氧化膜。
(2)腐蚀液的浓度和浸泡时间应根据试样材料和试验要求进行调整。
5.试样清洗
(1)将试样取出腐蚀液,用流动水清洗至试样表面不再有腐蚀液残余。
(2)用酒精或丙酮擦拭试样表面,使其表面彻底干净,避免在显微镜下出现杂质和干扰。
通过以上步骤,可以制备出高质量的球墨铸铁金相试样,以满足金相分析的要求。
金相检验7-铸钢和铸铁的金相检验

(1)工程与结构用铸钢
3、铸钢的特点
• 形状复杂或体积大,用压力加工难以成 型; • 切削加工较为困难; • 高合金钢的无(少)切削加工; • 通常以铸态或热处理状态使用,具有铸 造状态的组织特征和性能特点; • 含碳量通常不超过0.6%;
4、铸钢常用的牌号
• 铸造碳钢: ZG200-400(ZG20) ,ZG230-450 (ZG25), ZG270-500ZG35) ,ZG310-570(ZG45) , ZG340-640(ZG55)等 • 铸造合金钢: ZG15Mo,ZG25Mo,ZG40Mo等Mo系 ZG40Cr等铬系 ZG35CrMo等铬钼系 ZG20SiMn,ZG35SiMn等硅锰系 ZG50MnMo等锰钼系 ZG35CrMoSi等铬钼硅系
二、铸铁及其金相检验
1、铸铁概述 2、铸铁的组织及性能 3、灰铸铁的金相检验 4、球墨铸铁的金相检验
1、铸铁概述
①成分:含碳量大于2.11%的铁碳合金, 碳的存在方式有三种方式,固溶,化 合,游离。 ②组织由金属基体和石墨组成。 ③主要检验项目:石墨形态、大小和分 布状况,各种组成物的形态、分布和 数量等,并按相应标准进行评级。
③球墨铸铁 • 球墨铸铁是指金相组织中石墨呈球状或 近球状分布的铸铁。 • 牌号:按强度分为:QT400-18,QT45010,QT600-3等8种,短划线前面数字表 示抗拉强度Rm(Mpa),后面数字表示 伸长率A(%)。 • 金相检验相目:石墨检验,组织检验
④蠕墨铸铁
⑤可锻铸铁
• 黑心可锻铸铁:石墨呈团絮状分布, 组织以铁素体为主 • 白心可锻铸铁:白口铸铁毛坯经高温 氧化后形成全部铁素体或铁素体加珠 光体(心部可能残留渗碳体或石墨)
④分类:按碳的存在状态、石墨形态及 性能特点分为三类: 白口铸铁 灰铸铁(普通灰铸铁,球墨铸铁,可 锻铸铁,蠕墨铸铁) 麻口铸铁
球墨铸铁金相检验

球墨铸铁金相检验
中国古代的铸铁金相检验是一种技术,可以检测各种金属的质量和性质。
早期的铸铁金相检验以球墨炉为基础,主要用于检验各种金属。
球墨炉是六角形的两组管(内、外)构成的炉灶,里面加入木炭,点燃之后,金属可以从小孔流出,受热后,金属就会汇合在一起,形成球型晶体。
在球墨炉发光的情况下,金属的质量和性质就可以在经验的基础上被发现,从而辨别金属的质量和性质。
铸铁金相检验的传统方法使用一种称为“球墨”的金属合金,由铸铁、锡、铅、硅、硫和磷组成,作为检验金属质量和性质的参考标准。
- 1 -。
铸铁知识金相PPT课件

(1)密度
灰铁的密度受其构成的组织要素的量的 影响。由于石墨特别轻,通过量的增减会对 密度产生差异。下图为各种类灰铁的密度。
灰铁的溶解温度越高,石墨就越 小,残留成为初晶奥氏体形状。这是 由于高温溶解石墨的核消失,易过冷。 通过适当的接种,能够改善该石墨组 织。
FUJIWA MACHINERY INDUSTRY (KUNSHAN) CO., LTD.
FUJIWA MACHINERY INDUSTRY (KUNSHAN) CO., LTD.
铸铁的基本知识
FUJIWA MACHINERY INDUSTRY (KUNSHAN) CO., LTD.
●铸铁的种类
按照石墨形态可分为下列五种:
◎灰口铸铁:片状石墨 ◎球墨铸铁:球状石墨 ◎蠕墨铸铁:蠕虫状石墨 ◎白口铸铁:石墨以碳化物形式存在 ◎可锻铸铁:团絮状石墨
列有方向性,所以抗拉强度比D型高,比A型
E
低。
FUJIWA MACHINERY INDUSTRY (KUNSHAN) CO., LTD.
铸铁金相组织实验报告

一、实验目的1. 了解铸铁的基本组成和分类。
2. 掌握铸铁金相组织观察的基本方法。
3. 通过金相显微镜观察,分析灰铸铁、球墨铸铁和可锻铸铁的金相组织特点。
4. 学习如何根据金相组织判断铸铁的性能。
二、实验原理铸铁是一种以铁为主要成分,含有一定量碳、硅、锰、硫、磷等元素的合金。
铸铁按石墨形态分为灰铸铁、球墨铸铁、可锻铸铁等。
铸铁的金相组织主要由石墨和金属基体组成,金属基体可以是铁素体、珠光体或奥氏体等。
三、实验仪器与材料1. 仪器:金相显微镜、显微镜载物台、金相试样台、抛光机、砂纸、腐蚀剂等。
2. 材料:灰铸铁、球墨铸铁、可锻铸铁金相试样。
四、实验步骤1. 试样制备:将铸铁试样加工成一定厚度和尺寸,然后用砂纸进行粗磨、细磨和精磨,直至表面光滑。
接着用抛光机进行抛光,使试样表面达到镜面效果。
2. 腐蚀:将抛光后的试样放入腐蚀剂中,根据铸铁种类选择合适的腐蚀时间,使石墨和金属基体在腐蚀过程中呈现不同的形态。
3. 观察:将腐蚀后的试样放入金相显微镜载物台,用显微镜观察石墨和金属基体的形态、分布、大小等特征。
4. 分析:根据金相组织的特点,判断铸铁的种类、性能和缺陷。
五、实验结果与分析1. 灰铸铁:灰铸铁的金相组织主要由石墨和金属基体组成。
石墨呈片状,分布不均匀,大小不一。
金属基体为珠光体,分布较均匀。
灰铸铁具有良好的铸造性能和一定的机械性能。
2. 球墨铸铁:球墨铸铁的金相组织主要由球状石墨和金属基体组成。
球状石墨呈球形,分布均匀,大小一致。
金属基体为珠光体,分布较均匀。
球墨铸铁具有较高的强度、塑性和韧性,广泛应用于汽车、机床、矿山等领域。
3. 可锻铸铁:可锻铸铁的金相组织主要由石墨和金属基体组成。
石墨呈团絮状,分布均匀,大小一致。
金属基体为铁素体,分布较均匀。
可锻铸铁具有较高的塑性和韧性,适用于制造要求较高塑性和韧性的零件。
六、实验总结通过本次实验,我们掌握了铸铁金相组织观察的基本方法,了解了灰铸铁、球墨铸铁和可锻铸铁的金相组织特点。
实验五 铸铁金相组织的观察

C型石墨
4、D型石墨:
点状与小片状的石墨无方向性的分布。它是在 较大过冷条件下生成的共晶石墨。这类石墨往往出 现在碳、硅含量较低,过冷度较大的亚共晶灰口铸 铁中。结晶时,首先形成树枝状的奥氏体,由于过 冷度较大,分布于枝晶间隙中的剩余铁水发生共晶 转变时,几乎同时生成大量的石墨核心,这些石墨 核心只能作微小的生长,产生多而密的分枝,所以 在显微镜下,石墨呈点。片状分布在奥氏体的树枝 间隙中,除了低碳和强烈过冷外,铁水过热也是D 型石墨生成的条件。因为过热会使石墨生成的核心 减少,石墨结晶困难,需要有较大的过冷度。这类 石墨由于密集分布,也使机械性能有所下降。
D型石墨
5、E型石墨: 在初生奥氏体的晶间分布着有方向性 的短片石墨,其特征和成因与D型石墨基本 相同,只是E型石墨的分布具有明显的方向 性。在实际生产中,D型和E型石墨通常不 作严格区分,分称D、E型石墨,也称过冷 石墨或枝晶石墨。E型石墨因分布的方向性 较强,它对机械性能的影响也较D型石墨大 一些。
可锻铸铁 400X (铁素体+团絮状石墨)
实验五、铸铁组织观察
一、实验目的
1、灰口铸铁中不同类型石墨的形貌。 2、观察灰口铸铁中基体组织。 3、 观察灰口铸铁中磷共晶的形态及分布。 4、观察灰口铸铁的共晶团。 5、球铁热处理前后石墨形态的观察。 6、 蠕虫状石墨铸铁的基体和石墨形态的观察。 7、可锻铸铁各退火阶段石墨形态的观察
一、概述
铸铁是含碳量大于2.11%或组织中具共晶的铁碳合金。工业上所 用的铸铁,实际上都不是简单的铁—碳二元合金,而是以铁、碳、硅为 主要元素的多元合金。 铸铁中的碳可以以渗碳体的形式存在,也可以石墨的形式存在。根 据碳在铸铁中的存在形态的不同,通常可将铸铁分为白口铁、灰口铸铁 和麻口铸铁。而根据铸铁中石墨的形态不同,又可分为普通灰口铸铁, 蠕虫状石墨铸铁,球墨铸铁以及可锻铸铁。 铸铁中的金属基体一般都是由珠光体。铁素体或珠光体+ 铁素体组成。 基体上与共析钢或亚共析钢的基体组织相同。 灰口铸铁的金相特点,是在钢的基础上分布着片状石墨,其组织是根据 石墨片的大小、长度、分布及基体的类型不同有很大的差异,这主要决 定于化学成份和铸造条件而定。 球墨铸铁金相组织的典型特征是在钢的基体上分布着球状石墨。 球化处理和孕育处理是使石墨获得球状形态的关键。控制不同的化学成 份和采用不同的热处理方法,可以使球墨铸铁获得不同的基体组织和机 械性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形成过冷石墨组织,石墨全体细微化。这种情
况下,抗拉强度比较的高,由于基地容易铁素
D
体化,所以耐磨耗性差。
E型: 由于小片状石墨沿着树枝状晶分布,排
列有方向性,所以抗拉强度比D型高,比A型
E
低。
灰铁的基地组织在没有特别的 热处理或添加合金的情况下,形 成珠光体或铁素体或此两者的 混合组织。
珠光体(Pearlite):如图2.8所示,组织 呈白和黑的条纹状。是因为以铁素体 和渗碳体的板状结晶相交成层状的截 面作为观看的形状的。为此,有着极 其强韧的性质,在硅量的低范围里布 氏硬度约为230,抗拉强度约为 880N/mm2。
表2.7所示的是为制造JIS G 5501的 灰铁品的各种类标准的C及Si量。
灰铁的抗拉强度受所占截面石墨部 面积的影响。因此,认为抗拉强度与表 示石墨量的碳素饱和度(Sc)和碳素当 量(CE)值之间有关联。左图所示的 是碳素饱和度及碳素当量和抗拉强度的 关系。
压缩强度和抗拉强度
图2.13所示的是灰铁的抗拉强度和压
是同样石墨组织的情况下,因 比较硬度:由铸铁的抗拉强度推 基地组织,强度变化显著。灰 定的标准的布氏硬度和实际的硬 铁的基地如果从珠光体变化为 度公式如下。 铁素体的话抗拉强度和硬度也
比较硬度 RH=HB/HB'=HB/(100+4.3σB)
会显著降低,如果成为贝氏体
的话这些值就会显著上升。
JIS G 5501-1989「灰铁品」上根据机 械性能可分为FC100、150、200、250、 300及350这6种。
燐を含む三元共晶組織 (αFe-Fe3C-Fe3P);硬くて脆 い溶融温度が低い
含磷的三元共晶组织 (αFe-Fe3C-Fe3P);既硬 又脆,熔融温度低
灰鋳鉄金相組織
片状石墨大小的分类(ISO 945)
A
B
E
C
D
片状石墨的形状、分布的分类
A型: 片状石墨分布均匀,无方向地排列。这样 容易得到接近共晶组成的亚共晶组成,是灰铁 最理想的石墨组织。
如前所述,灰铁的组织是 成熟度:对于由铸铁的碳素饱 由石墨组织和基地组织构成的。和度推定的标准的抗拉强度, 石墨的强度和基地比较,小得 实际的抗拉强度比如下公式所 可以忽视,石墨量越是增加铸 示。
铁的强度就越低。另外,即使 成熟度 RG=σB×100/σB'=σB×100/(102-82.5Sc)
1.1.1 石墨组织
灰铁的石墨组织由于会 对其各性质,特别是机械性 质以很大影响。显微镜试 料截面上观察到的石墨如 右图,能看到各个片状,如果 溶出基地立体地进行观察 的话,就如右下图,意外地有 连续性。
1)黒鉛
石墨
非常に軟らかくて脆い
很软,很脆
2)パーライト 珠光体 3)フェライト 铁素体 4)セメンタイト 渗碳体 5)ステダイト 斯氏体
围会因化学组成而变化,所以融点不固定。 凝固开始温度(初晶温度)根据化学组成 即碳及硅量而变化。
另一方面,如果增加灰铁中的磷(P),融点为 1228K(955℃)的话会出现低斯氏体〔磷化铁 (Fe3P)和铁素体的疑似—2元共晶〕,由于溶 解温度显著降低,高温下使用需要注意。因 此,作为灰铁的融点,应在1390~1520K (1117~1247℃)的范围内。
铁素体(Ferrite):Fe中少量 含有被称为α固溶体的碳,软软 的。在灰铁上,多出现在石墨 的周边。
为了改善铸铁的材质,在浇注之前 的溶汤里添加粒状的纯硅素(Si),硅 铁(Fe-Si),硅化钙等,这一般被称为 接种。
接种的材质改善就是进行石墨组织 变化,通过接种将D型或E型石墨变为A 型石墨。接种能防止白口化,改善质量 效果等。
1.2.1 物理的性质
灰铁的物理性质不仅取决于化学组成, 其组织也会带来很大的影响。例如,会因 铸铁中的碳以何种形式存在带来很大的 差异。因此,灰铁的物理性质不是以点, 很多是以范围来表示的。
(1)密度
灰铁的密度受其构成的组织要素的量的 影响。由于石墨特别轻,通过量的增减会对 密度产生差异。下图为各种类灰铁的密度。
缩强度的关系,压缩强度的值为抗拉 强度的3~4倍
灰铁的情况下,抗拉及压缩试验上 应力—歪曲的关系认为不是直线,是从 应力负荷的初期阶段一点点塑性变形。 而且该变形是抗拉方面比较大。弹性系 数为方便起见,显示了在抗拉试验上负
荷开始点上接线的倾斜。如图2.14所示, 灰铁的弹性系数在75~140GPa的范 围里。
A
B型: 因为石墨呈玫瑰花瓣状分布,也称为玫瑰 状石墨。细的石墨部分的基地被铁素体化,抗拉 强度容易降低。
B
C型: 在片状石墨均匀分布里自由发达的粗大 初晶石墨(结集石墨)也混在。出现过共晶组成的 情况,由于这粗大初晶石墨抗拉ቤተ መጻሕፍቲ ባይዱ度显著降低。
C
D型: 细小的共晶石墨分布在树枝状晶(枝蔓
状晶)之间。这是因为如果冷却速度大的话就
铸铁的基本知识
●铸铁的种类
按照石墨形态可分为下列五种:
◎灰口铸铁:片状石墨 ◎球墨铸铁:球状石墨 ◎蠕墨铸铁:蠕虫状石墨 ◎白口铸铁:石墨以碳化物形式存在 ◎可锻铸铁:团絮状石墨
球墨铸铁
灰口铸铁
1.1 灰铁的组织
灰铁代表性的显微镜组织如图2.4所示。正如这张照片所看到的,灰 铁的显微镜组织由石墨组织和基地组织构成。而且,灰铁的各性质因这 些组织的状态而变化,铸铁的化学成分及凝固时的冷却速度等会给这些 组织很大影响。
フェライトとセメンタイトが交 互に並んだ層状組織体;硬く て強度がある
铁素体和渗碳体交互排 列的层状组织体;硬且 有强度
微量のC(炭素)を含むα鉄; 含有微量C(碳素)的α 比較的軟らかくて伸びがある 铁;比较软有伸展性
鉄と炭素の化合物(Fe3C); 非常に硬くて脆い
铁和碳素的化合物 ( Fe3C);很硬而且 脆
灰铁硬度考虑了其粗糙组织采用压 痕面积宽的布氏硬度。其值在120~300的 范围里,其变化与石墨量和基地组织相 关连。
灰铁的溶解温度越高,石墨就越 小,残留成为初晶奥氏体形状。这是 由于高温溶解石墨的核消失,易过冷。 通过适当的接种,能够改善该石墨组 织。
灰铁组织构成要素各密度
铁素体(Si,O%) 珠光体 渗碳体 石墨 斯氏体 奥氏体(C,0.9%) 马氏体(C,0.9%)
(2)融点
灰铁因为是Fe-C-Si系3元合金,从凝固 开始到终了期间存在凝固范围,由于该范