浙教版2019-2020学年八年级数学下册 第三章 数据分析初步单元测试题(含答案)

合集下载

浙教版八年级下数学第三章 数据分析初步单元测试卷(附答案)

浙教版八年级下数学第三章 数据分析初步单元测试卷(附答案)

浙教版八年级下数学第3章数据分析初步单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)如果一组数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,则x为()A.2B.3C.﹣1D.12.(3分)一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1683.(3分)已知一组数据x1,x2,x3的平均数为7,则x1+3,x2+2,x3+4的平均数为()A.7B.8C.9D.104.(3分)某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是()A.39B.40C.41D.425.(3分)某校在“爱护地球,绿化祖国”的创建活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:植树棵树(单位:棵)456810人数(人)302225158则这100名学生所植树棵树的中位数为()A.4B.5C.5.5D.66.(3分)一次演讲比赛中,小明的成绩如下:演讲内容为70分,演讲能力为60分,演讲效果为88分,如果演讲内容、演讲能力、演讲效果的成绩按4:2:4计算,则他的平均分为()分.A.74.2B.75.2C.76.2D.77.27.(3分)某选手在比赛中的成绩(单位:分)分别是90,87,92,88,93,方差是5.2(单位:分2),如果去掉一个最高分和一个最低分,那么该选手成绩的方差会()A.变大B.不变C.变小D.不确定8.(3分)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2B.3C.4D.59.(3分)样本方差的计算公式S2=[(x1﹣20)2+(x2﹣20)2+…+(x30﹣20)2]中,数字30和20分别表示样本的()A.众数、中位数B.方差、标准差C.数据的个数、中位数D.数据的个数、平均数10.(3分)一个民营企业10名员工的月平均工资如下表,则能较好反映这些员工月平均工资水平的是()(工资单位:万元)人次1112113工资3032 1.5 1.220.8 A.平均数B.中位数C.众数D.标准差二.填空题(共6小题,满分24分,每小题4分)11.(4分)小明某次月考语文、数学、英语的平均成绩是93分,其中语文成绩是90分,英语成绩是95分,则数学成绩是分.12.(4分)已知样本数据1,2,3,4,5,这组数据的标准差S=.13.(4分)某公司决定招聘经理一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分数)808090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.14.(4分)已知一组数据是3,4,7,a,中位数为4,则a=.15.(4分)甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为s甲2=0.2,S乙2=0.08,成绩比较稳定的是(填“甲”或“乙”)16.(4分)某鞋店一周内销售了某种品牌的男鞋60双,各种尺码的销售量统计如下:尺码/cm23.52424.52525.52626.5销量/双376161882由此你能给这家鞋店提供的进货建议是.三.解答题(共8小题,满分66分)17.(6分)2018年12月4日是第五个国家宪法日,也是第一个“宪法宣传周”.甲、乙两班各选派10名学生参加宪法知识竞赛(满分100分),成绩如下:成绩859095100甲班参赛学生/人1153乙班参赛学生/人1234分别求甲、乙两班参赛学生竞赛成绩的平均数和方差.18.(6分)某工厂甲、乙两名工人参加操作技能培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取5次,记录如下:甲8588848583乙8387848685(1)请你分别计算这两组数据的平均数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.19.(8分)某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校6年1班40人参加跳绳比赛的情况,若标准数量为每人每分钟100个.跳绳个数与标准数量的差值﹣2﹣10456人数61216105(1)求6年1班40人一分钟内平均每人跳绳多少个?(2)规定跳绳超过标准数量,每多跳1个绳加3分;规定跳绳未达到标准数量,每少跳1个绳,扣1分,若班级跳绳总积分超过250分,便可得到学校的奖励,通过计算说明6年1班能否得到学校奖励?20.(8分)数学老师全老师选派了班上8位同学去参加年级组的数学知识竞赛,试卷满分100分,我们将成绩中超过90分的部分记为正,低于90分的部分记为负,则这八位同学的得分如下:+8,+3,﹣3,﹣11,+4,+9,﹣5,﹣1.(1)请求出这8为同学本次数学竞赛的平均分是多少?(2)若得分95以上可以获得一等奖,请求出这8位同学获得一等奖的百分比是多少?21.(8分)甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)分别计算甲、乙同学成绩的中位数;(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?22.(10分)一次期中考试中,A、B、C、D、E五位同学的数学、英语成绩有如下信息:A B C D E平均分标准差数学7172696870英语888294857685(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式:标准分=个人成绩﹣平均成绩)÷成绩标准差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学、英语哪个学科考得更好?23.(10分)某服装厂对服装进行二次加工,现有工人16人,工厂为了合理制定服装的每月生产定额,统计了16人某月的加工服装数如表:加工服装数/件590550300240210120人数113542(1)写出这16人该月加工服装数的平均数、中位数和众数;(2)假如服装厂负责人把每位工人的月加工服装件数定为270件,你认为这个定额是否合理?为什么?24.(10分)为参加11月23日举行的丹东市“我爱诗词”中小学生诗词大赛决赛,某校每班选25名同学参加预选赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为10分、9分、8分、7分,学校将八年级的一班和二班的成绩整理并绘制成如下统计图:根据以上提供的信息解答下列问题(1)请补全一班竞赛成绩统计图;(2)请直接写出a、b、c、d的值;班级平均数(分)中位数(分)众数(分)一班a=b=9二班8.76c=d=(3)请从平均数和中位数两个方面对这两个班级的成绩进行分析.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.D2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.D 10.B 二.填空题(共6小题,满分24分,每小题4分)11.94 12..13.82 14.4 15.乙16.25.5cm三.解答题(共8小题,满分66分)17.解:甲班参赛学生的平均数是:(85×1+90×1+95×5+100×3)=95(分),乙班参赛学生的平均数是:(85×1+90×2+95×3+100×4)=95(分),则S甲2=[(85﹣95)2+(90﹣95)2+5(95﹣95)2+3(100﹣95)2]=20(分2),S乙2=[(85﹣95)2+2(90﹣95)2+3(95﹣95)2+4(100﹣95)2]=25(分2),答:甲、乙两班参赛学生竞赛成绩的平均数都是95分,方差分别为20分2,25分2.18.解:(1)甲平均数:×(85+88+84+85+83)=×425=85,乙平均数:×(83+87+84+86+85)=×425=85;(2)选派乙工人参加合适.理由如下:S甲2=×[(85﹣85)2+(88﹣85)2+(84﹣85)2+(85﹣85)2+(83﹣85)2],=×(0+9+1+0+4),=2.8,S乙2=×[(83﹣85)2+(87﹣85)2+(84﹣85)2+(86﹣85)2+(85﹣85)2],=×(4+4+1+1+0),=2,∵2.8>2,∴S甲2>S乙2,∴乙成绩更稳定,∴选派乙工人参加合适.19.解:(1)6(1)班40人中跳绳的平均个数为100+=102个,答:40人一分钟内平均每人跳绳102;(2)依题意得:(4×6+5×10+6×5)×3﹣(﹣2×6﹣1×12)×(﹣1)=288>250.所以6(1)班能得到学校奖励.20.解:(1)∵八位同学的得分如下:+8,+3,﹣3,﹣11,+4,+9,﹣5,﹣1,∴这8为同学本次数学竞赛的平均分是90+(8+3﹣3﹣11+4+9﹣5﹣1)=90+0.5=90.5分;(2)∵得分95以上可以获得一等奖,∴获得一等奖的只有98分和99分,两名同学,∴这8位同学获得一等奖的百分比是==25%.21.解:(1)甲的中位数=,乙的中位数=;(2)甲的数学综合成绩=93×0.4+93×0.3+89×0.1+90×0.2=92,乙的数学综合成绩=94×0.4+92×0.3+94×0.1+86×0.2=91.8.22.解:(1)数学平均分是:×(71+72+…+70)=70分,英语标准差为:==6;(2)∵数学标准分==,英语标准分==0.5,>0.5,∴数学更好.23.解:(1)平均数:=270(件);将表中的数据按照从大到小的顺序排列,则中位数是第8名工人和第9名工人加工零件数的平均数,则中位数是240件;∵240出现了5次,出现的次数最多,∴众数是240件;答:这16人该月加工零件数的平均数为270件,中位数为240件,众数为240件.(2)不合理:因为表中的数据显示,每月就完成270件的人数一共是5人,还有11人不能达到此定额,尽管270件是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.24.解:(1)一班C等级的人数为25﹣6﹣12﹣5=2(人),统计图为:(2)a=8.76;b=9;c=8;d=10,故答案为:8.76,9,8,10.(3)一班的平均分和二班的平均分都为8.76分,两班平均成绩都一样;一班的中位数9分大于二班的中位数8分,一班成绩比二班好.综上,一班成绩比二班好.。

浙教版八年级数学下册第3章数据分析初步单元综合测试题(Word版含答案)

浙教版八年级数学下册第3章数据分析初步单元综合测试题(Word版含答案)

浙教版八年级数学下册《第3章数据分析初步》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.一组数据1,x,5,7的中位数与众数相等,则该组的平均数是()A.3.5B.4.5C.5.5D.62.下表是某地援鄂医疗人员的年龄分布年龄/岁29303132频数152018﹣m m 对于不同的m,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.众数、方差C.平均数、方差D.平均数、中位数3.某校九年级(3)班全体学生2021年中考体育模拟考试的成绩统计如下表:成绩(分)36404346485054人数(人)2567875根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是48分C.该班学生这次考试成绩的中位数是47分D.该班学生这次考试成绩的平均数是46分4.小华统计了自己过去五个学期期末考试数学成绩,分别为87,84,90,89,95,这组数据的中位数和方差分别为()A.90,66B.90,13.2C.89,66D.89,13.25.面试时,某应聘者的学历、经验和工作态度的得分分别是72分、86分、60分,若依次按照1:3:2的比例确定成绩,则该应聘者的最终成绩是()A.75B.72C.70D.656.已知数据x1,x2,x3,x4,x5的平均数为k1;数据x6,x7,x8,x9,x10的平均数为k2;k1与k2的平均数是k;数据x1,x2,x3,…,x8,x9,x10的平均数为m,那么k与m的关系是()A.k>m B.k=m C.k<m D.不能确定7.小亮要计算一组数据80,82,74,86,79的方差s12,在计算平均数的过程中,将这组数据中的每一个数都减去80,得到一组新数据0,2,﹣6,6,﹣1,记这组新数据的方差为s22,则s12与s22的大小关系为()A.s12<s22B.s12>s22C.s12=s22D.无法确定8.从数字“3、4、5、6、7、8、9”这七个数中选了21个数字(数字可重复,但每个数字至少选一次).结果发现这21个数字的平均数、中位数及唯一的众数都是“7”,则数字“8”最多出现的次数是()A.5B.6C.7D.8二.填空题(共8小题,满分40分)9.小刚同学投掷实心球训练,测得他8次投掷成绩(单位:m)为:8,8,5,8,8,9,7,5.这组数据的众数是,中位数是,方差是.10.已知一组不全等的数据:x1,x2,x3,……,x n,平均数是2020,方差是2021,则新数据:2020,x1,x2,x3,……,x n的平均数是,方差2021(填“=、>或<”).11.某班有50人,一次数学测试后,老师对测试成绩进行了统计.由于小颖没有参加此次集体测试,因此计算其他49人的平均分为92分,方差s2=23.后来小颖进行了补测,成绩是92分,则该班50人的数学测试成绩的方差(填“变小”、“不变”、“变大”).12.某芭蕾舞团新进一批女演员,她们的身高及其对应人数情况如表所示:身高(cm)163164165166168人数12311那么,这批女演员身高的方差为.13.已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是.14.已知五个数a,b,c,d,e,它们的平均数是90,a,b,c的平均数是80,c,d,e的平均数是95,那么你可以求出(a,b,c,d,e选填一个),它等于.15.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为.16.如果一组数据a1,a2,a3,…,a n的平均数为5,方差为2,那么数据3a1+1,3a2+1,3a3+1,…,3a n+1的平均数为方差为.三.解答题(共4小题,满分40分)17.小明八年级上学期的数学成绩如下表所示:测验平时期中期末类别测验1测验2测验3测验4考试考试106102115109112110成绩(分)(1)计算小明该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算的,请计算出小明该学期的数学总评成绩.18.为纪念2021年3月22﹣28日“中国水周”﹣﹣珍惜水•爱护水•节约水.某校七八年级进行“珍惜水资源”知识竞赛,成绩分为优秀,良好,及格,不合格四个等级,其相应等级得分分别为10分,8分,6分,4分.随机抽查了七、八年级各40人,将抽查出来的七年级和八年级的成绩整理并绘制成统计图.根据以上信息回答下列问题:(1)分别求出七年级和八年级的平均成绩;(2)从平均数、中位数、众数的角度进行分析,你将如何评价这两个年级的成绩?请说明理由.19.某中学举行“中国共产党建党一百周年•校园好声音”歌赛,七、八年级根据初赛成绩,各选出5名选手组成七年级代表队和八年级代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.年级平均分(分)中位数(分)众数(分)八85七8510020.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,10,10.(1)下面表格中,a=;b=;c=;平均数(环)中位数(环)方差(环2)小华a8c小亮8b3(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,都命中8环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)参考答案一.选择题(共8小题,满分40分)1.解:①当众数是1时,这组数据为:1,1,5,7,中位数是(1+5)÷2=3,∵中位数与众数不相等,∴不符合题意;②当众数是5时,这组数据为:1,5,5,7,中位数是5,∵中位数与众数相等,∴该组的平均数是(1+5+5+7)÷4=4.5;③当众数是7时,这组数据为:1,5,7,7,中位数是(5+7)÷2=6,∵中位数与众数不相等,∴不符合题意;则该组的平均数是4.5.故选:B.2.解:由题意,这组数据的众数是30,中位数也是30,平均数,方差不确定,所以发生改变的是平均数和方差,则不发生改变的为中位数和众数,故选:A.3.解:A.该班的总人数为2+5+6+7+8+7+5=40(人),故本选项正确,不符合题意;B.该班学生这次考试成绩的众数是48分,故本选项正确,不符合题意;C.该班学生这次考试成绩的中位数是=47(分),故本选项正确,不符合题意;D.该班学生这次考试成绩的平均数是×(36×2+40×5+43×6+46×7+48×8+50×7+54×5)=46.4(分),故本选项错误,符合题意;故选:D.4.解:五个数从小到大为84,87,89,90,95,∴中位数为89.平均数=(84+87+89+90+95)=89,∴S2=[(89﹣84)2+(89﹣87)2+(89﹣89)2+(89﹣90)2+(89﹣95)2]=13.2,故选:D.5.解:该应聘者的最终成绩==75(分),故选:A.6.解:∵数据x1,x2,x3,x4,x5的平均数为k1,∴x1+x2+x3+x4+x5=5k1,∵数据x6,x7,x8,x9,x10的平均数为k2,∴x6+x7+x8+x9+x10=5k2,∵k1与k2的平均数是k,∴k1+k2=2k,∴x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=5k1+5k2=5(k1+k2)=10k,∵数据x1,x2,x3,…,x8,x9,x10的平均数为m,∴x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=10m,∴k=m.故选:B.7.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴s12=s22,故选:C.8.解:假设这21个数字中3、4、5、6,9的个数都是一个,7的个数为x个,8的个数为y个.则根据这21个数据的平均数是7,可以列出方程组.解得.与题干中唯一的众数都是“7”不相符.减少一个8,就要增加某一个数使得这个数为“8”,才能使得21个数的和不变,以保证这21个数的平均数为“7”.减少两个8,就要增加两个数,使得这两个数的和为16,很显然我可以增加一个“7”,一个“9”,变能达到目的.这样8的个数最多为6个.故选:B.二.填空题(共8小题,满分40分)9.解:8,8,5,8,8,9,7,5这组数据的众数是8,中位数是8,平均数=(8+8+5+8+8+9+7+5)=7.25方差=[4×(8﹣7.25)2+2×(5﹣7.25)2+(9﹣7.25)2+(7﹣7.25)2]≈1.9,故答案为:8,8,1.910.解:∵x1,x2,x3…x n,平均数是2020,方差是2021,∴×(x1+x2+x3+…+x n)=2020,S2=•[(x1﹣2020)2+(x2﹣2020)2+……+(x n﹣2020)2]=2021,∴x1+x2+x3+…+x n=2020n,(x1﹣2020)2+(x2﹣2020)2+……+(x n﹣2020)2=2021n,则2020,x1,x2,x3…x n的平均数是•(2020+x1+x2+x3+…+x n)=•(2020n+2020)=2020,S′2=•[(2020﹣2020)2+(x1﹣2020)2+(x2﹣2020)2+……+(x n﹣2020)2]=•[(x1﹣2020)2+(x2﹣2020)2+……+(x n﹣2020)2]<S2,即S′2<2021,故答案为:2020,<.11.解:∵小颖的成绩和其他49人的平均数相同,都是92分,∴该班50人的测试成绩的平均分为92分,方差变小,故答案为:变小.12.解:==165(cm), s2=×[(163﹣165)2×1+(164﹣165)2×2+(165﹣165)2×3+(166﹣165)2×1+(168﹣165)2×1]=2(cm2),故答案为:2cm2.13.解:∵这组数据的平均数为5,则,解得:a=3,将这组数据从小到大重新排列为:3,4,5,6,7,观察数据可知最中间的数是5,则中位数是5.故答案为:5.14.解:∵a,b,c,d,e,这五个数的平均数是90,∴这五个数的和是90×5=450,∵a,b,c的平均数是80,∴这三个数的和是80×3=240,∴d,e的和是450﹣240=210,∵c,d,e的平均数是95,∴c=95×3﹣210=75.∴可以求出c,它等于75.故答案为:c,75.15.解:甲的平均成绩为=87(分),故答案为:87分.16.解:由数据可知,两个数据之间满足关系y=3x+1,则根据平均数的运算性质可知,=3×5+1=16,根据方差的关系可知,s2=32×2=18,故答案为:16,18.三.解答题(共4小题,满分40分)17.解:(1)小明该学期的数学平时平均成绩=×(106+102+115+109)=×432=108(分);答:小明该学期的数学平时平均成绩是108分;(2)小明该学期的数学总评成绩是:108×10%+112×20%+110×70%=10.8+22.4+77=110.2(分),答:小明该学期的数学总评成绩是110.2分.18.解:(1)七年级的平均成绩为:×(9×10+20×8+5×6+6×4)=7.6;八年级的平均成绩为:×(40×40%×10+40×25%×8+40×20%×6+40×15%×4)=7.8;(2)由题意得:七年级的中位数是:,八年级的中位数是:,七年级的众数是:8,八年级的众数是:10;从平均数上看,7.8>7.6,则八年级的成绩比七年级的成绩较好;从中位数上看,8=8,则两个年级的成绩一样;从众数上看,10>8,则八年级的成绩比七年级的要好.19.解:(1)由条形统计图可得,八年级5名选手的平均分是:=85,众数是85,七年级五名选手的成绩是:70,75,80,100,100,故中位数是80,平均分(分)中位数(分)众数(分)八年级858585七年级8580100故答案为:85,85,80;(2)由表格可知,七年级与八年级的平均分相同,八年级的中位数高,故八年级决赛成绩较好;(3)由题意可得,s2八年级==70,s2七年级==160,∵70<160,故八年级代表队选手成绩比较稳定.20.解:(1)小华的平均成绩a=(7+8+7+8+9+9)÷6=8(环),小华的方差c=[(7﹣8)2×2+(8﹣8)2×2+(9﹣8)2×2]=(环2),把小亮的成绩从小到大排列为5,7,8,8,10,10,则中位数b==8(环),故答案为:8,8,;(2)小亮再射击后的平均成绩是(5+7+8×4+10×2)÷8=8(环),射击后的方差是:[(5﹣8)2+(7﹣8)2+4×(8﹣8)2+(10﹣8)2×2]=2.25(环2),∵2.25<3,∴小亮这8次射击成绩的方差变小.故答案为:变小.。

2019-2020浙教版八年级数学下册第三章数据分析初步单元测试卷含解析

2019-2020浙教版八年级数学下册第三章数据分析初步单元测试卷含解析

2019-2020浙教版八年级数学下册第三章数据分析初步单元测试卷一.选择题(共12小题)1.如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2B.4.6C.4D.3.62.某同学在本学期的前四次数学测验中得分依次是95,82,76,88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()分.A.84B.75C.82D.873.如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()型号A B C价格(元/支)1 1.5 2数量(支)3 2 5A.1.4元B.1.5元C.1.6元D.1.7元4.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.206.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,227.数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4B.4.5C.5D.68.样本数据10,10,x,8的众数与平均数相同,那么这组数据的中位数是()A.8B.9C.10D.129.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220B.220,210C.200,220D.230,210 10.在一组数据3,4,4,6,8中,下列说法错误的是()A.它的众数是4B.它的平均数是5C.它的中位数是5D.它的众数等于中位数11.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班12.甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示:选手甲乙丙丁方差 1.75 2.930.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁二.填空题(共8小题)13.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是.14.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是分.15.某同学在使用计算器求20个数的时候,将88误输入为8,那么由此求出的平均数与实际平均数的差为.16.某学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是次.17.自然数4、5、5、x、y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x、y中,x+y的最大值是.18.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是.19.已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为.20.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为,标准差为.(精确到0.1)三.解答题(共8小题)21.附加题:(请你把上面的解答再认真地检查一遍,别留下什么遗憾,并估算一下成绩是否达到了80分,如果你的全卷得分低于80分,则本题的得分将计入全卷总分,但计入后全卷总分最多不超过80分;如果你全卷得分已经达到或超过80分,则本题的得分不计入全卷总分.)(1)计算23的结果是;(2)一组数据1、2、3,它的平均数是.22.作为一项惠农强农应对当前国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在我市实施.我市某家电公司营销点自去年12月份至今年5月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数方差甲品牌销售量/台10乙品牌销售量/台(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.23.某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行了评价,全班50位同学参与了民主测评,结果如下表:A B C D E好较好一般甲9092949588甲4073乙8986879491乙4244表一演讲答辩得分表二民主测评得票规则:①演讲答辩得分按“去掉一个最高分和一个最低分后,再算出平均分”的方法确定;②民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;③演讲答辩得分和民主测评得分按4:6确定权重,计算综合得分,请你计算一下甲、乙的综合得分,选出班长.24.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?平时成绩 期中成绩 期末成绩 小明 96 94 90 小亮 90 96 93 小红90909625.2010年4月14日,青海省玉树县发生了7.1级地震;某校开展了“玉树,我们在一起”的赈灾捐款活动,其中九年级二班全体同学的捐款情况如下表: 捐款金额(元) 510152050捐款人数(人)718123由于填表的同学不小心把墨水滴在了表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的36%,结合上表回答下列问题: (1)九年级二班共有多少人?(2)学生捐款金额的众数和中位数分别为多少元?(3)如果把该班学生的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对应的扇形圆心角为多少度?26.某校九年级全体学生参加某次数学考试,以下是根据这次考试的有关数据制作的统计图,请你根据图中的数据完成下列问题.(1)该校参加这次数学考试的九年级学生共有人;(2)这次考试分数在80﹣99分的学生数占总人数的百分比为 %(精确到0.01%); (3)将条形图补充完整,并在图中标明数值;(4)这次考试,各分数段学生人数的中位数所处的分数段是分.27.为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.28.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.参考答案与试题解析一.选择题(共12小题)1.如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2B.4.6C.4D.3.6【分析】根据这组数据的众数是4,求出x的值,根据平均数的公式求出平均数.【解答】解:∵这组数据的众数是4,∴x=4,=(2+4+4+3+5)=3.6.故选:D.【点评】本题考查的是平均数的计算公式和众数的概念,掌握平均数的计算公式和众数的确定方法是解题的关键.2.某同学在本学期的前四次数学测验中得分依次是95,82,76,88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()分.A.84B.75C.82D.87【分析】设这次测验他应得x分,根据算术平均数的计算公式:列出算式,求解即可.【解答】解:设这次测验他应得x分,根据题意得:=85,解得:x=84,则这次测验他应得84分.故选:A.【点评】此题考查了算术平均数,掌握算术平均数的计算公式是本题的关键.3.如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()型号A B C价格(元/支)1 1.5 2数量(支)3 2 5A.1.4元B.1.5元C.1.6元D.1.7元【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:该组数据的平均数=(1×3+1.5×2+2×5)=1.6(元).故选:C.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求1,1.5,2这三个数的平均数,对平均数的理解不正确.4.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选:B.【点评】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.20【分析】本题要求同学们,熟练应用计算器.【解答】解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.故选:B.【点评】本题要求同学们能熟练应用计算器,会用科学记算器进行计算.6.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,22【分析】此题根据中位数,平均数的定义解答.【解答】解:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.故选:B.【点评】此题考查了折线统计图,用到的知识点是平均数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.平均数是所有数的和除以所有数的个数.7.数据3,6,7,4,x的平均数是5,则这组数据的中位数是()A.4B.4.5C.5D.6【分析】根据题目中的数据可以求得x的值,然后将题目中的数据按照从小到大的顺序排列,即可解答本题.【解答】解:∵3,6,7,4,x的平均数是5,∴x=5×5﹣(3+6+7+4)=25﹣20=5,∴在数据3,6,7,4,5中按照从小到大是3,4,5,6,7,故这组数据的中位数5,故选:C.【点评】本题考查算术平均数、中位数,解题的关键是明确算术平均数和中位数的求法.8.样本数据10,10,x,8的众数与平均数相同,那么这组数据的中位数是()A.8B.9C.10D.12【分析】根据平均数的定义先求出x.求中位数可将一组数据从小到大依次排列,中间数据(或中间两数据的平均数)即为所求.【解答】解:若x=8,则样本有两个众数10和8平均数=(10+10+8+8)÷4=9,与已知中样本众数和平均数相同不符所以样本只能有一个众数为10则平均数也为10,(10+10+x+8)÷4=10,求得x=12.将这组数据从小到大重新排列后为:8,10,10,12;最中间的那两个数的平均数即中位数是10.故选:C.【点评】本题考查了众数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.9.为了解某种电动汽车一次充电后行驶的里程数,抽检了10辆车,统计结果如图所示,则在一次充电后行驶的里程数这组数据中,众数和中位数分别是()A.220,220B.220,210C.200,220D.230,210【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可.【解答】解:数据220出现了4次,最多,故众数为220,共1+2+3+4=10个数,排序后位于第5和第6位的数均为220,故中位数为220,故选:A.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.在一组数据3,4,4,6,8中,下列说法错误的是()A.它的众数是4B.它的平均数是5C.它的中位数是5D.它的众数等于中位数【分析】一组数据中出现次数最多的数为众数;将这组数据从小到大的顺序排列,处于中间位置的一个数或两个数的平均数是中位数.根据平均数的定义求解.【解答】解:在这一组数据中4是出现次数最多的,故众数是4;将这组数据已经从小到大的顺序排列,处于中间位置的那个数是4,那么由中位数的定义可知,这组数据的中位数是4;由平均数的公式的,=(3+4+4+6+8)÷5=5,平均数为5,故选:C.【点评】本题为统计题,考查平均数、众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.11.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5,S乙2=21.7,S丙2=15,S丁2=17,则四个班体考成绩最稳定的是()A.甲班B.乙班C.丙班D.丁班【分析】根据四个班的平均分相等结合给定的方差值,即可找出成绩最稳定的班级.【解答】解:∵甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:S甲2=8.5、S乙2=21.7、S丙2=15、S丁2=17,且8.5<15<17<21.7,∴甲班体考成绩最稳定.故选:A.【点评】本题考查了方差,解题的关键是明白方差的意义.本题属于基础题,难度不大,解决该题型题目时,熟练掌握方差的意义是关键.12.甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示:选手甲乙丙丁方差 1.75 2.930.500.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.【解答】解:∵2.93>1.75>0.50>0.4,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【点评】本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二.填空题(共8小题)13.已知一组数据x1,x2,x3,x4的平均数是5,则数据x1+3,x2+3,x3+3,x4+3的平均数是8.【分析】根据平均数的性质知,要求x1+3,x2+3,x3+3,x4+3的平均数,只要把数x1,x2,x3,x4的和表示出即可.【解答】解:∵x1,x2,x3,x4的平均数为5∴x1+x2+x3+x4=4×5=20,∴x1+3,x2+3,x3+3,x4+3的平均数为:=(x1+3+x2+3+x3+3+x4+3)÷4=(20+12)÷4=8,故答案为:8.【点评】本题考查的是算术平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.14.某校规定学生的体育成绩由三部分组成,早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,小明的上述三项成绩依次是94分,90分,96分,则小明这学期的体育成绩是93.6分.【分析】因为早晨锻炼及体育课外活动表现占成绩的15%,体育理论测试占35%,体育技能测试占50%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,小明的体育成绩=94×15%+90×35%+96×50%=93.6(分).故小明的体育成绩是93.6分.故答案为93.6.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.15.某同学在使用计算器求20个数的时候,将88误输入为8,那么由此求出的平均数与实际平均数的差为4.【分析】运用平均数的意义求解.两组数据的总和相差88﹣8=80,则它们的平均数相差80÷20.【解答】解:由题意知,将88误输入为8,则总和将少加(88﹣8)=80,所以算出的平均数比实际的平均数少80÷20=4.故答案为:4.【点评】本题考查了平均数的概念.熟记公式是解决本题的关键.16.某学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了如图所示的条形统计图,则30名学生参加活动的次数的中位数是2次.【分析】根据中位数的定义求解即可.【解答】解:这组数据按顺序排列后中位数为:2.故答案为:2.【点评】本题考查了中位数的知识,属于基础题,解答本题的关键是熟练掌握中位数的定义.17.自然数4、5、5、x、y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x、y中,x+y的最大值是5.【分析】根据题意得x与y都不超过4,再由这组数据唯一的众数是5,则x≠4且y≠4,则x+y的最大值为2+3.【解答】解:∵这组数据的中位数为4,∴x≤4,y≤4,∵这组数据唯一的众数是5,∴x≠4且y≠4,∵要求x+y的最大值,∴x=2,y=3,或x=3,y=2,即x+y的最大值=2+3=5,故答案为5.【点评】本题考查了众数和中位数的定义及求法,根据条件推出x与y的最大值是解此题的关键.18.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是乙.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,∴S乙2<S丁2<S甲2<S丙2,∴二月份白菜价格最稳定的市场是乙;故答案为:乙.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19.已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为.【分析】本题可运用平均数的公式求出x的值,再代入方差的公式,开方后即可得出标准差.【解答】解:因为样本平均数是3,所以x=3×5﹣1﹣3﹣2﹣5,即x=4,所以S2=×(4+0+1+4+1)=2,则标准差为.故答案为:.【点评】本题考查的是方差和标准差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.20.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为287.1,标准差为14.4.(精确到0.1)【分析】根据平均数、标准差的概念计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],标准差是方差的算术平方根.【解答】解:由题意知,数据的平均数=(271+315+263+289+300+277+286+293+297+280)=287.1方差S2=[(271﹣287.1)2+(315﹣287.1)2+(263﹣287.1)2+(289﹣287.1)2+(300﹣287.1)2+(277﹣287.1)2+(286﹣287.1)2+(293﹣287.1)2+(297﹣287.1)2+(280﹣287.1)2]=207.4标准差为≈14.4.故填287.1,14.4.【点评】本题考查了平均数,方差和标准差的概念.标准差是方差的算术平方根.三.解答题(共8小题)21.附加题:(请你把上面的解答再认真地检查一遍,别留下什么遗憾,并估算一下成绩是否达到了80分,如果你的全卷得分低于80分,则本题的得分将计入全卷总分,但计入后全卷总分最多不超过80分;如果你全卷得分已经达到或超过80分,则本题的得分不计入全卷总分.)(1)计算23的结果是8;(2)一组数据1、2、3,它的平均数是2.【分析】(1)根据乘方的意义计算;(2)只要运用求平均数公式:即可求出,为简单题.【解答】解:(1)23=8.(2)数据1、2、3,平均数==2.【点评】本题考查了乘方和平均数的意义.22.作为一项惠农强农应对当前国际金融危机、拉动国内消费需求的重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在我市实施.我市某家电公司营销点自去年12月份至今年5月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数方差甲品牌销售量/台10乙品牌销售量/台(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.【分析】(1)读图可得数据,故甲品牌的方差为(9+4+4+9)=;乙品牌的平均数为(9+10+11+9+12+9)=10;(2)根据折线图,分析可得建议,答案不唯一.【解答】解:(1)计算平均数、方差如下表:平均数方差甲品牌销售量/台10乙品牌销售量/台10(2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,进货时可多进甲品牌冰箱.【点评】本题考查平均数、方差的计算,及根据折线图分析数据,解决问题的能力.23.某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩和民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行了评价,全班50位同学参与了民主测评,结果如下表:A B C D E好较好一般甲9092949588甲4073乙8986879491乙4244表一演讲答辩得分表二民主测评得票规则:①演讲答辩得分按“去掉一个最高分和一个最低分后,再算出平均分”的方法确定;②民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;③演讲答辩得分和民主测评得分按4:6确定权重,计算综合得分,请你计算一下甲、乙的综合得分,选出班长.【分析】首先分别求出甲、乙两位选手各自演讲答辩的平均分,然后根据平均数的概念分别计算出甲、乙两位选手的民主测评分,最后根据不同权重计算加权成绩.【解答】解:甲演讲答辩的平均分为:=92;乙演讲答辩的平均分为:=89,甲民主测评分为:40×2+7×1=87,乙民主测评分为:42×2+4×1=88,∴甲综合得分:=89,∴乙综合得分:=88.4,∵89>88.4,∴应选择甲当班长.【点评】本题考查了平均数和加权平均数的概念及应用,以及从表格中获取信息的能力.24.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?平时成绩期中成绩期末成绩小明969490小亮909693小红909096【分析】根据三项成绩比算出三个人的成绩,比较大小即可得出结果.【解答】解:小明数学总评成绩:96×+94×+90×=92.4,小亮数学总评成绩:90×+96×+93×=93.3,小红数学总评成绩:90×+90×+96×=93,∵93.3>93>92.4,∴小亮成绩最高.答:这学期小亮的数学总评成绩最高.【点评】主要考查了平均数的概念和利用比例求平均数的方法.要掌握这些基本概念才能熟练解题.25.2010年4月14日,青海省玉树县发生了7.1级地震;某校开展了“玉树,我们在一起”的赈灾捐款活动,其中九年级二班全体同学的捐款情况如下表:5 10152050捐款金额(元)7 18123捐款人数(人)由于填表的同学不小心把墨水滴在了表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的36%,结合上表回答下列问题:(1)九年级二班共有多少人?(2)学生捐款金额的众数和中位数分别为多少元?(3)如果把该班学生的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对应的扇形圆心角为多少度?【分析】(1)由于知道捐款金额为10元的人数为全班人数的36%,由此即可求出九年级二班共有多少人;(2)首先利用(1)的结果计算出捐15元的同学人数,然后利用中位数、众数的定义即可求出捐款金额的众数和中位数;(3)由于捐款金额为20元的人数为12人,由此求出捐款金额为20元的人数是总人数的百分比,然后乘以360°就知道扇形的圆心角.【解答】解:(1)∵18÷36%=50,∴九年级二班共有50人;(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,∴学生捐款的众数为10元,又∵第25个数为10,第26个数为15,∴中位数为=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为.【点评】此题考查了一组数据的众数、中位数和扇形统计图等知识.26.某校九年级全体学生参加某次数学考试,以下是根据这次考试的有关数据制作的统计图,请你根据图中的数据完成下列问题.(1)该校参加这次数学考试的九年级学生共有716人;(2)这次考试分数在80﹣99分的学生数占总人数的百分比为19.41%(精确到0.01%);(3)将条形图补充完整,并在图中标明数值;(4)这次考试,各分数段学生人数的中位数所处的分数段是60﹣79分.【分析】(1)根据分数的百分比和频数可求总数;(2)由条形图可得:考试分数在80﹣99分的学生数,借助(1)的结论,可计算出其百分比;(3)计算出100﹣﹣120之间的人数,据此可补全条形图;(4)根据中位数的求法,即可得出答案.【解答】解:(1)参加这次数学考试的九年级学生人数=124÷17.33%≈716;(2)参加这次数学考试的九年级学生占的百分比为:139÷716≈19.41%;。

浙教版2019-2020学年八年级下册数学第3章《数据分析初步》检测卷(含答案.)

浙教版2019-2020学年八年级下册数学第3章《数据分析初步》检测卷(含答案.)

浙教版八下数学第3章《数据分析初步》试题考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.我市五月份连续五天的最高气温分别为20、20、21、23、26(单位:),这组数据的中位数和众数分别是()A. 22,26B. 21,20C. 21,26D. 22,202.有20个数据,其中8个数的平均数为11,另12个数的平均数是12,则这20个数的平均数是()A. 11.5B. 11.6C. 23.2D. 2323.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.)A. 75,70B. 70,70C. 80,80D. 75,804.下列说法正确的是()A. 一组数据的中位数一定等于该组数据中的某个数据B. 一组数据的平均数和中位数一定不相等C. 一组数据的众数可以有几个D. 一组数据的方差一定大于这组数据的标准差5.为筹备班级的初中毕业联欢会, 班长对全班同学爱吃哪几种水果作民意调查, 从而最终决定买什么水果。

下列调查数据中最值得关注的是()A. 平均数B. 中位数C. 众数D. 方差6.甲,乙,内,丁四名同学在学校演讲选拔赛的成绩平均数方差s2如下表所示:( )A. 甲B. 乙C. 丙D. 丁7.七(1)班的6位同学在一节体育课上进行引体向上训练时,统计数据分别为7,12,10,6,9,6则这组数据的中位数是()A. 6B. 7C. 8D. 98.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A. 85B. 86C. 87D. 889.某校在“爱护地球,绿化祖国”的创建活动中,组织了100名学生开展植树造林活动,其植树情况整理如下表:则这100名学生所植树棵树的中位数为()A. 4B. 5C. 5.5D. 610.甲、乙两名运动员进行射击练习,每人射击5次,成绩(单位:环)如下表所示:下列说法错误的是()B. 乙运动员的平均射击成绩为8环C. 甲运动员这5次射击成绩的方差为6D. 乙运动员的成绩更稳定11.如果两组数据x1,x2...x n;y1,y2...y n的平均数分别为和,那么新的一组数据2x1+y1,2x2+y2..2x n+y n的平均数是()A. 2B.C. 2 +D.12.根据下表中的信息解决问题:38,则符合条件的正整数a的取值共有()A. 3个B. 4个C. 5个D. 6个二、填空题(本大题有6小题,每小题3分,共18分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.13.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数为________.14.一组数据为1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是________.15.为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的________ 决定(在横线上填写:平均数或中位数或众数).16.重庆市上周每天的最高气温(单位:)分别为25,27,29,27,25,23,25,则这组数据的中位数和众数之和为________.17.已知:一组自然数1,2,3…k,去掉其中一个数后剩下的数的平均数为16,则去掉的数是________ .18.已知数据,,,的方差是,则,,,的方差为________.三、解答题(本大题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤.19.(8分)为了考察甲、乙两种小麦的长势,分别从中抽取5株麦苗,测得苗高(单位:cm)如下:甲:6、8、9、9、8;乙:10、7、7、7、9.(Ⅰ)分别计算两种小麦的平均苗高;(Ⅱ)哪种小麦的长势比较整齐?为什么?20(8分).体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)求女生进球数的平均数、中位数;(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?21.(8分)某公司销售部有营业员16人,销售部为了制定某种商品的月销售定额,统计了这16人某月的销售量如下:(1)这16位销售员该月销售量的众数是________,中位数是________,平均数是________.(2)若要使75%的营业员都能完成任务,应选什么统计量(平均数、中位数和众数)作为月销售件数的定额?请说明理由.22.(9分)为了提倡节约用水,某市自来水制定了二级收费标准,具体收费如下表:(注:第二,三级水费均为超出部分的水费).该市某用户在4月1日到6日这6天的用水量如下图所示:(1)求该用户在这6天的用水量的众数和中位数.(2)该用户4月份平均每天用水量与这6天的平均每天用水量相同.由于天气变热,4,5,6月份的用水量逐月增加.若5,6两个月合计用水60吨,共缴水费170元,求该用户在5,6月分别用了多少吨水?23.(9分)有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和数量如下表所示,商家用加权平均数来确定什锦糖的单价.(1)该什锦糖的单价为________元/千克.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中再加入甲、乙两种糖果共100千克,则最少需要加入甲种糖果多少千克?24.(12分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?25.(12分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________,样本成绩的中位数落在________范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?参考答案一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】C7.【答案】C 8.【答案】D 9.【答案】B 10.【答案】C 11.【答案】C 12.【答案】C二、填空题13.【答案】5.514.【答案】4.8或5或5.215.【答案】众数16.【答案】5017.【答案】1618.【答案】1.6三、解答题19.【答案】解:(Ⅰ)= (6+8+9+9+8)=8,= (10+7+7+7+9)=8;(Ⅱ)S2甲= [(6﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2]=1.2,S2乙= [(,10﹣8)2+(7﹣8)2+(7﹣8)2+(7﹣8)2+(9﹣8)2]=1.6,∵S2甲<S2乙,∴甲种小麦的长势比较整齐.20.【答案】(1)解:由条形统计图可得,女生进球数的平均数为:(1×1+2×4+1×3+4×2)÷8=2.5(个);∵第4,5个数据都是2,则其平均数为:2;∴女生进球数的中位数为:2(2)解:样本中优秀率为:,故全校有女生1200人,“优秀”等级的女生为:1200×=450(人),答:“优秀”等级的女生约为450人21.【答案】(1)12件;12.5件;13.25件(2)解:75%×16=12(人),月销售件12件以下恰好4人,所以应该以众数12作为月销售件数的定额.22.【答案】(1)由图可知:6天用水量为:1.2,1,0.6,0.8,0.8,0.4,将这组数据从大到小排列为:1.2,1,0.8,0.8,0.6,0.4,∴这组数据的中位数是0.8,众数是0.8.(2)依题可得:4月份的用水量为24吨,则5月份用水量超过20吨而少于30吨,6月份用水量超过30吨,设5月份用水量为x吨,6月份用水量为y吨,依题可得:,解得:.答: 该用户在5月份用水量为26吨,6月份用水量为34吨.23.【答案】(1)20(2)解:设需加入甲种糖果x千克,则加入乙种糖果(100﹣x)千克,根据题意得:≤20﹣2,解得:x≥80.答:最少需要加入甲种糖果80千克.24.【答案】(1)解:根据题意得:得4分的学生有50×50%=25(人),答:得4分的学生有25人(2)解:根据题意得:平均分= =3.7(分)(3)解:设第二次测试中得4分的学生有x人,得5分的学生有y人,根据题意得:,解得:,答:第二次测试中得4分的学生有15人,得5分的学生有30人25.【答案】(1)8;20;2.0≤x<2.4(2)解:由(1)知,b=20,补全的频数分布直方图如图所示;(3)解:1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人。

浙教版数学八年级下册 第三章 数据分析初步检测卷 (含答案)

浙教版数学八年级下册 第三章 数据分析初步检测卷 (含答案)

第三章检测卷数据分析初步班级学号得分姓名一、仔细选一选(本大题有10小题,每小题3分,共30分)1.已知样本数据1,2,4,3,5,下列说法不正确的是( )A. 平均数是3B. 中位数是4C. 极差是4D. 方差是22.下列说法正确的是( )A. 方差反映了一组数据的分散或波动的程度B. 数据1,5,3,7,10的中位数是3C. 任何一组数据的平均数和众数都不相等D. 调查一批灯泡的使用寿命适合用全面调查方式3. 某单位组织职工开展植树活动,植树量与人数之间的关系如图所示,下列说法不正确的是( )A. 参加本次植树活动共有30人B. 每人植树量的众数是4棵C. 每人植树量的中位数是5棵D. 每人植树量的平均数是5棵4. 如图是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A. 22℃B. 22.5℃C. 23℃D. 23.5℃5. 已知一组数据:5,15,75,45,25,75,45,35,45,35,那么40是这一组数据的( )A. 平均数但不是中位数B. 平均数也是中位数C. 众数D. 中位数但不是平均数6. 一组数1,1,2,3,5,8,13是“斐波那契数列”的一部分,若去掉其中的两个数后这组数的中位数、众数保持不变,则去掉的两个数是( )A. 2,5B. 1,2C. 2,3D. 5,87. 四名运动员参加了射击预选赛,他们成绩的平均环数x及其方差S²如下表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选( )甲乙丙丁x7887S²11 1.2 1.8A. 甲B. 乙C. 丙D.丁8. 给出下述四个命题:①众数与数据的排列顺序有关;②10个数据中,至少有5个数据大于这10个数据的平均数;③若x̅甲>x̅乙,则S甲2>S乙2;;④一组数据6,8,7,8,9,10的众数和平均数都是8.其中正确命题的个数是( )A. 1B. 2C. 3D. 49. 某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )A. 19,20,14B. 19,20,20C. 18.4,20,20D. 18.4,25,2010. 下表为某班成绩的次数分配表.已知全班共有38人,且众数为50分,中位数为60分,则x²−2y的值为( )成绩(分)20304050607090100次数(人)235x6y34二、认真填一填(本大题有6小题,每小题4分,共24分)11. 数据3,4,10,7,6的中位数是 .12.视力情况0.7以下0.70.80.9 1.0 1.0以上人数所占的百分比5%8%15%20%40%12%从表中看出全班视力情况的众数是 .13. 某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是环.14. 小明某学期的数学平时成绩80分,期中考试80分,期末考试90分.若计算这学期数学成绩的方法如下:平时:期中:期末=3:3:4,则小明这学期数学成绩是分.15. 为迎接五月份全县九年级体育中考测试,小强每天坚持引体向上锻炼,星期日—一一.四五六个数1112131213,平均数是12,那么这组数据的方差是 .16. 六个正整数的中位数是4.5,众数是7,极差是6,这六个正整数的和为 .三、全面答一答(本大题有7小题,共66分)17.(6分)数与代数空间与图形统计与概率综合与实践学生甲90938990学生乙94929486(1)(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3:3:2:2计算,那么甲、乙的数学综合素质成绩分别为多少分?18.(8分)某市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需.时间第一天7:00~8:00第二天7:00~8:0第三天7:00~8:0第四天7:00~8:0第五天7:00~8:0需要租用自行车却未租到车的人数(人)15001200130013001200(1) 表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00~8:00需要租用公共自行车的人数是多少?19.(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A,B,C,D,E表示.根据统计数据绘制了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图.(2)求这30名职工捐书本数的平均数、众数和中位数.20.(10分)单位:分):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分.(2)计算乙队的平均成绩和方差.(3)已知甲队成绩的方差是1.4分²,则成绩较为整齐的是队.21.(10分)教育局为了了解我市八年级学生参加社会实践活动情况,随机抽查了我市部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a= ,该扇形所对圆心角的度数为,请补全条形统计图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果我市共有八年级学生2000人,请你估计“活动时间不少于7 天”的学生人数大约有多少人.22.(12分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成不完整的统计图(如图表).借阅图书的次数0次1次2次 3 次4次及以上人数713a103(1)a=,(2)该调查统计数据的中位数是,众数是 .(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数.(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.23.(12分)3 月4 月5月 6 月7 月8月库尔勒香梨(t)48581013哈密瓜(t)8797107(1)平均数方差库尔勒香梨89哈密瓜(2)补全哈密瓜的折线统计图(用虚线).(3)请你根据下面两个要求对这两种瓜果在去年3月份至8月份的销售情况进行分析:①根据平均数和方差分析;②根据折线图上两种瓜果销售量的趋势分析.第三章检测卷 数据分析初步1. B2. A3. D4. B5. B6. A7. B8. A9. C 10. B11.6 12.1.0 13.8 14.8415 87 解析∵平均数是12,∴这组数据的和=12×7=84,∴墨汁覆盖三天的数的和=84-4×12=36.∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10.13,13, S 2=17[(11−12)2+ 12−12)²+(10−12)²+(13−12)²+(13−12)²+(13−12)²+(12−12)2]=87.故答案为 87. 16.25或26或27 解析:∵六个正整数,中位数是4.5,∴第三个数与第四个数的和为9,且2≤第三个数≤4,又∵众数是7,极差是 6.∴这六个正整数是:1,1,2,7,7,7;1,2,2,7,7,7;1,2,3,6,7,7;1.2,4,5,7,7;1,3,4,5,7,7;∴这六个正整数的和为1+1+2+7+7+7=25;1+2+2+7+7+7=26;1+2+3+6+7+7=26;1+2+4+5+7+7=26;1+3+4+5+7+7=27.故答案为25或26或27.17.解:(1)甲成绩的中位数是 90(分),乙成绩的中位数是93(分).(2)甲: 90×310+93×310+89×210+90×210=90.7(分),乙: 94×310+92×310+94×210+86×210=91.8(分),则甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.18.解:(1)中位数是1300(人).(2)平均每天需要租车却未租到车的人数:(1500+1200+1300+1300+1200)÷5=1300(人).故平均每天需要租车的人数:1300+700=2000(人)19.解:(1)捐D 类书的人数为:30-4-6-9-3=8.图略(2)众数为:6(本),中位数为:6(本),平均数为: x̅=130(4×4+5×6+6×9+7×8+8×3)=6(本). 20.解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分.故答案为9.5 10.(2)乙队的平均成绩是 110×(10×4+8×2+7+9×3)=9(分),则方差是: 110×[4×(10 −9)²+2×(8−9)²+(7−9)²+3×(9−9)²]=1(分²).(3)∵甲队成绩的方差是1.4分²,乙队成绩的方差是1分²,∴成绩较为整齐的是乙队.故答案为乙.21.(1)10 36°(1)图略(8天,60人) (2)众数5天,中位数6天 (3)800人22.解:(1)∵被调查的总人数为13÷26%=50人,∴a=50-(7 +13+10+3)=17,b%=1050×100%=20%,即b=20,故答案为:17 20.(2)由于共有50个数据,其中位数为第25,26个数据的平均数,而第25,26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次.(3)扇形统计图中“3次”所对应扇形的圆心角的度数为 360°×20(4)估计该校学生在一周内借阅图书“4次及以上”的人数为 2000×350=120.23.解:(1) 43₃ (2)图如下.(3)①库尔勒香梨与哈密瓜销量平均数相同,从平均数来看销售情况一样;但是库尔勒香梨与哈密瓜的方差相差很大,因为哈密瓜的方差小,所以哈密瓜的销售情况好于库尔勒香梨;②由折线图可以看出,库尔勒香梨的销售量曲线起伏较大,所以哈密瓜的销售情况比于库尔勒香梨稳定,但库尔勒香梨的销量呈上升趋势.。

浙教版八年级下第三章数据分析初步单元综合检测试卷含答案

浙教版八年级下第三章数据分析初步单元综合检测试卷含答案

第三章数据分析初步一、选择题1.已知样本数据 1、2、4、3、5,下列说法不正确的是( A. 平均数是 3 B. 中位数是 4 ) C. 极差是 4 ) D. 2 和 4 D. 方差是 22.若数据 2,x,4,8 的平均数是 4,则这组数据的中位数和众数是( A. 2 和 3 B. 3 和 2 C. 2 和 23.在统计中,样本的标准差可以反映这组数据的( ) A. 集中程度 B. 分布规律 C. 离散程度 ) D. 3 ) D. 数值大小4.一组数据 2,0,1,x,3 的平均数是 2,则这组数据的方差是( A. 2 B. 4 C. 15.有 8 个数的平均数是 11,另外有 12 个数的平均数是 12,这 20 个数的平均数是( A. 11.6 B. 2.32 C. 23.2 D. 11.56.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差 s2 如表所示.如果选出一个成绩较好且状态 稳定的人去参赛,那么应选()A. 甲B. 乙C. 丙D. 丁7.有一组数据如下:3、a、4、6、7,它们的平均数是 5,那么这组数据的方差是( ) A. 10 B. C. 2 D.8.在一次演讲比赛中,某班派出的 5 名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了 3 号同学的 成绩,但得知 5 名同学的平均成绩是 21 分,那么 5 名同学成绩的方差是( 编号 1 号 2 号 3 号 4 号 5 号 得分 20 A. 2.4 19 25 18 B. 6 C. 6.8 D. 7.5 )9.某工厂共有 50 名员工,他们的月工资的标准差为 S,现厂长决定给每个员工增加工资 100 元,则他们的新 工资的标准差为( ) A. S+100 B. S C. S 变大了 D. S 变小了 )10.将一组数据中的每一个数减去 40 后, 所得新的一组数据的平均数是 2, 则原来那组数据的平均数是 ( A. 40 B. 42 C. 38 D. 211.在某校“我的中国梦”演讲比赛中,有 9 名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生 要想知道自己能否进入前 5 名,不仅要了解自己的成绩,还要了解这 9 名学生成绩的( A. 众数 B. 方差 C. 平均数 D. 中位数 )12.甲、乙、丙三位选手各 10 次射击成绩的平均数和方差统计如表: 选手 甲 乙丙 9.3 9.3平均数 9.3 方差0.026 a 0.032 )已知乙是成绩最稳定的选手,且乙的 10 次射击成绩不都一样,则 a 的值可能是( A. 0 B. 0.020 C. 0.030 D. 0.035二、填空题13. 数据 1,2,3,5,5 的众数是 ________ ,平均数是________ . 14.已知一组数据 1,a,3,6,7,它的平均数是 4,这组数据的中位数是________. 15.甲、乙两同学参加跳远训练,在相同条件下各跳了 6 次,统计两人的成绩得:平均数 差S2=,方甲>S2乙, 则成绩较稳定的是________ .(填甲或乙)16.某市广播电视局欲招聘播音员一名,对 A、B 两名候选人进行了两项素质测试,两人的两项测试成绩如表 所示. 测试项目 测试成绩 A 面试 90 B 95 80综合知识测试 852 的比例计算两人的总成绩, 根据实际需要, 广播电视局将面试、 综合知识测试的得分按 3: 那么________ (填 A 或 B)将被录用. 17.请用计算器求数据 271,315,263,289,300,277,286,293,297,280 的平均数,结果是________ 18.甲乙两地 9 月上旬的日平均气温如图所示,则甲乙两地这 10 天日平均气温方差大小关系为 ________ (填>或<).19.下表是我市某一天在不同时段测得的气温情况:则这一天的气温的温差是________ ℃,温度最接近的两个 时间是________ 与 ________0:00 4:00 8:00 12:00 16:00 20:00 25℃ 27℃ 29℃ 32℃ 34℃ 30℃20.已知 x1 , x2 , x3 , x4 的方差是 a,则 3x1﹣5,3x2﹣5,3x3﹣5,3x4﹣5 的方差是________.三、解答题21.某乡镇企业生产部有技术工人 15 人,生产部为了合理制定产品的每月生产定额,统计了这 15 人某月的加 工零件数如下: 每人加工零件数 540 450 300 240 210 120 人数 1 1 2 6 3 2(1)写出这 15 人该月加工零件的平均数、中位数和众数; (2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?22.为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们 10 次射击命中的环数 如下: 甲 7 9 8 6 10 7 9 8 6 10 乙 7 8 9 8 8 6 8 9 7 10 根据测试成绩,你认为选择哪一名运动员参赛更好?为什么?23.一销售某品牌冰箱的公司有营销人员 14 人,销售部为制定销售人员月销售冰箱定额(单位:台),统计了 14 人某月的销售量如下表: 每人销售台数 20 17 13 8 5 4 人数 1 1 2 532(1)这 14 位营销员该月销售冰箱的平均数、众数和中位数分别是多少? (2)你认为销售部经理给这 14 位营销员定出每月销售冰箱的定额为多少台才比较合适?并说明理由.参考答案一、 题 B B C A A B C C B 二、填空题 13. 5; 18. > 三、解答题 21. 解:(1) = 中位数是:240 件, 众数是:240 件; (2)240 合适. 22. 解: = S 甲 2=2B D B14. 315. 乙16. B 20. 9a17. 287.119. 9;8:00;0:00=260(件),=(7+9+8+6+10+7+9+8+6+10)=8(环),(7+8+9+8+8+6+8+9+7+10)=8(环), [(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)+(10﹣8)2]=2, [(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2+(6﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2+S 乙 2=2 (10﹣8) ]=1.2,∵S 甲 >S 乙22,∴乙运动员的成绩比较稳定, ∴选择乙运动员参赛更好. 23. (1)解:平均数: 众数:8 中位数:8 (2)解:每月销售冰箱的定额为 8 台比较合适.因为中位数和众数都是 8,是大部分人能够完成的台数。

浙教版数学八年级下册 第3章 数据分析初步 单元测试(含答案)

第3章数据分析初步班级学号姓名得分一、仔细选一选(本大题有 10小题,每小题3分,共30分)1.一组数据:0,1,2,3,3,5,5,10的中位数是( )A. 2.5B. 3C. 3.5D. 52.已知一组数据:1,2,2,3,若添加一个数据2,则发生变化的统计量是( )A. 平均数B. 中位数C. 众数D. 方差3.已知数据1,2,3,4,5,则下列关于这组数据的说法正确的是( )A. 平均数、中位数和众数都是3B. 标准差是√153C. 方差为10D. 以上答案都错4. 一组数据:201,200,199,202,200,若分别减去200,得到另一组数据:1,0,—1,2,0,则其中判断错误的是( )A. 前一组数据的中位数是200B. 前一组数据的众数是 200C. 后一组数据的平均数等于前一组数据的平均数减去200D. 后一组数据的方差等于前一组数据的方差减去 2005. 点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A. 平均数B. 中位数C. 方差D. 标准差6. 如图是根据某班50名学生一周的体育锻炼情况绘制的条形统计图,则这个班50名学生一周参加体育锻炼时间的众数与中位数分别为( )A. 9 h,8 hB. 8h,9 hC. 8 h,8.5 hD. 19 h,17 h7.数据3,1,x,—1,—3的平均数是0,则这组数据的方差是( )A. 1B. 2C. 3D. 48. 学校举行图书节义卖活动,将所售图书的款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:售价3元 4 元5元6元数目14本11本10本15本下列说法正确的是( )A. 该班级所售图书的总收入是226元B. 在该班级所售图书价格组成的一组数据中,中位数是4C. 在该班级所售图书价格组成的一组数据中,众数是15D. 在该班级所售图书价格组成的一组数据中,方差是29.一组数据1,3,4,2,7的方差是a,若减少一个数据3,剩余的数的方差是b,则a与b的大小关系是( )A. a<bB. a=bC. a>bD. 不能确定₃,那么另一组数3x₁−2,3x₂−2,3x₃−2,3x₄10. 已知一组数据x₁,x₂,x₃,x₄,x₅的平均数是2,方差13−2,3x₅−2的平均数和方差分别是( )A. 2 13B. 2,1C.4,23D. 4,3二、认真填一填(本大题有6小题,每小题4分,共24分)11. 数据1,2,3,5,5的众数是 ,平均数是 .12. 为从甲、乙两名射击运动员中选出一人参加比赛,特统计了他们最近10次射击训练的成绩,其中他们射击的平均成绩均为8.9环,方差分别是 S 甲2=0.8环², S 乙2=13环²,从稳定性的角度看,的成绩更稳定(填“甲”或“乙”).13. 一组数据的方差 S 2=115[(x 1−10)2+(x 2−10)2+⋯+(x 15−10)2],则平均数是 . 14. 某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是 分.15. 某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这(m +n )个数据的平均数等于 .16. 若五个正整数的中位数是3,唯一的众数是7,则这五个数的平均数是 .三、全面答一答(本大题有7小题,共66分)17.(6分)某校九年级甲班学生中,13岁的有5人,14岁的30人,15岁的5人,求这个班级学生的平均年龄.18.(8分)某同学在这学期的前四次数学测试中,得分依次为:95,82,76和88,马上要进行第五次数学测试了,她希望五次成绩的平均数能够达到或超过85分,那么,这次测试她至少要考多少分?19.(8分)为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们10次射击命中的环数如下:甲:7,9,8,6,10,7,9,8,6,10;乙:7,8,9,8,8,6,8,9,7,10.根据测试成绩,你认为选择哪一名运动员参赛更好? 为什么?20.(10分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%,面试占40%计算候选人的综合成绩(满分为100分).他们的各这四名候选人面试成绩的中位数是 .(2)现得知候选人丙的综合成绩为87.6分,则表中x的值等于 .(3)求其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.21.(10分)某企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为人,请补全条形统计图.(2)统计的捐款金额的中位数是元.(3)在扇形统计图中,求100元所对应扇形的圆心角的度数.(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?捐款金额各档次人数统计图22.(12分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.成绩(分)888990919596979899学生人数2132121平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为"良好"等次的测评成绩至少定为多少分?数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.23. (12分)甲、乙两名队员参加射击训练,每人射击10次,成绩平均成绩(环)中位数(环)众数(环)方差(环²)甲a77 1.2乙7b8c(1)a= ;b= ;c= .(2)填空:(填“甲”或“乙”).①从平均数和中位数的角度来比较,成绩较好的是;②从平均数和众数的角度来比较,成绩较好的是;③成绩相对较稳定的是 .第3章 数据分析初步1. B2. D3. D4. D5. B6. B7. D8. A9. A 解析:数据1,3,4,2,7的平均数是: 15(1+3+4+2+7)= 175,方差: a =15[(1−175)2+(3−175)2+(4−175)2+(2− 175)2+(7−175)2]=1062;数据1,4,2,7 的平均数是: 14(1+ 4+2+7)=72,方差: b ≠14[(1−72))2+(4−72)2+(2− 72)2+(7−72)2−]214快时a<b;故选 A.10. D11.5 3.2 12.甲 13.10 14.88 15.mx+ny n+n 16. 417.解:根据题意得: 13×5+30×14+5×155+30+5=14(岁),答:这个班级学生的平均年龄是14岁.18.84 分19.解: x̅甲=110(7−9+8+6+10+7+9+8+6+10)=8(环),xz 110(7+8+9+8+8+6+8+9+7+10)=8(环)S 甲2=110[(7−8)2+(9−8)2−(8−8)2+(6−8)2+(10−8)2+(7- 8)2+(9−8)4+(8−8)2+(6−8y )−+(10−8)2]=2(环2),S 乙2:= 11n [(7−8)2+(8−8)2+(9−8)2+(8−8)2+(8−8)2+(8−8)2 +(8−8)²+(9−8)²+(7−8)⁻|(10−8)²]=1.22(环²).∵SR>S ₂,∴乙运动员的成绩比较稳定,∴选择乙运动员参赛更好.20.(1)89分 (2)86分(3)解:(1)这四名候选人面试成绩从低到高排列为:86.88,90,92,则中位数是(88+90)÷2=89(分).(2)丙的综合成绩为:87.6=60%x+90×40%,解得x=86.(3)甲的综合成绩为:90×60%+88×40%=89.2(分),乙的综合成绩为:84×60%+92×40%=87.2(分),丁的综合成绩为:88×0.6+86×0.4=87.2(分),∴综合成绩排序为:甲、丙、乙、丁,确定招聘的前两名人选为甲、丙.21.解:(1)50 补全条形统计图略. (2)150 (3)1050×360∘=72∘. (4)(50×4+100×10+150×12+200×18+300×6)÷50×500=84 000(元).22.解:(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分.∴众数是90分;故答案为:5 390.(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分.(3)估计评选该荣誉称号的最低分数为97分.理由如下:∵20×30%=6.∴估计评选该荣誉称号的最低分数为97分.23.解:(1)a 110₀(5+2×6+4×7+2×8+9)=7(环) b =−12×(7+8)=7.5(环). c =110[(3−7)2+(4−7)2+(6−7)+(8−7 +(7−7)²+(8−7)²+(7−7)²+(8−7)²+(10−7)+(9−7)2]=4.2(环²);故答案为:7 7.5 4.2.(2)由表中数据可知,甲、乙平均成绩相等,乙的中位数,众数均大于甲,说明乙的成绩好于甲,乙的方差大于甲.①从平均数和中位数的角度来比较,成绩较好的是:乙;②从平均数和众数的角度来比较,成绩较好的是乙;③成绩相对较稳定的是:甲.故答案为:乙 乙 甲。

浙教版八年级下册数学第三章 数据分析初步含答案

浙教版八年级下册数学第三章数据分析初步含答案一、单选题(共15题,共计45分)1、如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述错误的是( )A.众数为30B.中位数为25C.平均数为24D.方差为832、某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处不符合题意:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差3、一次中学生田径运动会上,21名参加男子跳高项目的运动员成绩统计如下:成绩(m) 1.50 1.55 1.60 1.65 1.70人数■8 6 ■ 1其中有两个数据被雨水淋湿模糊不清了,则在这组数据中能确定的统计量是()A.平均数B.中位数C.众数D.方差4、某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25B.28、28C.25、28D.28、315、下列说法中,正确的是()A.为检测市场上正在销售的酸奶质量,应该采用全面调查的方式B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C.小强班上有3个同学都是16岁,因此小强认为他们班学生年龄的众数是16岁D.给定一组数据,则这组数据的中位数一定只有一个6、一组数据:2,4,5,6,x的平均数是4,则这组数的标准差是()A.2B.C.10D.7、某班7个学习小组人数如下:5,5,6,x,7,7,8。

已知这组数据的平均数为6,则下列说法错误的是()A.x=4B.众数是5和7C.中位数是6D.众数是78、5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33℃B.众数是33℃C.平均数是℃D.4日至5日最高气温下降幅度较大9、为了迎接中考体育达标测试,李强同学记录了自己5次投掷实心球的成绩(单位:m): 8,8.5,9,8.5,9.2.这组数据的众数、中位数依次()A.8. 64,9B.8.5,9C.8.5,8.75D.8.5,8.510、如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28B.26,26C.31,30D.26,2211、某校篮球队13名同学的身高如下表:身高175 180 182 185 188 (cm)人数1 5 42 1 (个)则该校篮球队13名同学身高的众数和中位数分别是()A.182,180B.180,180C.180,182 D.188,18212、“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数13、张老师随机抽取九年级(3)班5名学生的数学网课检测成绩(单位:分)如下:80,98,98,83,91,关于这组数据的说法错误的是()A.众数是98B.平均数是90C.中位数是91D.方差是5614、某一段时间,小芳测得连续五天的日最低气温后,整理得出表(有两个数据被遮盖),被遮盖的两个数据依次是()日期一二三四五方差平均气温最低气温1℃﹣1℃2℃0℃■■1℃A.3℃,2B.3℃,C.2℃,2D.2℃,15、一组数据5,2,x,6,4的平均数是4,这组数据的方差是()A.2B.C.10D.二、填空题(共10题,共计30分)16、数据0,3,3,4,5的平均数是________,方差是________.17、有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是________.18、一组数据,,,,的平均数为,则为________.19、若一组数据2,3,5,a的平均数是3;数据3,7,a,b,8的平均数是5;数据a,b,c,9的平均数是5,则数据a,b,c,9的方差是________20、一组数据3,2,-3,x,0,3,2的众数是3,则x=________.21、数据6,5,x,4,7的平均数是5,那么这组数据的方差为________;22、为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是________(填“甲”或“乙”)•23、甲、乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6,甲乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是________.(填“甲”“乙”)24、已知一组数据3,4,1,a, 2,a的平均数为2,则这组数据的中位数是________.25、一组数据为1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是________.三、解答题(共6题,共计25分)26、有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知紫悦从甲箱内拿出m颗球放入乙箱后,乙箱内球的号码的中位数为40,若此时甲箱内剩有a颗球的号码小于40,b颗球的号码大于40.(1)当m=49时,求a、b之值,并问甲箱内球的号码的中位数能否为40?说明理由;(2)当甲箱内球的号码的中位数与乙箱内球的号码的中位数都是x,求x的值.27、某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩计算了甲成绩的平均数和方差(见小宇的作业).;(1)求a和乙的方差S乙(2)请你从平均数和方差的角度分析,谁将被选中.28、我县举行了一次艺术比赛,各年级组的参赛人数如下表所示:年龄组13岁14岁15岁16岁参赛人数 5 19 12 14(1)求全体参赛选手年龄的众数,中位数.(2)王涛说,他所在年龄组的参赛人数占全体参赛人数的24%,你认为王涛是哪个年龄组的选手?请说明理由.29、某公司欲招聘一名工作人员,对甲、乙两位应聘者进行了笔试和面试,他们的成绩如下表所示:候选人测试成绩(百分制)笔试面试甲95 85乙83 95根据需要,笔试与面试的成绩按4:6的比例确定个人成绩(成绩高者被录用),那么谁将被录用?30、小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.`计分规则:(1)演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;(2)民主测评得分=“优秀”票数×2分+“良好”票数×1分+“一般”票数×0分;(3)综合得分=演讲答辩得分×0.4+民主测评得分×0.6.(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;(2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、B5、D6、B7、D8、A9、D10、B11、C12、A13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、29、30、。

浙教版2019-2020学年度第二学期八年级数学测试第3章数据分析初步

浙教版2019-2020学年度第二学期八年级数学测试第3章数据分析初步考试时间:100分钟;满分120分一、单选题1.(3分)某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.402.(3分)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差3.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、404.(3分)某篮球队14名队员的年龄如表:则这14名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,4 D.5,45.(3分)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃6.(3分)如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为()A.5 B.6 C.7 D.97.(3分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是() A.平均数B.中位数C.众数D.方差8.(3分)某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占40%,面试成绩占60%.应聘者蕾蕾的笔试成绩和面试成绩分别为95分和90分,她的最终得分是()A.92.5分B.90分C.92分D.95分9.(3分)甲、乙两位射击运动员的10次射击练习成绩的折线统计图如图所示,则下列关于甲、乙这10次射击成绩的说法中正确的是()A.甲的成绩相对稳定,其方差小B.乙的成绩相对稳定,其方差小C.甲的成绩相对稳定,其方差大D.乙的成绩相对稳定,其方差大10.(3分)一汽车上坡时速度为40千米/时,下坡时速度为45千米/时,若上坡行驶时间为2小时,下坡行驶时间为3小时,那么汽车上、下坡的平均速度是()A.40千米/时B.42.5千米/时C.43千米/时D.45千米/时评卷人得分 二、填空题11.(4分)已知一组数据为1,2,3,4,5,则这组数据的方差为_____.12.(4分)5名同学每周在校锻炼的时间(单位:小时)分别为:7,5,8,6,9,这组数据的中位数是______.13.(4分)一组数据:2,5,3,1,6,则这组数据的中位数是________.14.(4分)已知一组数据x ,1,2,3,5,它的平均数是3,则这组数据的方差是__. 15.(4分)乐乐参加了学校广播站招聘小记者的三项素质测试,成绩(百分制)如下:采访写作70分,计算机操作60分,创意设计80分.如果采访写作、计算机操作和创意设计的成绩按5:2:3计算,那么他的素质测试的最终成绩为__________________分. 16.(4分)甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为2s 甲________2s 乙.(填“>”或“<”)17.(4分)若一组数据123,,a a a 的平均数4,方差3,则数据12a +,22a +,32a +的方差是_________.18.(4分)将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是_________ 。

浙教版八年级下册数学第三章数据分析初步单元检测卷(Word版 无答案)

浙教版八下数学第三章单元检测卷一、选择题(每题3分,共30分)1. 如果a和7的平均数是4,那么a是()A.−1B.1C.2D.32. 某校开展了“空中云班会”的满意度调查,其中九年级各班满意的人数分别为27,28,28,29,29,30.下列关于这组数据描述正确的是()A.中位数是29 B.众数是28 C.平均数为28.5 D.方差是23. 五名学生投篮训练,规定每人投10次,记录他们每人投中的次数,得到五个数据,经分析这五个数据的中位数为6,唯一的众数是7,则他们投中次数占投篮总次数的百分率可能是( )A.30%B.56%C.60%D.62%4. 烹饪大赛的菜品的评价按味道,外形,色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是()A.90分B.87分C.89分D.86分5. 有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是( )A.12B.15C.13.5D.146. 某共享单车骑行前x(km)需付费1元,超过x(km)的以2元/千米付费.若要使使用该共享单车50%的人只花1元钱,x应该取下列统计量中的()A. 平均数B. 中位数C. 众数D. 方差7. 数据3,1,,1,3--x 的平均数是0,则这组数据的方差是( )A.1B.2C.3D.48. 甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选( ) 甲 乙 平均数9 8 方差 1 1A. 甲B. 乙C. 丙D. 丁9. 我校举办了校园歌手大赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的( )A.众数B.平均数C.方差D.中位数10. 某地区某月前两周从周一至周五每天的最低气温是(单位:12345)x x x x x ℃,,,,,和1234512345x x x x x +++++,,,,,若第一周这五天的平均气温为7℃,则第二周这五天的平均气温为( )A .7℃B .8℃C .9℃D .10℃二、 填空题(每题3分,共18分)11. 某样本数据是2,2,x ,3,3,6,如果这个样本的众数是2,则x 的值是________.12. 今年3月份某周,我市每天的最高气温(单位:℃)12,11,10,15,16,15,12,若这组数据的中位数是 .13. 在创建“平安校园”活动中,我市某中学组织学生干部在校门口值日,其中八位同学3月份值日的次数分别是:5,8,7、7、8,6,8,9,则这组数据的众数是________.14. 一组数据方差])10(...)10()10[(151222212-++-+-=n x x x S ,则平均数是 .15. 某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是______小时.16. 若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.三、 解答题(17-20每题6分,21-23每题8分,24题10分)17. 为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,两人成绩如下(单位:环):甲:2,4,6,8,7,7,8,9,9,10乙:9,6,7,6,2,7,7,a,8,9(1)求甲的平均数;(2)已知=7,求乙的中位数;(3)已知S甲2=5.4,请通过计算说明谁的成绩较稳定?18. 某公司招聘人才,对应聘者分别进行阅读能力、专业知识、表达能力三项测试,并将三项测试得分按3:5:2的比例确定每人的最终成绩,现欲从甲乙两选手中录取一人,已知两人的各项测试得分如下表(单位:分)①请通过相关的计算说明谁将被录用?②请对落选者今后的应聘提些合理的建议.19. 某商店一周内甲、乙两种计算器每天的销售量如下(单位:个):(1)将表格填写完整.(2)求甲种计算器本周销售量的方差.,本周哪种计算器的销售量比较稳定?说明理(3)已知乙种计算器本周销售量的方差为87由.20. 自然数yx,,5,5,4从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么所有满足条件的yx,中,yx 的最大值是多少?21. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为______;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.22. 某同学在这学期的前四次的数学测试中,得分依次为:76,82,95和88,马上要进行第五次数学测试了,她希望五次成绩的平均数能够达到或超过85分,那么,这次测试她至少要考多少分?23. 某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形统计图和条形统计图,经确认扇形统计图是正确的,而条形统计图中尚有一处错误.,(第8题))回答下列问题:(1)写出条形统计图中存在的错误,并说明理由.(2)写出这20名学生每人植树量的众数、中位数.(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是x -=x 1+x 2+…+x n n; 第二步:在该问题中,n =4,x 1=4,x 2=5,x 3=6,x 4=7;第三步:x -=4+5+6+74=5.5(棵). ①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.24. 如图,A ,B 两个旅游点从2014年至2018年“五一”的旅游人数变化情况分别用虚线和实线表示.,(第9题))根据图中信息解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A,B两个旅游点从2014到2018年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价.(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-x100.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版2019-2020学年度八年级数学(下册)第3章数据分析初步检测题(时间:100分钟满分:120分)一、选择题(共10小题每3分共30分)1、在运动会上,八年级组有6位男同学进入铅球决赛,他们的成绩(单位:米)分别是:6.7,6.6,6.8,7.0,6.8,7.5,则这组数据的极差和众数是( )A.0.9和6.6 B.0.8和6.7 C.0.9和6.8 D.0.9和6.92、八年级学生学完数据分析初步后,数学老师让各学习小组调查了解自己家的节约用水情况,然后从中选出10名学生各自家庭一个月的节水情况统计成下表:那么这组数据的中位数和平均数分别是A.0.38和0.414 B.0.42和0.414 C.0.46和0.414 D.2和0.4143、已知x1,x2,…,x12的平均数为a,x13,x14,…,x18的平均数为b,则x1,x2,…,x18的平均数为( )A.1()18a b+B.1()9a b+C.1()2a b+D.1(2)3a b+4、某次跳水锦标赛(男子)由来自世界各地的25名选手参加角逐,他们最终得分各不相同.其中前12名进入决赛,若一名选手想要知道自己能否进入决赛,不仅要了解自己的得分,还要了解这25名选手得分的( )A.众数B.中位数C.平均数D.方差5、某单元楼10户业主7月份用水情况统计如下,该单元楼10户业主6月份用水情况的众数和中位数分别是()A.27吨和28吨B.27吨和27吨C.29吨和28吨D.27吨和29吨6、有6位大学生到某公司参加应聘考试(满分50分),已知他们的得分的平均成绩是46分.其中四位女生的方差为7,两位男生的成绩分别为45分,47分.则这6位大学生应聘分数的标准差为()7、下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定8、若一组数据-1,0,2,4,x 的极差为6,则这组数据额方差是( )A . 26或 23.2B .26或 22C .22或 23.2D .22或 26 9、甲、乙、丙、丁四人的数学测验成绩分别为92分、92分、x 分、86分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A .98分B .95分C .92分D .89分10、对于数据2,2,3,2,5,2,5,2,5,2,3,有如下的结论:①众数是2;②众数与中位数的数值相等;③极差与平均数的数值相等;④平均数与众数的数值相等. 这些结论正确的有( ) A .1个 B .2个 C .3个 D .4个 二、填空题(共10小题 每题3分 共30分)11、若一组数据6,4,0,6,4,a 有唯一的众数,则这组数据的标准差为 . 12、如果球星姚明到某小学与6名小学生做游戏,那么在姚明和这6名小学生的身高数据中,能反映这组数据的集中趋势的是 .13、已知一组自然数1,2,3…k ,去掉其中一个数后剩下的数的平均数为16,则去掉的数是_____ . 14、某样本方差的计算公式是222212181(6)(6)(6)18S x x x ⎡⎤=-+-++-⎣⎦L ,则它的样本容量是 , 样本的平均数是 .15、已知数据1a ,2a ,…,n a 的平均数为x ,方差为2S ,则数据3a 1-5, 3a 2-5,…, 3a n -5 ,方差为 .16、若a 1,a 2,…,a 15这15个数据的平均数为3,方差为32,那么数据a 1,a 2,…,a15,3这1617、5个正整数从小到大排序,其中中位数是8,如果这组数据的唯一众数是9,则这5个正整数的 第7题图18、元旦欢会,班长对全班学生爱吃哪几种水果作了调查,为了确定买什么水果,最值得关注的应该是统计调查数据的________ (填“中位数”、“平均数”或“众数”)19、四个自然数数据中的三个数分别是1、3、5,若它们的中位数也是整数,那么这四个自然数的和的最小值是.20、在调研玉米长势情况,科研小组随意抽取了一块地的5株玉米,测得它们的高为(单位:cm)= ,中位数是m=,m,x'这三个数据中,你认为能描述这5株玉米高度三、解答题(共6题共60分)21、王亮学习数据分析初步知识后,连续记录了他家的每天用情况:请你用学过的统计知识解决下面的问题:(1)王亮家每月(按30天计算)用电量的多少千瓦时?(2)若用电费用是每千瓦时0.5469元,请你算出王亮家一年(按12个月计算)的电费用大约是多少元?22、已知A组数据如下:4,2,-2,-1,3,-1,2;(1)求A组数据的众数和平均数;(2)从A组数据中选取5个数据,记这5个数据为B组数据,要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.请你选取B组的数据,并请说明理由.23、甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:(单位:环) 甲:5,9,10,7,7,10; 乙:7,9,10,8,6,8.(1)分别计算甲、乙两名战士的平均数和方差;(2)哪名战士的成绩比较稳定.24、某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图, 请解答下列问题:(1)根据统计图,求这50名工人加工出的合 格品数的中位数;(2)设加工出的合格品数5件和6件的人数 分别为x 和y 人,且这50名工人加工出的 合格品数的平均数为4件,求出x 、y 的值 和加工出合格品数的众数;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人550名,请估计该厂将接受技能再培训的人数.第24题图25、为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表第25题图26、甲、乙两家电器商场以相同价格试销同一种品牌冰箱.在10天中,两家商场的每天销售量分别统计如表:(1)求甲、乙两家商场的每天平均销量;(2)甲、乙两家商场每天销售的中位数分别是多少?(3)在10天中,哪家商场的销售量更稳定?为什么?参考答案一、选择题(共10小题 每3分 共30分)11、62或5.64 12、中位数和平均数 13、1或16或32 14、18,6 15、3x -5,92S . 16、30 17、29或39 18、众数 19、9或10或12或14 20、85,77,79,79. 三、解答题(共6题 共60分)21、王亮学习数据分析初步知识后,连续记录了他家的每天用情况:请你用学过的统计知识解决下面的问题:(1)王亮家每月(按30天计算)用电量的多少千瓦时?(2)若用电费用是每千瓦时0.5469元,请你算出王亮家一年(按12个月计算)的电费用大约是多少元? 解:(1)根据题意得:71(1.6+1.7+1.6+1.5+1.6+2+2.6)=71×12.6=1.8(千瓦时), 1.8×30=54(千瓦时),答:王亮家每月(按30天计算)用电量的54千瓦时; (2)根据题意得:54×12×0.5469≈354(元).答:若电每千瓦时0.5469元,请你算出王亮家一年(按12个月计算)的电费用大约是354元. 22、 已知A 组数据如下:4,2,-2,-1,3,-1,2; (1)求A 组数据的众数和平均数;(2)从A 组数据中选取5个数据,记这5个数据为B 组数据,要求B 组数据满足两个条件:①它 的平均数与A 组数据的平均数相等;②它的方差比A 组数据的方差大.请你选取B 组的数据,并请说明理由. 22.(1)解:众数为-1和2; ∵平均数72131224+-+--+=1,(2)所选B 组数据为4,2,-1,- 2, 2; 理由:则B 组数据的平均数为522124+--+=1,A 组数据的方差为2A S =71 [(4-1)2+2×(2-1)2+(-2-1)2+2×(-1-1)2+(3-1)2]=732, B 组数据的方差为2B S =51 [(4-1)2+2×(2-1)2+(-2-1)2+(-1-1)2]= 524. ∵524>732,∴22B AS S > 故选取B 组的数据可以是:4,2,-1,- 2, 2.(答案不唯一)23、甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:(单位:环) 甲:5,9,10,7,7,10; 乙:7,9,10,8,6,8.(1)分别计算甲、乙两名战士的平均数和方差;(2)哪名战士的成绩比较稳定. 解:(1)由题意知,甲的平均数=61(5+9+10+7+7+10)=8, 乙的平均数=61(7+9+10+8+6+8)=8. 2S 甲=61 [(5-8)2+(9-8)2+(10-8)2+(7-8)2+(7-8)2+(10-8)2]= 310, 2S 乙=61 [(7-8)2+(9-8)2+(10-8)2+(8-8)2+(6-8)2+(8-8)2]= 35. (2)∵2S 甲>2S 乙 ,∴乙战士比甲战士射击情况稳定.24、某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数,现提供统计图的部分信息如图, 请解答下列问题:(1)根据统计图,求这50名工人加工出的合 格品数的中位数;(2)设加工出的合格品数5件和6件的人数 分别为x 和y 人,且这50名工人加工出的 合格品数的平均数为4件,求出x 、y 的值 和加工出合格品数的众数;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培第24题图(1)∵把合格品数从小到大排列,第25,26个数都为4, ∴中位数为4;(2)根据题意,得⎩⎨⎧=+=+786518y x y x ,解方程,得⎩⎨⎧==126y x .故众数6.(3)这50名工人中,合格品低于3件的人数为2+6=8(人),=88(人). 25、为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表第25题图(3)从方差看,女生队的方差低于男生队的方差,所以女生队表现更突出.26、甲、乙两家电器商场以相同价格试销同一种品牌冰箱.在10天中,两家商场的每天销售量分别统计如表:(1)求甲、乙两家商场的每天平均销量;(2)甲、乙两家商场每天销售的中位数分别是多少? (3)在10天中,哪家商场的销售量更稳定?为什么? 26.解:(1)甲商场的每天平均销量为:101(0+3×2+2+1+4+6+5+7+9)=4, 乙商场的每天平均销量为:101(1+2+3×2+4×2+5×2+6+7)=4 ; (2)把甲商场的每天销量从小到大排列为:0,1,2,3,3,4,5,6,7,9,最中间两个数的平均数是(3+4)÷2=3.5(台), 则中位数是3.5台;把乙商场的每天销量从小到大排列为:1,2,3,3,4,4,5,5,6,7,最中间两个数的平均数是(4+4)÷2=4(台),则中位数是4台; (3)乙商场的销售量更稳定. 甲商场的每天销售量的方差为:101[(0-4)2+2×(3-4)2+(2-4)2+(1-4)2+(4-4)2+(6-4)2+(5-4)2+(7-4)2+(9-4)2]=5.4, 乙商场的每天销售量的方差为:101[(1-4)2+(2-4)2+2×(3-4)2+2×(4-4)2+2×(4-5)2+(6-4)2+2×(7-4)2]=3.9; ∵3.9<5.4,∴乙商场的销售量更稳定.。

相关文档
最新文档