七年级数学上册期中考试试题3

合集下载

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1_3章 期中综合复习(3份)及答案

人教版 七年级数学上册 第1~3章 期中综合复习(一)一、选择题(本大题共10道小题)1. 计算2a -3a ,结果正确的是( )A .-1B .1C .-aD .a 2. 下列各数:53,+4,-7,0,-0.5,3.456,-516中,负数有( )A .2个B .3个C .4个D .5个3. 计算4+(-3)+(-2)+(-1)+2的结果是( )A .0B .1C .2D .34. 解方程x +12-2x -36=1时,去分母正确的是( )A .3(x +1)-2x -3=6B .3(x +1)-2x -3=1C .3(x +1)-(2x -3)=12D .3(x +1)-(2x -3)=65. 下列各式的计算结果是负数的是( )A .-2×3×(-2)×5B .3÷(-3)×2.6÷(-1.5)C .|-3|×4×(-2)÷(-12) D .(-7)×52÷|-10|6. 下列计算运用运算律恰当的有( )①28+(-19)+6+(-21)=[(-19)+(-21)]+28+6;②14+1+⎝ ⎛⎭⎪⎫-14+13=⎣⎢⎡⎦⎥⎤14+⎝ ⎛⎭⎪⎫-14+1+13;③3.25+⎝ ⎛⎭⎪⎫-235+534+(-8.4)=⎝ ⎛⎭⎪⎫3.25+534+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-235+(-8.4).A .0个B .1个C .2个D .3个7. 有理数m ,n 在数轴上的位置如图所示,则下列各式正确的是 ()A .m>n B.-n>|m|C .-m>|n|D .|m|<|n|8. 已知M =4x 2-3x -2,N =6x 2-3x +6,则M 与N 的大小关系是() A .M <N B .M >NC .M =ND .以上都有可能9. 下列说法错误的是 ( )A .若|a |=|b |,则a =b 或a =-bB .若a ≠b ,则|a |≠|b |C .若|a |+|b |=0,则|a |=0且|b |=0D .若|a |=a ,则a ≥0;若|b |=-b ,则b ≤010. 若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .120 二、填空题(本大题共10道小题)11. 计算:(14+16-12)×12=________. 12. 计算:(-14)×23-23=________. 13. 5G 信号的传播速度为300000000 m/s ,将300000000用科学记数法表示为 .14. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.15. 已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________. 16. 若m +1与-2互为相反数,则m 的值为________.17. 李勇同学假期打工收入了一笔钱,他立即存入银行,存期为一年,整存整取,若年利率为 2.16%,一年后李勇同学共得到本息和510.8元,则李勇同学存入________元.18. 若定义一种运算*,其规则是:a *b =-1b ÷1a ,则(-3) * (-2)=________. 19. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.20. 某班学生在实践基地进行拓展活动,因为器材的原因,教练要求分成固定的a 组,若每组5人,则多出9名同学;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的式子可表示为 .三、解答题(本大题共5道小题)21. 水葫芦是一种水生漂浮植物,有着惊人的繁殖能力.据研究表明:适量的水葫芦生长对水质的净化是有利的,关键是对水葫芦的科学管理和转化利用.若在适宜的条件下,1株水葫芦每5天就能繁殖1株(不考虑死亡、被打捞等其他因素).(1)假设湖面上现有1株水葫芦,填写下表(其中n 为正整数):天数5 10 15 … 50 … 5n 总株数 2 4 … …(2)假定某个流域的水葫芦维持在1280株以内对水质净化有益,若现有10株水葫芦,请你计算,按照上述生长速度,多少天后该流域内有1280株水葫芦?22. 求关于x 的一元一次方程21(1)(1)80k k x k x --+--=的解.23. 解方程:0.10.020.10.10.30.0020.05x x -+-=24. 解方程:0.10.90.210.030.7x x --=25. 已知1abc =,求关于x 的方程2004111x x x a ab b bc c ca++=++++++的解.人教版 七年级数学上册 第1~3章 期中综合复习(一)-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】A4. 【答案】D [解析] 由此方程的分母2,6可知,其最小公倍数为6,故去分母得3(x +1)-(2x -3)=6.故选D.5. 【答案】D6. 【答案】D7. 【答案】C8. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.9. 【答案】B10. 【答案】B [解析] 两个连续偶数相差2,所以可设中间一个偶数为x ,则第一个偶数为x -2,第三个偶数为x +2,则有x -2+x +x +2=24,解得x =8,故这三个偶数为6,8,10,所以它们的积为6×8×10=480.二、填空题(本大题共10道小题)11. 【答案】-112. 【答案】-10 [解析] (-14)×23-23=-14×23-1×23=23×(-14-1)=-10. 13. 【答案】3×108[解析] 将300000000用科学记数法表示为3×108. 14. 【答案】(1)>(2)= (3)< 15. 【答案】1 [解析] 把x =2代入原方程,得2×2+a -5=0,解得a =1,故答案为1.16. 【答案】117. 【答案】500 [解析] 本题中要求的未知数是本金.设存入的本金为x 元,由于年利率为2.16%,期数为一年,则利息为2.16%x 元.根据题意,得x +2.16%x =510.8,解得x =500.18. 【答案】-32 [解析] (-3) * (-2)=12÷(-13)=12×(-3)=-32. 19. 【答案】3 [解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x 8=1,解得x =2,x +1=3.故甲一共做了3天.20. 【答案】15-a [解析] 最后一组的人数可表示为5a +9-6(a -1)=15-a .三、解答题(本大题共5道小题)21. 【答案】解:(1)表中依次填入23,210,2n .(2)根据题意,得10×2n =1280,解得n=7,7×5=35(天).答:按照上述生长速度,35天后该流域内有1280株水葫芦.22. 【答案】2x =或者4x =-【解析】由一元一次方程的概念可知,原方程是一元一次方程,有两种情况:(1)当11k -=,即2k =时,原方程可化为:380x x +-=,解得2x =; (2)当210k -=且10k -≠时,即1k =-时,原方程可化为280x --=,解得4x =-.综上所得2x =或者4x =-.23. 【答案】 4116024. 【答案】121925. 【答案】2004 【解析】原方程可化为:111()2004111x a ab b bc c ca++=++++++, 因为1abc =,所以11111111(1)a abc a ab b bc c ca a ab a b bc abc c ca++=++++++++++++++ 1111111a ab a ab a ab a ab a ab a ab++=++==++++++++,故2004x =.人教版 七年级数学上册 第1~3章 期中综合复习(二)一、选择题(本大题共10道小题)1. 据市统计局调查数据显示,我市目前常住人口约为4470000人.数据“4470000”用科学记数法可表示为( )A. 4.47×106B. 4.47×107C. 0.447×107D. 447×1042. 若海平面以上1045米,记作+1045米,则海平面以下155米,记作() A .-1200米 B .-155米C .155米D .1200米3. 下列方程中是一元一次方程的是( )A .x +2y =9B .x 2-3x =1C .2x +4=1x D.12x -1=3x4. 计算-2(x -y )-2y 的结果是( )A .-2x -4yB .-2xC .2x -4yD .-4x +2y5. 给出一个数-0.1010010001,下列说法正确的是 ( )A .这个数不是分数,但是有理数B .这个数是负数,也是分数C .这个数与π一样,不是有理数D .这个数是一个负小数,不是有理数6. 下列各组数中,互为相反数的一组是( )A .|-3|与-13B .|-3|与-(-3)C .|-3|与-|-3|D .|-3|与|-13|7. 计算(-2)2020÷(-2)2019所得的结果是 ( )A.22019B.-22019C.-2D.18. 二模若a >0,b <0,则a -b 的值( )A .大于零B .小于零C .等于零D .不能确定9. 某企业今年第一季度盈利22000元,第二季度亏损5000元,若盈利记为正,亏损记为负,则该企业今年上半年盈利(或亏损)的金额(单位:元)可用算式表示为( )A .(+22000)+(+5000)B .(-22000)+(+5000)C .(-22000)+(-5000)D .(+22000)+(-5000) 10. 计算0-(-5)-(+1.71)+(+4.71)的结果是( )A .7B .-8C .8D .-7 二、填空题(本大题共10道小题)11. 化简:-54-8=________,-6-0.3=________. 12. 对于算式(-3)÷13×(-3),下面有几种算法: ①原式=(-3)×3×(-3);②原式=(-3)×(-3)÷13;③原式=(-3)÷⎣⎢⎡⎦⎥⎤13×(-3); ④原式=(-3)÷⎣⎢⎡⎦⎥⎤13÷(-3). 其中正确的算法有________.(填序号)13. 当x =________时,式子5x -3的值为7.14. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________. 15. 合并同类项:4a 2+6a 2-a 2=________.16. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米. 17. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.18. 把a -b 看作一个整体,合并同类项:3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2= .19. 观察下列砌钢管的横截面(如图),则第n (n 是正整数)个图中的钢管数是__________.(用含n 的式子表示)20. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题(本大题共5道小题)21. 先化简,再求值:12(8x 2-3xy )-3(x 2-12xy +13y ),其中x =-2,y =1.22. 去掉下列各式中的括号:(1)8m -(3n +5); (2)n -4(3-2m ); (3)2(a -2b )-3(2m -n ).23. 据美国詹姆斯·马丁的测算,在近十年,人类知识总量已达到每3年翻一番,到2020年甚至要达到每73天翻一番的空前速度,因此,基础教育的任务已不是“教会一切人一切知识,而是让一切人会学习”.已知2000年底,人类知识总量为a,假如从2000年底到2009年底是每3年翻一番;从2009年底到2019年底是每1年翻一番;从2020年是每73天翻一番.(1)2009年底人类知识总量是多少?(2)2019年底人类知识总量是多少?(3)2020年按365天计算,2020年底人类知识总量是多少?24. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.25. 解方程:4213 2[()] 3324x x x--=人教版七年级数学上册第1~3章期中综合复习(二)-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】把一个大数用科学记数法表示为a×10n的形式,其中1≤a <10,故a=4.47,n等于原数的整数位数减1,即n=7-1=6,∴4470000=4.47×106.2. 【答案】B3. 【答案】D4. 【答案】B5. 【答案】B6. 【答案】C7. 【答案】C8. 【答案】A9. 【答案】D10. 【答案】C二、填空题(本大题共10道小题)11. 【答案】27 42012. 【答案】①②④13. 【答案】2[解析] 由题意,得5x-3=7.两边同时加上3,得5x=10.两边同时除以5,得x=2.14. 【答案】(1)-3(2)3(3)3(4)-3(5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.15. 【答案】9a216. 【答案】417. 【答案】53[解析] 设有x个人共同购买该物品,依题意,得8x-3=7x+4,解得x=7.8x-3=8×7-3=53.故答案为53.18. 【答案】a -b[解析] 3(a -b )+4(a -b )2-2(a -b )-3(a -b )2-(a -b )2=(3-2)·(a -b )+(4-3-1)·(a -b )2=a -b .19. 【答案】32n (n +1) [解析] 第1个图中钢管数为1+2=3,第2个图中钢管数为2+3+4=12×(2+4)×3=9,第3个图中钢管数为3+4+5+6=12×(3+6)×4=18,第4个图中钢管数为4+5+6+7+8=12×(4+8)×5=30,…依此类推,第n 个图中钢管数为n +(n +1)+(n +2)+(n +3)+(n +4)+2n =12(n +2n )(n +1)=32n (n +1).20. 【答案】250[解析] 设速度快的人追上速度慢的人所用时间为t ,根据题意,得(100-60)t =100,解得t =2.5.所以100t =100×2.5=250,即速度快的人要走250步才能追上速度慢的人.三、解答题(本大题共5道小题)21. 【答案】解:原式=4x 2-32xy -3x 2+32xy -y =x 2-y . 当x =-2,y =1时,原式=(-2)2-1=3.22. 【答案】解:(1)8m -(3n +5)=8m -3n -5.(2)n -4(3-2m )=n -(12-8m )=n -12+8m .(3)2(a -2b )-3(2m -n )=2a -4b -(6m -3n )=2a -4b -6m +3n .23. 【答案】解:(1)23×a .(2)213×a .(3)218×a .24. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.25. 【答案】127人教版七年级数学上册第1~3章期中综合复习(三)一、选择题(本大题共10道小题)1. 下列各组数中,不相等的是()A.-(+8)和+(-8) B.-5和-(+5)C.+(-7)和-7 D.+(-23)和+232. 计算-2×3×(-4)的结果是()A.24 B.12 C.-12 D.-24 3. 下列关于“0”的说法正确的是()A.0既是正数,也是负数B.0是偶数,但不是自然数C.0既不是正数,也不是负数D.0 ℃表示没有温度4. 小磊解题时,将式子(-12)+(-7)+(+7)先变成(-12)+[(-7)+(+7)],再计算结果,则小磊运用了()A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断5. 如果x=y,那么根据等式的性质,下列变形不正确的是()A.x+2=y+2 B.3x=3yC.5-x=y-5 D.-x3=-y36. 下列交换加数位置的变形中,正确的是()A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1-4-3C.5.5-4.2-2.5+1.2=5.5-2.5+1.2-4.2D.13+2.3-5-4.3=13+5-2.3-4.37. 下列各式中,不相等的是()A.(-3)2和-32B.(-3)2和32C.(-2)3和-23D.|-2|3和|-23|8. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.09. 如图所示,下列判断正确的是()A.ab<0B.ab=0C.ab>0D.-ab<010. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72-x)=30 B.3x+2(30-x)=72C.2x+3(30-x)=72 D.3x+2(72-x)=30二、填空题(本大题共10道小题)11. 若|x|=2,则x的倒数是________.12. 计算:(-12)÷(-4)÷(-115)=________.13. 如图,数轴上点A,B分别表示数a,b,则a+b________0.(填“>”或“<”).14. 原价为a元的书包,现按8折出售,则售价为________元.15. a的相反数是-9,则a=________.16. 若关于x,y的多项式4xy3-2ax2-3xy+2x2-1不含x2项,则a=.17. 用算式表示(写成省略加号和括号的和的形式):(1)负20、正15、负40、负15、正14的和:________________________;(2)40减35加12减16减4:________________.18. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.19. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件的销售利润为________元.20. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.三、解答题(本大题共5道小题)21. 解方程:4x-3=2(x-1).22. 一张铁皮可生产10个盒底或6个盒身,两个盒底与一个盒身配套.现有110张铁皮,怎样安排生产盒身和盒底的铁皮张数,才能使生产出来的盒底和盒身恰好配套?(注:一张铁皮只能生产一种产品)23. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.24. 小李读一本名著,第一天读了36页,第二天读了剩余部分的14,这两天共读了整本书的38,这本名著共有多少页?25. 若1abc =,解关于x 的方程:2221111ax bx cxab a bc b ca c ++=++++++人教版 七年级数学上册 第1~3章 期中综合复习(三)-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A3. 【答案】C4. 【答案】C5. 【答案】C6. 【答案】C7. 【答案】A 8. 【答案】A 9. 【答案】A 10. 【答案】B二、填空题(本大题共10道小题) 11. 【答案】±12 12. 【答案】-5213. 【答案】< 14. 【答案】45a15. 【答案】916. 【答案】1[解析] 因为关于x ,y 的多项式4xy 3-2ax 2-3xy +2x 2-1不含x 2项,所以2-2a =0,解得a=1.17. 【答案】(1)-20+15-40-15+14(2)40-35+12-16-418. 【答案】180[解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x千米/时,则甲车的速度为1.2x千米/时.根据题意,得2·1.2x +2x=660,解方程,得x=150.150×1.2=180(千米/时).19. 【答案】4[解析] 设该商品每件的销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.故该商品每件的销售利润为4元.故答案为4.20. 【答案】6[解析] 设蜘蛛有x只,则蜻蜓有2x只,由题意,得8x+2x·6=120,解得x=6.三、解答题(本大题共5道小题)21. 【答案】[解析] 去括号、移项、合并同类项、系数化为1,即可得到方程的解.解:4x-3=2(x-1),4x-3=2x-2,4x-2x=-2+3,2x=1,x=1 2.22. 【答案】解:设用x张铁皮生产盒底,则用(110-x)张铁皮生产盒身,依题意可列方程10x=6(110-x)×2.解得x=60.于是110-x=50.答:用60张铁皮生产盒底,用50张铁皮生产盒身,才能使生产出来的盒底和盒身恰好配套.23. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.24. 【答案】[解析] 根据相等关系“这两天共读了整本书的38”列一元一次方程求解.解:设这本名著共有x页.根据题意,得36+14(x -36)=38x .解得x =216. 答:这本名著共有216页.25. 【答案】12【解析】由2221111ax bx cxab a bc b ca c ++=++++++得2111a b c x ab a abc bc b ca c ⎛⎫⨯++= ⎪++++++⎝⎭,1211b c x bc b abc ca c +⎛⎫⨯+= ⎪++++⎝⎭,()()12111b bcx b ca c b ca c ⎛⎫+⨯+= ⎪ ⎪++++⎝⎭,()211abc b bcx b ca c ++⨯=++故12x =.。

七年级上册数学《期中检测题》附答案解析

七年级上册数学《期中检测题》附答案解析

人教版七年级上册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下表是合肥市四个景区今年2月份某天6时的气温,其中气温最低的景区是()A.包公园B.天鹅湖C.巢湖湿地公园D.非遗园2.-38的相反数是()A.-38B.-83C.38D.833. -19的绝对值是()A. 9B.-9C.19D.-194. 大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kgB.10.1kgC.9.9kgD.10kg5. 下列运算结果为正数的是()A.(-3)2B.-3÷2C.0×(-2020)D.2-36.近似数2.70所表示的准确数a的范围是()A.2.695≤a<2.705B.2.65≤a<2.75C.2.695<a≤2.705D.2.65<a≤2.757.下列说法错误的有()①单项式-2πab的次数是3次②-m表示负数③67是单项式④m+1m+3是多项式A.1个B.2个C.3个D.4个8.按照下列程序计算,若开始输入的值为x=3,则最后输出的结果为()A.6B.21C.156D.2319.有理数a,b,-4在数轴上的位置如图所示,把|a|,-b,-4用”<”号连接可得()A.-4<-b<|a|B.|a|<-4<-bC.-b<-4<|a|D.|a|<-b<-410.一个绳子弯曲成如图所示的形状,当用剪刀像图①那样沿虚线a把绳子剪1次时绳子被剪为5段,当用剪刀像图②那样沿虚线a,b把绳子剪2次时,绳子被剪成9段;若按照上述规律把绳子剪n次时,则绳子被剪为()A.(6n-1)段B.(5n-1)段C.(4n+1)段D.2 112n n-段二、填空题(每小题3分,共24分)11.为加快”一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及空港产业园主体工程已建好.将124000万元用科学记数法表示为 元.12.下列各数:(-3)2,0,-(-12)2,227,(-1)2021,-22,-(-8),-|-38|中,负数有 个. 13.单项式-23223x y z的系数是 ,次数是 .14.如果(a +2)2n 与|b -1|互为相反数,则(a +b )2020的值为 .15.有5袋苹果,以每袋50千克为准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:+4,-5,+3,-2,-6,则这5袋苹果的总重量是 .16.如图所示,点A 表示 ,点B 表示 ,点D 表示 .17.若a ,b 互为倒数,c ,d 互为相反数,m 为最大的负整数,则3m +ab +4c md += . 18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a 1,第二个三角形数记为a 2,…,第n 个三角形数记为a n ,计算a 1+a 2,a 2+a 3,a 3+a 4,…,由此推算a 399+a 400= .三、解答题(共66分) 19.(10分)计算:(1)-13+(-2)2-(-5)2×(-1)5+87÷(-3)×(-1)4;(2)-0.252÷(-12)2×(-1)3+(138+73-3.75)×24.20.(10分)先化简再求值:(1)已知a2-a-4=0,求4a2-2(a2-a+3)-(a2-a-4)-4a的值.(2)已知(a+b)2+|2b-1|=0,求多项式ab-[2ab-3(ab-1)]的值.21.(6分)在如图所示的数轴上表示:3.5和它的相反数,-14和它的倒数,绝对值等于1的数,-2和它的立方,并用”<”把它们连起来.22.(6分)若同类项mx2a+2y2与0.4xy3b+4的和为零,求多项式10abm-14{3a2b-[40abm-(2ab2-3a2b)]}的值.23.(8分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划产量相比有出入,如表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实施每周计件工资制,每生产一辆自行车可得60元,若超额完成任务,则超过部分每辆另奖15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?24.(8分)某中学七年级(1)班有50人,某次活动中分为四组,第一组有(3a+4b+2)人,第二组比第一组的一半多6人,第三组比前两组的和的13多3人.(1)求第四组的人数(用含a,b的整式表示);(2)试判断a=1,b=2时,是否符合题意.25.(9分)有一列数,第一个数为x 1=1,第二个数为x 2=3,从第三个数开始依次为x 3,x 4,…,x n .从第二个数开始,每个数是左右相邻两个数和的一半,如x 2=132x x +,x 3=242x x+. (1)求x 3,x 4,x 5的值,并写出计算过程; (2)根据(1)的结果,推测x 9等于多少?(3)探索这一列数的规律,猜想第k 个数xk 等于多少?26.(9分)某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款 元;(2)若顾客在该超市一次性购物x 元,当小于500元但不小于200元时,他实际付款0.9x 元,当x 大于或等于500元时,他实际付款 元;(用含x 的式子表示)(3)如果王老师两次购物的货款合计820元,第一次购物的货款为a元(200<a<300),用含a的式子分别表示王老师两次购物实际付款多少元?答案与解析一、选择题(每小题3分,共30分)1. 下表是合肥市四个景区今年2月份某天6时的气温,其中气温最低的景区是( C)A. 包公园B. 天鹅湖C. 巢湖湿地公园D. 非遗园2. -38的相反数是( C)A. -38B.-83C.38D.833. -19的绝对值是( C)A. 9B. -9C. 19D. -194. 大米包装袋上(10±0.1)kg的标识表示此袋大米重( A)A. (9.9~10.1)kgB.10.1kgC. 9.9kgD. 10kg5. 下列运算结果为正数的是( A)A. (-3)2B. -3÷2C. 0×(-2020)D. 2-36. 近似数2.70所表示的准确数a的范围是( A)A. 2.695≤a<2.705B. 2.65≤a<2.75C. 2.695<a≤2.705D. 2.65<a≤2.757. 下列说法错误的有( C)①单项式-2πab的次数是3次②-m表示负数③67是单项式④m+1m+3是多项式A. 1个B. 2个C. 3个D. 4个8. 按照下列程序计算,若开始输入的值为x=3,则最后输出的结果为( D)A. 6B. 21C. 156D. 2319. 有理数a,b,-4在数轴上的位置如图所示,把|a|,-b,-4用”<”号连接可得( C)A. -4<-b<|a|B. |a|<-4<-bC. -b<-4<|a|D. |a|<-b<-410. 一个绳子弯曲成如图所示的形状,当用剪刀像图①那样沿虚线a把绳子剪1次时绳子被剪为5段,当用剪刀像图②那样沿虚线a,b把绳子剪2次时,绳子被剪成9段;若按照上述规律把绳子剪n次时,则绳子被剪为( C)A. (6n-1)段B. (5n-1)段C. (4n+1)段D.2 112n n-段二、填空题(每小题3分,共24分)11. 为加快”一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及空港产业园主体工程已建好.将124000万元用科学记数法表示为 1.24×109元.12. 下列各数:(-3)2,0,-(-12)2,227,(-1)2021,-22,-(-8),-|-38|中,负数有 4 个. 13. 单项式-23223x y z 的系数是 -43,次数是 6 .14. 如果(a +2)2n 与|b -1|互为相反数,则(a +b )2020的值为 1 .15. 有5袋苹果,以每袋50千克为准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:+4,-5,+3,-2,-6,则这5袋苹果的总重量是 244千克 .16. 如图所示,点A 表示 2 ,点B 表示 -1 ,点D 表示 -2.5 .17. 若a ,b 互为倒数,c ,d 互为相反数,m 为最大的负整数,则3m +ab +4c m d +=23. 18. 古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a 1,第二个三角形数记为a 2,…,第n 个三角形数记为a n ,计算a 1+a 2,a 2+a 3,a 3+a 4,…,由此推算a 399+a 400= 160000 .三、解答题(共66分) 19. (10分)计算:(1)-13+(-2)2-(-5)2×(-1)5+87÷(-3)×(-1)4; 解:原式=-1+4-25×(-1)-29×1=3+25-29=-1.(2)-0.252÷(-12)2×(-1)3+(138+73-3.75)×24. 解:原式=-116÷14×(-1)+118×24+73×24-3.75×24=14+33+56-90=-34. 20. (10分)先化简再求值:(1)已知a 2-a -4=0,求4a 2-2(a 2-a +3)-(a 2-a -4)-4a 的值.解:原式=4a2-2a2+2a-6-a2+a+4-4a=a2-a-2,因为a2-a-4=0,所以a2-a=4,所以原式=4-2=2.(2)已知(a+b)2+|2b-1|=0,求多项式ab-[2ab-3(ab-1)]的值.解:依题意,得a=-12,b=12. 原式=ab-2ab+3ab-3=2ab-3,因为a=-12,b=12,所以原式=2×(-1 2)×12-3=-312.21. (6分)在如图所示的数轴上表示:3.5和它的相反数,-14和它的倒数,绝对值等于1的数,-2和它的立方,并用”<”把它们连起来.解:如图所示是表示的各数,用”<”连接为-8<-4<-3.5<-2<-1<-14<1<3.5.22. (6分)若同类项mx2a+2y2与0.4xy3b+4的和为零,求多项式10abm-14{3a2b-[40abm-(2ab2-3a2b)]}的值.解:依题意,得a=-12,b=-23,m=-0.4. 原式=10abm-34a2b+10abm-12ab2+34a2b=-12ab2+20abm,因为a=-12,b=-23,m=-0.4,所以原式=-12×(-12)×(-23)2+20×(-12)×(-23)×(-0.4)=19-83=-239.23. (8分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划产量相比有出入,如表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实施每周计件工资制,每生产一辆自行车可得60元,若超额完成任务,则超过部分每辆另奖15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元? 解:(1)200+13=213(辆)(2)200×7+(5-2-4+13-10+16-9)=1409(辆) (3)16-(-10)=26(辆)(4)1409×60+(1409-1400)×15=84675(元),答:该厂工人这一周的工资总额是84675元.24. (8分)某中学七年级(1)班有50人,某次活动中分为四组,第一组有(3a +4b +2)人,第二组比第一组的一半多6人,第三组比前两组的和的13多3人. (1)求第四组的人数(用含a ,b 的整式表示); (2)试判断a =1,b =2时,是否符合题意. 解:(1)由题意有:第一组:(3a +4b +2)人;第二组:12(3a +4b +2)+6=(1.5a +2b +7)人;第三组:13(3a +4b +2+1.5a +2b +7)+3=(1.5a +2b +6)人;第四组:50-(3a +4b +2+1.5a +2b +7+1.5a +2b +6)=(35-6a -8b )人.即第四组的人数为(35-6a -8b )人.(2)当a =1,b =2时,第二组、第三组人数不为整数,所以不符合题意.25. (9分)有一列数,第一个数为x 1=1,第二个数为x 2=3,从第三个数开始依次为x 3,x 4,…,x n .从第二个数开始,每个数是左右相邻两个数和的一半,如x 2=132x x +,x 3=242x x+. (1)求x 3,x 4,x 5的值,并写出计算过程; (2)根据(1)的结果,推测x 9等于多少?(3)探索这一列数的规律,猜想第k 个数xk 等于多少? 解:(1)x 3=2x 2-x 1=5,x 4=2x 3-x 2=7,x 5=2x 4-x 3=9;(2)x9=17;(3)x k=2k-1.26. (9分)某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款530元;(2)若顾客在该超市一次性购物x元,当小于500元但不小于200元时,他实际付款0.9x元,当x大于或等于500元时,他实际付款(0.8x+50)元;(用含x的式子表示)(3)如果王老师两次购物的货款合计820元,第一次购物的货款为a元(200<a<300),用含a的式子分别表示王老师两次购物实际付款多少元?解:王老师第一次购物实际付款0.9a元,则两次购物实际付款为0.9a+500×0.9+(820-a-500)×0.8=(0.1a +706)元.。

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题2022年一、单选题1.﹣2021的倒数为( )A .﹣12021B .12021C .﹣2021D .2021 2.下列结果为负数的是( )A .﹣(﹣6)B .﹣6 2C .(﹣6)2D .|﹣6| 3. 9500万用科学记数法表示为( )A .9.5×108B .9.5×107C .9.5×106D .9.5×103 4.在下列整式中,次数为3的单项式是( )A .33a b -B .2xyC .3s tD .3mn5.下列运算正确..的是( ) A .224-= B .11--=- C .22x x -= D .235235x x x += 6.下列说法中,正确的是( )A .单项式212xy 的系数12x B .单项式25x -的次数为-5 C .多项式2218x x ++是二次三项式 D .多项式221x y +-的常数项是1 7.不改变式子a -(2b -4c )的值,去掉括号后结果正确的是( )A .a -2b +4cB .a +2b +4cC .a -2b -4cD .a +2b -4c 8.如图,数轴上A 、B 两点之间的距离是3,点B 在点A 左侧,那么点B 表示的数是()A .3B .﹣3C .1D .﹣19.若|x|=5,y 3=8且x <0,则x +y =( )A .7B .-3C .7或-7D .3或-3 10.正六边形ABCDEF 在数轴上的位置如图,点A 、F 对应的数分别为0和1,若正六边形ABCDEF 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点E 所对应的数为2,则连续翻转2021次后,数轴上2021这个数所对应的点是( )A.A点B.B点C.C点D.D点二、填空题11.如果收入100元记作+100元,则支出20元记作_____元.12.近似数7.80千克精确到____________.13.“比x的2倍小-3的数”用式子表示是_________ .14.若7axb2与-3a3by的和为单项式,则xy=_________ .15.已知a+b=3,c﹣b=12,则a+2b﹣c的值为_____.16.如图是一个数值运算的程序,若输出y的值为1,则输入的值为_________ .17.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第10个图形共有_________ 个○.18.若a,b互为倒数,则2(7)--=__________.ab b三、解答题19.计算:-(-3)+7-2-|-8|.20.合并同类项:22---+-.573532a a a a21.台风过后,电力检修小组乘一辆检修车沿东西方向检修路,约定向东走为正,某天从A 地出发到收工时行走记录(单位:km ):+14,﹣2,+6,﹣1,+9,﹣3,﹣2,+13,+3,﹣5,+7,求:(1)收工时检修小组在A 地的哪一边,距A 地多远?(2)若检修车耗油1.2升/每千米,开工时储存90升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?22.计算:-12×(-9)+16÷(-2)3-|-4×5|23.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?若a ,b 互为相反数,c ,d 互为倒数,|m|=2,求a -(-b )-m cd的值.24.定义:若2m n +=,则称m 与n 是关于1的平衡数.(1)3与______是关于1的平衡数,5x -与______(用含x 的整式表示)是关于1的平衡数;(2)若()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,判断a 与b 是否是关于1的平衡数,并说明理由.25.观察下面三行数:−2, 4, −8, 16, −32, 64, …;①0, 6, −6, 18, −30, 66, …;①−1, 2, −4, 8, −16, 32, …;①(1)分别写出每一行的第n 个数;(2)取每行数的第m 个数,使这三个数的和为162,求m 的值.26.某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:(1)直接写出a=________ ,b=_________ ,c=_________ ;(2)根据记录的数据可知4个班计划每班购书_________ 本;(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书售价为25元,请计算这4个班整体购书的最低总花费是多少元?27.如图,点A,B,C是数轴上三点,点C表示的数为6,BC=4,AB=12(1)写出数轴上点A,B表示的数:_________ ,_________ ;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.①当t=2时,求出此时P,Q在数轴上表示的数;①t为何值时,点P,Q相距2个单位长度,并写出此时点P,Q在数轴上表示的数.参考答案1.A【解析】根据倒数的定义:乘积等于1的两个数,互为倒数,即可求解.【详解】解:①1 2021()=12021-⨯-①2021-的倒数是:1 2021 -,故选:A.【点睛】本题主要考查倒数的定义,熟练掌握“乘积等于1的两个数,互为倒数”是解题的关键.2.B【详解】解:A、()66--=,正数;B、2636-=-,负数;C、()2636-=,正数;D、66-=,正数;故选:B.3.B【解析】【分析】根据科学记数法可直接进行排除选项.【详解】解:由题意得9500万=95000000,①用科学记数法表示为79.510⨯;故选B.【点睛】本题主要考查科学记数法,掌握科学记数法的表示方法是解题的关键.4.B【解析】【分析】根据单项式的次数的定义,逐一判断选项,即可得到答案.【详解】解:A. 33a b -是多项式,不符合题意,B. 2xy 是3次多项式,符合题意,C. 3s t 是4次多项式,不符合题意,D. 3mn 是2次多项式,不符合题意,故选B .【点睛】本题主要考查单项式的次数,掌握单项式中所有字母的指数之和叫做单项式的次数,是解题的关键.5.B【解析】【分析】根据有理数的乘方,绝对值,合并同类项的运算法则进行计算,进而得出答案.【详解】A 、224-=-,原计算错误,不符合题意;B 、11--=-,原计算正确,符合题意;C 、2x x x -=,原计算错误,不符合题意;D 、22x 与33x 不是同类项,不能合并,不符合题意;故选:B .【点睛】本题考查了合并同类项,有理数的乘方,绝对值,掌握计算法则是正确计算的前提. 6.C【解析】【分析】根据单项式和多项式系数及次数的定义对各选项进行逐一分析即可.【详解】A 、单项式212xy 的系数12,故本选项错误; B 、单项式25x -的次数为2,故本选项错误;C 、多项式2218x x ++是二次三项式,故本选项正确;D 、多项式221x y +-的常数项是-1,本选项错误;故选C【点睛】本题主要考查单项式、多项式系数与次数的有关知识,考查学生的理解能力,属于基础题型. 7.A【解析】【分析】根据去括号法则求解即可.【详解】解:a -(2b -4c )=a -2b+4c ,故选:A .【点睛】此题考查了去括号法则,解题的关键是熟练掌握去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号. 8.D【解析】【分析】根据数轴上两点之间的距离等于右边的数减去左边的数可得答案.【详解】解:设点B 表示的数是m ,根据题意得:23m -=,解得:1m =-,①点B 表示的数是1-,故选:D .【点睛】本题考查了数轴上两点间的距离,熟知数轴上两点间的距离等于右边的数减去左边的数是解本题的关键.9.B【解析】根据|x|=5,y 3=8且x <0,即可得到5x =-,2y =,由此代值计算即可.【详解】解:①|x|=5,y 3=8且x <0,①5x =-,2y =,①523x y +=-+=-,故选B .【点睛】本题主要考查了求绝对值,代数式求值,解题的关键在于能够根据题意求出x 、y 的值. 10.B【解析】【分析】由题意可知转一周后,F 、E 、D 、C 、B 、A 分别对应的点为1、2、3、4、5、6,可知其6次一循环,由此可确定出数轴上2021这个数所对应的点.【详解】解:当正六边形在转动第一周的过程中,F 、E 、D 、C 、B 、A 分别对应的点为1、2、3、4、5、6,①6次一循环,①2021÷6=336……5,①数轴上2021这个数所对应的点是B 点.故选:B .【点睛】本题主要考查实数与数轴,确定出点的变化规律是解题的关键.11.-20【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以,如果收入100元记作+100元,那么支出20元记作﹣20元. 故答案为:﹣20.本题考查了正负数的意义,解题关键是理解正负数的意义.12.百分位【解析】【分析】根据近似数的精确度解答即可.【详解】解:7.80是精确到百分位的数,故答案为:百分位.【点睛】本题考查了近似数的定义,经过四舍五入得到的数叫作近似数.13.23x + 或者3+2x【解析】【分析】先计算x 的2倍,即2x ,再计算比2x 小-3的数,注意代数式的书写格式.【详解】解:“比x 的2倍小3的数”用式子表示是:()2323x x --=+,故答案为: 23x +.【点睛】本题考查列代数式,是基础考点,难度较易,掌握相关知识是解题关键.14.9【解析】【分析】根据两单项式之和为单项式,得到两单项式为同类项,利用同类项的定义求出x ,y 的值即可解决问题.【详解】解:①27x a b 与33y a b -的和为单项式,①27x a b 与33y a b -是同类项,①32x y =⎧⎨=⎩, ①239y x ==故答案为:9.【点睛】此题考查了同类项的定义以及代数式求值,熟练掌握同类项定义是解本题的关键:如果两个单项式所含字母相同,并且相同字母的指数也相同,那么这两个单项式就叫做同类项. 15.﹣9.【解析】【分析】将a+2b ﹣c 化为a+b ﹣(c ﹣b ),再将a+b =3,c ﹣b =12代入计算即可.【详解】解:①a+b =3,c ﹣b =12,①a+2b ﹣c=a+b ﹣(c ﹣b )=3﹣12=﹣9.故答案为:﹣9.【点睛】本题考查了整式的加减,正确将原式变形是解题的关键.16.±4##4或-4##-4或4【解析】【分析】根据代数式求值,可得答案.【详解】解:设输入的数为x ,由运算程序得:(|x|-1)÷3=1,整理得:|x|=4,解得:x=±4,则输入的值为±4.故答案为:±4.【点睛】本题考查了代数式求值,利用运算顺序运算是解题关键.17.31【解析】【分析】观察图形的变化先得前几个图形中圆圈的个数,可以发现规律:第n个图形共有(3n+1)个〇,进而可得结果.【详解】解:观察图形的变化可知:第1个图形共有1×3+1=4个〇;第2个图形共有2×3+1=7个〇;第3个图形共有3×3+1=10个〇;…所以第n个图形共有(3n+1)个〇;所以第10个图形共有10×3+1=31个〇;故答案为:31.【点睛】本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律.18.7【解析】【分析】根据倒数的定义、有理数的乘方法则计算.【详解】①a、b互为倒数,①ab=1,①2(7)--,ab b=7⨯-+,ab b b=7.故答案为:7.【点睛】此题考查倒数的概念,解题关键在于掌握乘积是1的两数互为倒数.19.0【解析】【分析】先计算绝对值,然后根据有理数的加减计算法则进行求解即可.【详解】解:()3728--+---3728=+--0=.【点睛】本题主要考查了有理数的加减计算,绝对值,解题的关键在于能够熟练掌握相关计算法则.20.2312a -【解析】【分析】根据合并同类项直接进行求解即可.【详解】解:原式=222527533312a a a a a ---+=--.【点睛】本题主要考查合并同类项,熟练掌握合并同类项是解题的关键.21.(1)收工时在A 地的正东方向,距A 地39km ;(2)不需要加油,还剩12升汽油.【解析】【分析】(1)根据题意:将各数直接相加即可得;(2)求汽车的路程,将各数的绝对值相加,然后根据题意,每千米耗油1.2升,求出总消耗油量,求解即可.解:(1)根据题意可得:向东走为“+”,向西走为“-”,则收工时距离:()()()()()()()()()()()++-+++-+++-+-+++++-++=+.142619321335739故收工时在A地的正东方向,距A地39km;(2)从A地出发到收工时,++-+++-+++-+-+++++-++=km;汽车共走了142619321335765⨯=(升).从A地出发到收工时耗油量为65 1.278-=(升),907812故到收工时中途不需要加油,还剩油量为12升.22.86.【解析】先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】解:-12×(-9)+16÷(-2)3-|-4×5|=108+16÷(-8)-20=108-2-20=86.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.-2或2【解析】【分析】根据互为相反数的两数相加得零可知a+b=0,由倒数的定义可知cd=1,由绝对值的性质可知m=±2,然后代入计算即可.【详解】①a,b互为相反数,①c ,d 互为倒数,①cd=1.①|m|=2,①m=±2.整理得:原式=a+b−m cd=−m . 当m=2时原式=−2,当m=−2原式=2.①代数式的值2或−2.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a+b=0,cd=1,m=2.24.(1)1-,3x -;(2)不是,理由见解析【解析】【分析】(1)由平衡数的定义求解即可达到答案;(2)计算a+b 是否等于1即可;【详解】解:(1)1-,3x -;(2)a 与b 不是关于1的平衡数.理由如下:因为()22234a x x x =-++,()22342b x x x x ⎡⎤=--+-⎣⎦,所以()()2222342342a b x x x x x x x ⎡⎤+=-+++--+-⎣⎦, 22223342342x x x x x x x =--++-+++,62=≠,所以a 与b 不是关于1的平衡数.【点睛】本题主要考查了整式的加减,准确分析计算是解题的关键.25.(1)第1行数的第n 个数为:(-1)n 2n ;第2行数的第n 个数为:(-1)n 2n +2;第3行数的第n 个数为:[(-1)n 2n ]÷2;(2)6.【解析】(1)观察每一行数的规律即可写出每一行的第n个数;(2)根据(1)中得到的规律取每行数的第m个数,使这三个数的和为162,即可求m的值.【详解】(1)观察三行数的规律可知:第1行数的第n个数为:(-1)n2n;第2行数的第n个数为:(-1)n2n+2第3行数的第n个数为:[(-1)n2n]÷2.(2)(-1)m2m+(-1)m2m+2+[(-1)m2m]÷2=162整理,得:(-1)m2m=64=26①m=6.答:m的值为6.【点睛】此题考查规律型-数字的变化类,解题的关键是观察每一行数寻找规律.26.(1)42,+3,22;(2)30;(3)这4个班整体购书的最低总花费2600元.【解析】【分析】(1)由于4班实际购入21本,且实际购数量与计划购数量的差值=-9,即可得计划购书量=30,进而可求出a、b、c;(2)根据题意,计划每班购买数量相同,由(1)即可得出答案;(3)根据(2)中的购书总数,用总数除以15求出每次购买15本的次数,根据每本书售价为25元,列式计算可得答案.【详解】解:(1)由于4班实际购入21本,且实际购数量与计划购数量的差值=-9,则每班计划购书量为30(本),则a=21+9+12=42,b=33-30=3,c=30-8=22,故答案为:42,+3,22;(2)根据题意,计划每班购买数量相同,由(1)得:计划每班购书30(本);故答案为:30;(3)实际买书的总数42+33+22+21=118(本)如果每次购买15本,则可以购买7次,且最后还剩13本书单独购买,即最低总花费=25×(15-2)×7+25×13=2600(元).答:这4个班整体购书的最低总花费2600元.27.(1)-10,2;(2)①P,Q在数轴上表示的数分别是-2和2,①t=3或t=73,此时P,Q表示的数分别为2和0或2-3和43【解析】(1)点B表示的数是6-4,点A表示的数是2-12,求出即可;(2)①求出AP,CQ,根据A、C表示的数求出P、Q表示的数,将t=2代入计算即可;①利用“点P,Q相距2个单位长度”列出关于t的方程,并解答即可.【详解】解:(1)①点C对应的数为6,BC=4,①点B表示的数是6-4=2,①AB=12,①点A表示的数是2-12=-10.故答案是:-10;2;(2)①由题意得:AP=4t,CQ=2t,如图所示:在数轴上点P表示的数是-10+4t,在数轴上点Q表示的数是6-2t;当t=2时,-10+8=-2,6-4=2,故P,Q在数轴上表示的数分别是-2和2,①当点P,Q相距2个单位长度时:|(-10+4t)-(6-2t)|=2,解得t=3或t=73,此时P,Q表示的数分别为2和0或2-3和43。

人教版七年级上册数学《期中测试题》附答案解析

人教版七年级上册数学《期中测试题》附答案解析

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小有理数是( ) A. -112B. 0C. 1D. -22.下列关于单项式 235xy -的说法中,正确的是( ) A. 系数是25-,次数是2 B. 系数是35,次数是2 C. 系数是一3,次数是3 D. 系数是35,次数是33.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5B. 1.5C. 2.5D. 3.54.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( ) A. 847.2410⨯ B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3B. 6C. 8D. 47.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7B. 5C. 1D.9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 810.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C 为( )A. 2225x y z --B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( ) A. 比进货价便宜了0.52a 元 B. 比进货价高了0.2a 元 C. 比进货价高了08a 元 D. 与进货价相同13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为( )A.B. 12-C.12D. 114.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则a b c abc++的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是(). A. 200-60xB. 160-15xC. 200-15xD. 140-15x16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值. (1)()41-=______; (2)()()32--=______.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.计算下列各小题. (1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?22.已知a,b,c在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c+a______0,c-b______0,;---+-.(2)化简a c a b b c23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:与标准质量的−3.5−2−1.50 1 2.5差值(单位:千克)筐数 2 4 2 1 3 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.答案与解析一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小的有理数是( )A. -112B. 0C. 1D. -2【答案】D【解析】【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【详解】-2<-112<0<12<1,所以最小的有理数是-2.故选D.【点睛】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5 B. 1.5C. 2.5D. 3.5【答案】D 【解析】 【分析】直接利用倒数的定义结合绝对值的性质得出答案. 【详解】解:∵b 的倒数等于-23, ∴b =﹣32, ∵a =|2﹣b|, ∴a =|2+32|=72=3.5. 故选D .【点睛】此题主要考查了倒数和绝对值,正确得出b 的值是解题关键.4.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.【答案】C 【解析】 【分析】根据绝对值的性质可得a≤0,b≥0,再根据|a|>|b|可得a 距离原点比b 距离原点远,进而可得答案. 【详解】∵|a |=a ,|b |=-b , ∴a 0,b 0, ∵|a |>|b |,∴表示数a 的点到原点的距离比b 到原点的距离大, 故选:C.【点睛】本题考查了绝对值的应用及数轴的有关知识,熟练掌握利用数轴上的位置判断正负是解题的关键. 5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( )A. 847.2410⨯B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯【答案】B 【解析】 【分析】根据科学记数法的表示方法即可得出答案. 【详解】解:47.24亿=94.72410⨯, 故答案为:B .【点睛】本题考查了科学记数法的表示方法,解题的关键是熟知科学记数法的表示方法. 6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3 B. 6C. 8D. 4【答案】D 【解析】 【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得a 的指数要相等,b 的指数也要相等,即可得到m ,n 的值,代入计算可得. 【详解】解:单项式m 42a b +与2n1a b 2的和是单项式, 单项式m 42a b +与2n1a b 2是同类项, 则m 42+=,n 2=, 解得m 2=-,n 2=,n 2m (2)4∴=-=,故选D .【点睛】本题考查了同类项定义,关键是把握两点:一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.7.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭【分析】根据有理数的混合运算的运算法则一一判断即可.【详解】A. 72571017--⨯=--=-,故本选项错误; B. 54444833455525÷⨯=⨯⨯=,故本选项错误; C. ()331312726---=-+=,故本选项错误; D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭,故本选项正确. 故选D.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7 B. 5C. 1D.【答案】A 【解析】 【分析】原式去括号整理后,将已知等式代入计算即可求出值. 【详解】3a b -=,2c d += 原式=223a d b c b d --+++ =22a b c d -++ =2()a b c d -++ =3+22 =7 故选A.【点睛】本题考查了代数式求值,将原式整理为与-a b 和+c d 有关的式子是解题的关键. 9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 8【分析】根据有理数的加法,原有人数,上车为正,下车为负,即可得答案. 【详解】10+2+(-3)+8+(-5)+1-6=7 故选C.【点睛】本题考查了正数和负数,有理数的加法运算是解题的关键. 10.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭是正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 【答案】D 【解析】 【分析】正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.02=0. 【详解】A 、(a+13)2是非负数,错误; B 、-a 2+13不一定是负数,可能是0,也可能是正数,错误; C 、-(a-13)2是非正数,错误;D 、a 2+13是正数,正确;故选D .【点睛】此题考查非负数的性质,关键要注意全面考虑a 的取值.11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C ( )A. 2225x y z -- B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 【答案】B 【解析】由于A+B+C=0,则C=-A-B,代入A 和B 的多项式即可求得C .解:由于多项式A=x 2+2y 2-z 2,B=-4x 2+3y 2+2z 2且A+B+C=0,则C=-A-B=-(x 2+2y 2-z 2)-(-4x 2+3y 2+2z 2)=-x 2-2y 2+z 2+4x 2-3y 2-2z 2=3x 2-5y 2-z 2.故答案选B .12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A. 比进货价便宜了0.52a 元B. 比进货价高了0.2a 元C. 比进货价高了0.8a 元D. 与进货价相同【答案】B【解析】【分析】直接利用标价以及打折之间的关系得出服装的实际价格,再和进货价相减即可.【详解】由题意得,这件服装的实际价格是:(1200%)40%a +⨯=1.2a又因为进货价为a这件服装的实际价格比进货价高了0.2a 元故选B.【点睛】本题考查了列代数式,根据题意得出关系式是解题的关键.13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为() A. B. 12- C. 12 D. 1【答案】B【解析】【分析】根据非负性即可解得x ,y 的值,根据整式的混合运算法则化简,代入即可. 【详解】21202x y ⎛⎫-++= ⎪⎝⎭且20-≥x ,2102y ⎛⎫+≥ ⎪⎝⎭.20x -=,102y += 12,2x y ==-. ()()222233143x y xy x y xy +----=2222333343x y xy x y xy +-+--=2xy - =2122⎛⎫-⨯- ⎪⎝⎭=12- 故选B.【点睛】本题考查了绝对值的非负性及整式的化简求值,熟练掌握运算法则是解题的关键.14.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则abca b c ++ 的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个 【答案】D【解析】【分析】利用相反数,绝对值,以及倒数的性质判断即可.【详解】①只有符号相反的数互为相反数,不符合题意;②两个四次多项式的和不一定是四次多项式,不符合题意;③若abc>0,则abca b c ++的值为3或一1,符合题意;④如果a 大于b ,那么a 的倒数不一定小于b 的倒数,不符合题意,故选D .【点睛】此题考查了整式的加减,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键. 15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是().A. 200-60xB. 160-15xC. 200-15xD. 140-15x【答案】C【解析】【分析】 先由“学校租用45座的客车x 辆,则余下20人无座位”表示出师生的总人数,再根据“租用60座的客车则可少租用2辆,但只有一辆还没坐满”这个条件求出最后一辆60座客车的人数.【详解】∵学校租用45座的客车x 辆,则余下20人无座位,∴师生总人数为:4520x +,又∵租用60座的客车则可少租用2辆,但只有一辆还没坐满,∴最后一辆60座客车的人数为:()452060320015x x x +--=-.所以答案为C 选项.【点睛】本题主要考查根据实际情况列出代数式,仔细读题,读懂题中各个量之间的联系是解题关键. 16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 【答案】C【解析】【分析】根据有理数的乘方的定义解答即可. 【详解】∵第一次剪去绳子的23,还剩13; 第二次剪去剩下绳子的23,还剩13-23×13=13×(1-23)=(13)2, …… ∴第十次剪去剩下绳子的23后,剩下绳子的长度为(13)10, 故选C .【点睛】本题考查了有理数的乘方,理解乘方的意义是解题的关键. 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.【答案】8.20【解析】【分析】把千分位上的数字3进行四舍五入即可.【详解】8.203828.20故答案为8.20.【点睛】本题考查了近似数和有效数字,熟练掌握四舍五入是解题的关键.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值.(1)()41-=______;(2)()()32--=______. 【答案】 (1). 17 (2). 1【解析】【分析】(1)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值; (2)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值. 【详解】(1)()41-=24(1)17--=. (2)()()32--=23(2)1-+-=.故答案为:17,1.【点睛】本题考查了新定义下的实数运算,根据所给式子分情况代入是解题的关键.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.【答案】 (1). 22 (2). (3n +1)【解析】【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…依此规律,第n 个图案有(3n+1)个三角形.【详解】∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形, 第(3)个图案有3×3+1=10个三角形, …∴第n 个图案有(3n +1)个三角形.当n =7时,3n +1=3×7+1=22,故答案为:22,(3n +1).【点睛】本题考查了图形的规律,根据数据找到规律是解题的关键.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.计算下列各小题.(1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 【答案】(1)192;(2)169. 【解析】【分析】 (1)先计算乘方,再算乘除,最后计算加减.(2)先计算乘方,再算乘除,最后计算加减.【详解】(1)()2213602210--÷⨯+-; 119602410=-⨯⨯+ 3922=-+ 192=(2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭ 4316525=-+⨯+⨯448125=-++169=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?【答案】(1)–2x 2+6;(2)5.【解析】【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“”是a,则原式=(ax 2+6x+8)﹣(6x+5x 2+2)=ax 2+6x+8﹣6x ﹣5x 2﹣2=(a ﹣5)x 2+6,∵标准答案的结果是常数,∴a ﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.22.已知a ,b ,c 在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c +a______0,c -b______0,;(2)化简a c a b b c ---+-.【答案】(1) >,<,<;(2) 2b−2c.【解析】【分析】先根据a、b、c三点在数轴上的位置判断出abc的符号及其绝对值的大小,再比较大小和化简即可.【详解】(1) ∵c<b<0<a,∴abc>0,c+a<0,c−b<0(2) ∵c<b<0<aa-c>0,a-b>0,b-c>0|a−c|−|a−b|+|b−c|=a−c−a+b+b−c=2b−2c.故答案为:>,<,<;2b−2c.【点睛】本题考查了绝对值的化简,根据数轴判断式子的符号是解题的关键.23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.【答案】(1)5a+3b;2a+3b;(2)9a+11b.【解析】【分析】(1)根据题意表示出第二边与第三边即可;(2)三边之和表示出周长,化简即可;【详解】(1)则第二边的边长为5a+3b,第三边的边长为2a+3b;故答案为5a+3b;2a+3b;(2)周长为:2a+5b+5a+3b+2a+3b=9a+11b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.【答案】(1)最大是20,运算式是(-5) (-4);(2)最小是-2.5,运算式是(-5) 2;(3)()()456224-⨯-+-=,()()425624----⨯=⎡⎤⎣⎦(答案不唯一)【解析】【分析】(1)根据题意和给出的五张卡片可以解答本题;(2)根据题意和给出的五张卡片可以解答本题;(3)根据题意可以写出相应的算式,本题答案不唯一.【详解】(1)由题意得,抽取2张卡片,乘积最大是20,运算式是(-5) (-4)(2)由题意得,抽取2张卡片,卡片上数字相除的商最小是-2.5,运算式是(-5) 2(3)由题意得,()()456224-⨯-+-=()()425624----⨯=⎡⎤⎣⎦【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下: 与标准质量的差值(单位:千克)−3.5 −2 −1.5 0 1 2.5筐数2 4 2 13 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?【答案】(1)6;(2)与标准重量比较,20筐白菜总计超过5千克;(3)出售这20筐白菜可卖549元.【解析】【分析】(1)求出最重的一筐的重量和最轻的一筐的重量,相减即可得出答案;(2)将20筐白菜的重量相加即可得出答案;(3)将总重量乘以价格即可得出答案.详解】解:(1)根据题意可得最重的一筐重:15+2.5=17.5(千克)最轻的一筐重:15-3.5=11.5(千克)∴最重的一筐比最轻的一筐重:17.5-11.5=6(千克);(2)2×(-3.5)+4×(-2)+2×(-1.5)+1×0+3×1+8×2.5=5答:与标准重量比较,20筐白菜总计超过5千克;(3)1.8×(15×20+5)=549(元)答:出售这20筐白菜可卖549元.【点睛】本题主要考查了正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性.26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示的数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.【答案】(1) −32;(2) t=3;(3)283;(4) |m−n|.【解析】分析】(1)根据实数在数轴上的排列特点和绝对值的意义,先根据E点到原点的距离是确定该数的绝对值是32,在根据该点在原点的左侧还是右侧判断其符号.(2)分别求出两个时间点上点P 的位置,即可判断;(3)根据t=8时,求出点P到E点的距离,确定t=p时P点的位置,即可求n的值;(4)根据数轴上两点间的距离公式即可.【详解】(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是32,符号是“−”,故答案是:−3 2 .(2)当t=3,t=4时0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t=3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=4时,点P的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t=3(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是−1.6.此时点P到点A距离是2.6个单位长度,所以p=2.6÷0.3=2 83.故答案是2 83.(4)根据数轴上两点间的距离公式点M和N的距离等于|m−n|,故答案是|m−n|.【点睛】本题考查了数轴与两点间的距离的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.。

湘教版七年级上册数学期中考试试题及答案

湘教版七年级上册数学期中考试试题及答案

湘教版七年级上册数学期中考试试卷一、选择题。

(每小题只有一个答案正确)1.若海平面以上1045m ,记做1045+m ,则海平面以下155m ,记作()A .-155mB .0mC .1045m -D .155m2.2020-的相反数是()A .2020B .2020-C .12020D .12020-3.计算:36--()A .-3B .3C .9D .-94.下列代数式书写规范的是()A .8x÷B .124bC .3aD .25a b +元5.多项式235532+-x y x y 的次数和常数项分别是()A .6和2B .6和2-C .5和2D .5和2-6.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A .2.1×109B .0.21×109C .2.1×108D .21×1077.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是()A .||4a >B .0c b ->C .0ac >D .0a c +>8.如图所示,是一个运算程序示意图.若第一次输入k 的值为125,则第2020次输出的结果是()A .2020B .25C .1D .5二、填空题9.-3的倒数是___________10.2020年湘潭市某一天的最高气温为2-℃,最低气温为10-℃,这天湘潭市的温差是__℃;11.单项式223ab -的系数是____________.12.在一条数轴上,点A 表示3-,点B 和点A 距离4个单位长度,则点B 表示的数是______;13.现定义一种新运算“*”,规定a b ab a b *=+-,如131313*=⨯+-,则2(5)*-=_____;14.已知||3a =,2b =,且0⋅<a b ,则a b +的值为_______;15.已知2|2|(3)0a b -++=,则a b =______.16.由白色小正方形和黑色小正方形组成的图形分别如下图所示,其中第一个图形由1个白色小正方形和4个黑色小正方形组成,则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____.(用含n 的代数式表示,n 是正整数)三、解答题17.把下列各数分别填入相应的大括号里:7.1-,3,5--,45+,34-,0,()0.25-+,12非负数集合{……};整数集合{……};分数集合{……}18.计算:(1)(5)9-+(2)32(89-⨯(3)(32)7(8)-+--19.计算:(1)[](10)(5)(2)-÷-⨯-(2)22(5)(2)(4)⨯-+-÷-(3)11(1)(60)35-+⨯-20.在数轴上表示出下列各数:0, 2.5-,142,4-,6+,123,并用“<”将它们排序.21.动物园在检测成年麦哲伦企鹅的身体状况时,最重要的一项工作就是称体重,已知某动物园对6只成年麦哲伦企鹅进行称重检测,以4千克为标准,超过或不足的千克数分别用正数和负数表示,称重记录如下表所示,求这6只企鹅的总体重编号123456差值(kg )0.08-0.09+0.05+0.05-0.08+0.06+22.如果a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,求代数式2a bx cd x+++的值.23.某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米1.3元;超过5千米的部分,每千米2.4元.(1)若某人乘坐了x (5x >)千米的路程,则他应支付的费用是多少?(用含x 的代数式表示)(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?24.湘潭某电影院的第一排有10个座位,后面一排比紧挨的前面一排多1个座位.(1)如果该电影院2号厅有6排座位,那么该厅共有多少个座位?(2)如果有n 排座位,那么该厅第n 排有几个座位?(用含n 的代数式表示)(3)如果后面一排比紧挨的前面一排多2个座位,那么第n 排有几个座位?(用含n 的代数式表示)(4)如果后面一排比紧挨的前面一排多a 个座位,那么第n 排有几个座位?(用含n 、a 的代数式表示)25.观察下列等式:第1个等式:1111a 11323==⨯-⨯(;第2个等式:21111a 35235==⨯-⨯();第3个等式:31111a 57257==⨯-⨯(;第4个等式:41111a 79279==⨯-⨯(;…请解答下列问题:(1)按以上规律列出第5个等式:a 5==;(2)用含有n 的代数式表示第n 个等式:a n ==(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.26.如图,长方形的长都为a ,宽都为b ,图①中内部空白部分为半圆,图②中2个圆与图③中8个圆大小分别相等,三个图形中阴影部分的面积分别记为1S 、2S 、3S .(结果保留π)(1)计算1S (用含a ,b 的代数式表示);(2)根据(1)问的结果,求当4a =,2b =时1S 的值;(3)分别用含a ,b 的代数式表示2S 、3S ,然后判断3个图形中阴影部分面积的大小关系.参考答案1.A【分析】根据相反意义的量,海平面以上1045m记做“1045m”,那么海平面以下155m记做-155m即可.【详解】解:海平面以下155m记做“-155m”.故选:A.【点睛】本题考查了对正数和负数的理解和运用,关键是理解相反意义的量的记法.2.A【分析】直接利用相反数的定义得出答案.【详解】解:-2020的相反数是:2020.故选:A.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.3.D【分析】由有理数的减法运算法则进行计算,即可得到答案.【详解】--=-;解:369故选:D.【点睛】本题考查了有理数的减法法则,解题的关键是掌握运算法则进行计算.4.C【分析】利用代数式书写要求判断即可.【详解】解:A 、原式=8x,不符合题意;B 、原式=94b ,不符合题意;C 、原式符合题意,D 、25a b +元,不符合题意;故选:C .【点睛】此题考查了代数式,熟练掌握代数式书写要求是解本题的关键.5.B 【分析】根据多项式中次数最高的项的次数叫做多项式的次数,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项可得答案.【详解】解:235532+-x y x y 的次数是6,常数项是2-,故选:B .【点睛】此题主要多项式,关键是掌握多项式次数的确定方法.6.C 【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).【详解】210000000一共9位,从而210000000=2.1×108.故选C.7.B 【详解】分析:观察数轴得到实数a ,b ,c 的取值范围,根据实数的运算法则进行判断即可.详解:∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确;∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.故选B.点睛:主要考查数轴、绝对值以及实数及其运算.观察数轴是解题的关键.8.D 【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【详解】解:第一次,当125x =时,1255x =,第二次,当25x =时,155x =,第三次,当5x =时,115x =,第四次,当1x =时,45x +=,第五次,当5x =时,115x =,第六次,当1x =时,45x +=,第七次,当5x =时,115x =,……∴当第奇数次(第一次除外)时输出1,第偶数次时输出5,故第2020次输出的结果是5,故选:D .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.9.13-【分析】乘积为1的两数互为相反数,即a 的倒数即为1a,符号一致【详解】∵-3的倒数是13-∴答案是13-10.8【分析】直接利用有理数的加减运算法则计算得出答案.【详解】解:∵某市一天最高气温为-2℃,最低气温为-10℃,∴那么这天的日温差是:-2-(-10)=8(℃).故答案为:8.【点睛】此题主要考查了有理数的减法,正确掌握相关运算法则是解题关键.11.23-【解析】根据单项式的系数(指单项式中的数字因数,包括单项式的符号及有分母的部分)可得223ab -的系数是23-.故答案是:23-.12.1或-7.【分析】在数轴上,点A 表示的有理数是-3,点B 与点A 的距离为4个单位长度,则B 点表示的数有两个.【详解】解:∵点A 表示的有理数是-3,点B 与点A 的距离为4个单位长度,∴-3+4=1或-3-4=-7,∴B 点表示的数是1或-7.【点睛】本题考查了数轴和有理数的加减法法则,掌握数轴与点一一对应的关系是解题的关键.13.-3【分析】根据a b ab a b *=+-,将a =2、b =-5代入即可解决.【详解】解:∵a b ab a b *=+-,∴2(5)*-()()2525⨯-+--=1025=-++3=-,故答案为:-3.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有题目中新规定,利用新规定解答.14.±1【分析】先依据绝对值的性质求得a 、b 的值,然后依据0ab <可确定出a 、b 的值,然后依据有理数的加法法则计算即可.【详解】解:||3a =Q ,||2=b ,且0ab <,3a ∴=,2b =-或3a =-,2b =.∴当3a =,2b =-时,3(2)1a b +=+-=;当3a =-,2b =时,321a b +=-+=-.故答案为:±1.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的加法,熟练掌握相关法则是解题的关键.15.9【分析】先根据绝对值的非负性、偶次方的非负性求出a 、b 的值,再代入计算有理数的乘方即可得.【详解】由绝对值的非负性、偶次方的非负性得:2030a b -=⎧⎨+=⎩,解得23a b =⎧⎨=-⎩,则()239a b =-=,故答案为:9.【点睛】本题考查了绝对值的非负性、偶次方的非负性、有理数的乘方,熟练掌握绝对值与偶次方的非负性是解题关键.16.n 2+4n .【分析】观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律可以表示出结果n 2+4n .【详解】解:第1个图形:白色正方形1个,黑色正方形4×1=4个,共有1+4=5个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个,共有4+8=12个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个,共有9+12=21个;…,第n 个图形:白色正方形n 2个,黑色正方形4n 个,共有n 2+4n 个.故答案为:n 2+4n .【点睛】本题是对图形变化规律的考查,把小正方形分成黑、白两个部分求出变化规律是解题的关键,要注意个数与序数的关系.17.非负数集合{3,+45,0,12,……};整数集合{3,5--,+45,0,……};分数集合{7.1-,34-,()0.25-+,12,……}【分析】根据非负数,整数,分数的定义可得出答案.【详解】解:非负数集合{3,+45,0,12,……};整数集合{3,5--,+45,0,……};分数集合{7.1-,34-,()0.25-+,12,……}【点睛】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.18.(1)4;(2)112-;(3)-17【分析】(1)根据有理数加法法则进行计算即可;(2)根据有理数乘法法则进行计算即可;(3)根据有理数减法法则将减法转化为加法,再用加法法则进行计算即可.【详解】解:(1)()59=4-+;(2)3218912⎛⎫-⨯=- ⎪⎝⎭;(3)原式3278=-++258=-+17=-.【点睛】本题考查了有理数的运算,熟练掌握各运算法则是解题的关键.19.(1)-1;(2)-11;(3)-52【分析】(1)先计算括号里,再按乘除法运算法则计算即可;(2)根据有理数混合计算顺序,先算乘方,再计算乘除,最后计算加减即可;(3)根据乘法的分配律进行简便计算即可.【详解】解:(1)[](10)(5)(2)-÷-⨯-(10)10=-÷1=-;(2)22(5)(2)(4)⨯-+-÷-104(4)=-+÷-101=--11=-;(3)11(1)(60)35-+⨯-111(60)(60)(60)35=⨯--⨯-+⨯-602012=-+-52=-.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.数轴见解析,114 2.5024632-<-<<<<+【分析】先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.【详解】解:如图所示:从左到右用“<”连接为:114 2.5024632-<-<<<<+.【点睛】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.21.24.15kg【分析】根据正负数的意义及有理数的加法计算6只企鹅的总体重相比较标准总体重的变化,然后根据标准的总体重计算即可.【详解】解:-0.08+0.09+0.05+(-0.05)+0.08+0.06=0.15(kg ),6×4+0.15=24+0.15=24.15(kg ),答:这6只企鹅的总体重24.15kg .【点睛】本题考查了有理数加法的应用,明确正负数的意义及加法法则是解题的关键.22.2【分析】利用互为相反数的两个数和为0,互为倒数的两个数积为1,以及绝对值的代数意义求出a +b ,cd 以及x 2的值,代入原式计算即可得到结果.【详解】解:根据题意得:a +b =0,cd =1,x =±1,则x 2=1,所以,原式=0+1+1=2.【点睛】此题考查了代数式求值,掌握相反数、倒数以及绝对值的意义解答本题的关键.23.(1)(2.40.6x +)元;(2)15元【分析】(1)应支付的费用=起步价+3到5千米的收费标准×2+超过5千米的收费标准×超过5千米的距离.由此可列出所求的式子;(2)分别求出三段的费用,然后再进行计算即可解答,或者直接代入上题的代数式解答.【详解】(1)由题可知:乘坐x (5x >)千米的路程,支付的费用:102 1.3 2.4(5)x +⨯+- 2.40.6x =+(元);(2)当6x =时,应支付的费用:6 2.40.615⨯+=(元)【点睛】本题主要考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系.24.(1)75;(2)9n +;(3)28n +;(4)10an a +-【分析】(1)根据题意,分别表示各排的座位数,再进一步计算其和.(2)根据题意,可知多几排就多几个座位,用字母表示即可.根据表示的规律进行计算.(3)运用(2)中规律得出第n 排座位数:10+2(n-1)求出即可;(4)运用(2)中规律得出第n 排座位数:10+a (n-1)求出即可.【详解】解:(1)10+11+12+13+14+15=75.故该厅一共有75个座位;(2)第n 排座位数:10+(n-1)=n+9,故该厅第n 排有(n+9)个座位;(3)第n 排座位数:10+2(n-1)=2n+8,故该厅第n 排有(2n+8)个座位,(4)第n 排座位数:10+a (n-1)=10+an-a .故该厅第n 排有(10+an-a)个座位.【点睛】此题主要考查了列代数式,本题的关键是通过逐个计算每一排的座位数归纳出一般规律是解题关键.25.(1)1111 9112911⨯-⨯,()(2)()()1111 2n 12n+122n 12n+1⨯--⨯-,()(3)100201【分析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(3)运用变化规律计算【详解】解:(1)a 5=1111=9112911⨯-⨯();(2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-();(3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-(()()()11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭.26.(1)2112S ab b π=-;(2)82π-;(3)2212S ab b π=-,2312S ab b π=-,123S S S ==.【分析】(1)图形(1)中阴影部分的面积1S 是长方形与半圆的差;(2)4a =,2b =代入(1)的式子即可计算;(2)图(2)中2S 为长方形与两个小圆的差;图(3)中3S 为长方形与八个小圆的差;分别求出它们的值后再比较即可得到结论.【详解】解:(1)2112S ab b π=-(2)由(1)得2112S ab b π=-,当4a =,2b =时,211422822S ππ=⨯-⨯=-(3)22212()22b S ab ab b ππ=-=-,22318()42b S ab ab b ππ=-=-,则123S S S ==.【点睛】本题主要考查了列代数式及其应用,涉及了长方形与圆的面积公式,阴影部分的面积是两种图形面积的差.此题是代数式在实际生活中的应用.。

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试卷及答案

北师大版七年级上册数学期中考试试题一、单选题1.如图所示几何体的左视图是()A .B .C .D .2.1||202--的相反数为()A .2021-B .2021C .12021-D .120213.下列说法正确的是()①有理数包括正有理数和负有理数;②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小;A .②B .①③C .①②D .②③④4.用科学记数法表示63800000千米为()A .6.38×107千米B .6.38×108千米C .6.38×106千米D .6.38×109千米5.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是()A .1B .2C .4D .56.如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是()A .b a -B .-a bC .a b+D .a b--7.实数a ,b 在数轴上的位置如图所示,则下列式子正确的是()A .a b >B .||||a b >C .0ab >D .0a b +>8.甲和乙两个几何体都是由大小相同的小立方块搭成,它们的俯视图如图,小正方形中数字表示该位置上的小立方块个数()A .甲和乙左视图相同,主视图相同B .甲和乙左视图不相同,主视图不相同C .甲和乙左视图相同,主视图不相同D .甲和乙左视图不相同,主视图相同9.用m 元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式()A .y=n(100m+0.6)B .y=n(100m)+0.6C .y=n(100m+0.6)D .y=n(100m)+0.610.如果ab≠0,那么a ba b+的值不可能是()A .0B .1C .2D .-2二、填空题11.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )·x -(3⊕x )的值为________(“·”和“-”仍为实数运算中的乘号和减号).12.同学们都知道,|5(2)|--表示5与-2之差的绝对值,实际上也可以理解为5与-2两数在数轴上所对的两点之间的距离,则使得|1||5|6x x -++=这样的整数x 有____个.13.若|2a ﹣7|=7﹣2a ,则a 的取值范围为_______.14.若16=a 4=2b ,则代数式a-2b=______.15.把如图所示的正方体展开图折叠成正方体后,“我”字一面的相对面上的字是____.16.如图,数轴上M 点表示的数为m ,化简|3+m|+2|2+m|-|m-3|=_______.17.如图,在数轴上有A 、B 两个动点,O 为坐标原点.点A 、B 从图中所示位置同时向数轴的负方向运动,A 点运动速度为每秒1个单位长度,B 点运动速度为每秒3个单位长度,当运动_____秒时,点O 恰好为线段AB 中点.18.某长方体包装盒的展开图如图所示.如果长方体盒子的长比宽多4cm ,高2cm ,求这个包装盒的体积是___________.三、解答题19.计算:(1)()()22362⨯--÷-(2)20201310.252428⎛⎫⎛⎫-÷---⨯ ⎪ ⎪⎝⎭⎝⎭(3)37711481224⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭(4)()2321124232343⎛⎫-⨯-+-÷⨯- ⎪⎝⎭20.用简便方法计算:(1)-991718×9(2)(﹣5)×(﹣367)+(﹣7)×(﹣367)+12×(﹣367)21.把下面的有理数填在相应的大括号里:15,-38,0,-30,0.15,-128,225,+20,-2.6.(1)非负数集合:{…};(2)负数集合:{…};(3)正整数集合:{…};(4)负分数集合:{…}.22.画出数轴,用数轴上的点表示下列各数,并用“>”将它们连接起来.2,0,−(−3),−|−1.5|,−1223.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1.求2013(a+b )﹣cd+2m .24.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A 地出发,晚上到达B 地.约定向北为正,向南为负,当天记录如下:(单位:千米)﹣18.3,﹣9.5,+7.1,﹣14,﹣6.2,+13,﹣6.8,﹣8.5(1)问B 地在A 地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?25.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+10﹣1﹣2请问,该服装店售完这30件连衣裙后,是赚了还是赔了?赚了或者赔了多少钱?26.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.(1)如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D______【A,B】的好点,但点D______【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2.数______所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过______秒时,P、A和B中恰有一个点为其余两点的好点?参考答案1.C2.B3.A4.A5.A6.C7.B8.D9.A10.B11.-2【详解】解:按照运算法则可得(1⊕2)=1,(3⊕2)=4,所以(1⊕x)•x-(3⊕x)=1×2-4=-2.故答案为:-2.12.7【分析】要求的整数值可以进行分段计算,令x-1=0或x+5=0时,分为3段进行计算,最后确定的值.【详解】令x-1=0或x+5=0时,则x=-5或x=1当x<-5时,∴-(x-1)-(x+5)=6,-x+1-x-5=6,x=-5(范围内不成立)当-5≤x<1时,∴-(x-1)+(x+5)=6,-x+1+x+5=6,6=6,∴x=-5、-4、-3、-2、-1、0.当x≥1时,∴(x-1)+(x+5)=6,x-1+x+5=6,2x=2,x=1,∴综上所述,符合条件的整数x 有:-5、-4、-3、-2、-1、0、1,共7个.故答案为713.a≤72【解析】根据绝对值的性质可得270a -,据此可得a 的取值范围.【详解】解:因为|27|72a a -=-,所以270a -,所以72a .故答案为:72a .【点睛】本题考查了绝对值的定义.熟记绝对值的定义和性质是解题的关键.14.6-或-10【解析】【分析】先分析数字16,可知4216=2=4,然后对比式子416=2b a =,故此可求出a 、b 的值.【详解】由题知,416=2b a =,又知4216=2=4,故可得:24,a b =±=所以22246a b -=-⨯=-.或222410a b -=--⨯=-【点睛】本题考查幂指数的含义及应用,详细了解特殊数字的幂指数有助于解题.15.爱【解析】【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【详解】“我”字一面的相对面上的字是:爱,故答案为:爱.【点睛】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.16.-4【分析】由数轴可知:-3<m<-2,2<-m<3,所以可知:3+m>0,2+m<0,m-3<0.计算绝对值再化简即可.【详解】解:由数轴可知-3<m<-2,∴3+m>0,2+m<0,∴原式=3+m-2(2+m)-(3-m)=3+m-4-2m-3+m=-4,故答案为:-4.【点睛】此题主要考查了绝对值的性质,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值还是0.除此之外还考查了数轴的概念和整式的加减.17.1【分析】设经过t秒,点O恰好是线段AB的中点,因为点B不能超过点O,所以0<t<2,经过t 秒,点A,B表示的数为﹣2﹣t,6﹣3t,根据题意可知﹣2﹣t<0,6﹣3t>0,化简|﹣2﹣t|=|6﹣3t|,即可得出答案.【详解】解:设经过t秒,点O恰好为线段AB中点.根据题意可得:经过t秒,点A表示的数为﹣2﹣t,AO的长度为|﹣2﹣t|,点B表示的数为6﹣3t,BO的长度为|6﹣3t|.因为点B不能超过点O,所以0<t<2,则|﹣2﹣t|=|6﹣3t|.因为﹣2﹣t<0,6﹣3t>0,所以﹣(﹣2﹣t)=6﹣3t,解得:t=1.故答案为:1.【点睛】本题考查了绝对值的意义以及解一元一次方程,根据题意列出等式应用绝对值的意义化简是解答本题的关键.18.90cm 3【解析】【分析】要求长方体的体积,需知长方体的长,宽,高,结合图形可知2个宽+2个高=14,依此可求长方体盒子的宽;再根据长方体盒子的长=宽+4,可求长方体盒子的长;再根据长方体的体积公式即可求解.【详解】解:(14-2×2)÷2=(14-4)÷2=10÷2=5(cm ),即长方体的宽为5cm ,5+4=9(cm ),即长方体的长为9cm ,则9×5×2=90(cm 3).故答案为:90cm 3.【点睛】本题考查了几何体的表面积的运用,几何体的体积公式的运用,关键是得到长方体的长,宽,高.19.(1)21;(2)5;(3)-35;(4)83-【解析】【分析】有理数的混合运算,先算乘方,再算乘除,最后算加减,如果有括号,先计算括号里面的,根据有理数的混合运算法则逐一解答即可;【详解】解:(1)原式=2×9-(-3)=18+3=21;(2)原式=()13122448⎛⎫-⨯---⨯ ⎪⎝⎭=()()26923235--=--=+=;(3)原式=()77244221143754812⎛⎫-+⨯-=-+-=- ⎪⎝⎭;(4)原式=()144416844274399333-⨯+-⨯⨯=--=-;【点睛】本题考查了含乘方的有理数的混合运算,属于基础题目,熟练掌握运算法则和运算顺序是解题的关键.20.(1)18992-;(2)0【解析】【分析】(1)根据171991001818-=-进行求解即可;(2)利用乘法的结合律求解即可.【详解】解:(1)1799918-⨯1100918⎛⎫=-⨯ ⎪⎝⎭19002=-18992=-;(2)()()6665373123777⎛⎫⎛⎫⎛⎫-⨯-+-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()6571237⎛⎫=-+-+⨯-⎡⎤ ⎪⎣⎦⎝⎭()6571237⎛⎫=--+⨯- ⎪⎝⎭0=.【点睛】本题主要考查了有理数乘法的运算律,熟知有理数乘法运算律是解题的关键.21.(1)15,0,0.15,225,+20;(2)-38,-30,-128,-2.6;(3)15,+20;(4)-38,-2.6【解析】【详解】解:(1)非负数集合:15,0,0.15,225,+20,⋯;(2)负数集合:−38,−30,−128,−2.6,⋯;(3)正整数集合:15,+20,⋯;(4)负分数集合:−38,−2.6,⋯.22.数轴表示见解析,()1320 1.52-->>>->--【解析】【分析】先化简−(−3),−|−1.5|,然后即可在数轴上将各数表示出来,再根据点在数轴上的位置比较大小即可;【详解】解:−(−3)=3,−|−1.5|=-1.5;在数轴上表示如下:用>连接起来为:()1320 1.52-->>>->--【点睛】本题考查了数轴和绝对值,属于基础题目,熟练掌握基本知识是解题的关键.23.1或-3【解析】【分析】根据题意可得0,1,1a b cd m +===±,然后代值计算即可;【详解】解:因为a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是1,所以0,1,1a b cd m +===±,当m=1时,原式=2013×0-1+2×1=1;当m=-1时,原式=2013×0-1+2×(-1)=-3;所以所求代数式的值为1或-3.【点睛】本题考查了有理数的相反数、绝对值、倒数以及代数式求值,属于常考题型,熟练掌握有理数的基本知识是解题的关键.24.(1)B地在A地南方,相距43.2千米;(2)这一天共耗油16.68升.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【详解】解:(1)-18.3+(-9.5)+7.1+(-14)+(-6.2)+13+(-6.8)+(-8.5)=-43.2(km),答:B地在A地南方,相距43.2千米;(2)(|-18.3|+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|)×0.4=83.4×0.2=16.68(升).答:这一天共耗油16.68升.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是注意理解相反意义的量的含义,耗油量=行使的路程×单位耗油量.25.赚了;赚了405元.【解析】【分析】根据题意和表格中的数据可以求得该服装店在售完这30件连衣裙后,赚了多少钱进而得出结论和答案.【详解】解:由题意可得,该服装店在售完这30件连衣裙后,所得的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,是赚了,赚了405元.26.(1)不是,是;(2)0或-8;(3)5或7.5或10.【分析】(1)根据定义发现:好点表示的数到【A,B】中,前面的点A是到后面的数B的距离的2倍,从而得出结论;(2)点M到点N的距离为6,分三等分为份为2,根据定义得:好点所表示的数为0或-8;(3)根据题意得:PB=4t,AB=40+20=60,PA=60-4t,由好点的定义可知:分两种情况列式:①PB=2PA;②PA=2PB;可以得出结论.【详解】(1)如图1,∵点D到点A的距离是1,到点B的距离是2,根据好点的定义得:DB=2DA,那么点D不是【A,B】的好点,但点D是【B,A】的好点;(2)如图2,4-(-2)=6,6÷3×2=4,即距离点M4个单位,距离点N2个单位的点就是所求的好点0;∴数0所表示的点是【M,N】的好点;4-(-8)=12,-2-(-8)=6,同理:数-8所表示的点也是【M,N】的好点;∴数0或-8所表示的点是【M,N】的好点;(3)如图3,由题意得:PB=4t,AB=40+20=60,PA=60-4t,点P走完所用的时间为:60÷4=15(秒),分四种情况:①当PA=2PB时,即2×4t=60-4t,t=5(秒),P是【A,B】的好点,②当PB=2PA时,即4t=2(60-4t),t=10(秒),P是【B,A】的好点,③当AB=2PB时,即60=2×4t,t=7.5(秒),B是【A,P】的好点,④当AB=2AP时,即60=2(60-4t),t=7.5(秒),A是【B,P】的好点,∴当经过5秒或7.5或10秒时,P、A和B中恰有一个点为其余两点的好点.。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021-的相反数是()A.2021-B.2021C.12021D.12021-2.下列运算正确的是()A.4m-m=3B.2a2-3a2=-a2C.a2b-ab2=0D.x-(y-x)=-y3.下列各数中最大的是()A.3-B.2-C.0D.14.12-的倒数是()A.﹣2B.12C.12-D.12±5.与a﹣b﹣c 的值不相等的是()A.a﹣(b﹣c)B.a﹣(b+c)C.(a﹣b)+(﹣c)D.(﹣b)+(a﹣c)6.将这个数285000000用科学记数法表示为()A.628510⨯B.728.510⨯C.82.8510⨯D.90.28510⨯7.一个多项式与5a 2+2a﹣1的和是6a 2﹣5a+3,则这个多项式是()A.a 2﹣7a+4B.a 2﹣3a+2C.a 2﹣7a+2D.a 2﹣3a+48.用四舍五入法,0.00356精确到万分位的近似数是()A.0.003B.0.004C.0.0035D.0.00369.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为()A.12B.24C.27D.3010.已知a 、b 是不为0的有理数,且a a =-,b b =,a b >,那么用数轴上的点来表示a 、b ,正确的是()A.B.C.D.二、填空题11.如果把“增加16%”记作“16%”,那么“______”表示“减少8%”.12.已知飞机的飞行高度为10000m ,上升5000m -后,飞机的飞行高度是____m .13.多项式232xy x y -+的次数是_____.14.如果223m n xy -与35m x y -是同类项,则n m 的值为______.15.若代数式5x-5与2x-9的值互为相反数,则x=________.16.已知a、b、c 三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的是_____(写序号)17.当2x =时,代数式31ax bx -+的值等于-17,那么当1x =-时,代数式33125bx ax -+-的值____.18.若单项式﹣23ax y与﹣2513b x y +是同类项,则a+b=___.三、解答题19.计算:()2411236⎡⎤--⨯--⎣⎦20.计算:22711150(6)(7)9126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦.21.先化简,再求值:()223233()a ab a b ab b ⎡⎤---++⎣⎦,其中3a =-,13b =.22.已知多项式22622452x mxy y xy x --+-+化简后的结果中不含xy 项.(1)求m 的值;(2)求代数式32322125m m m m m m ---+--++的值.23.若a、b 互为相反数,c、d 互为倒数,m 的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求a bm cd m+++的值.24.某公司5天内货品进出仓库的吨数如下:(“+”表示进库,“一”表示出库)+23,﹣30,﹣16,+35,﹣33(1)经过这5天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这5天,仓库管理员结算发现仓库里还有货品508吨,那么5天前仓库里存有货品多少吨?(3)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?25.已知多项式2244A x xy y =-+,225Bx xy y =--.(1)求23A B -;(2)若0A B C ++=,求多项式C .26.某人去水果批发市场采购猕猴桃,他看中了A、B 两家猕猴桃.这两家猕猴桃品质一样,零售价都为6元/千克,批发价各不相同,A 家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B 家的规定如下表:数量范围(千克)0~500500以上~15001500以上~25002500以上价格(元)零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发600千克猕猴桃,则他在A 、B 两家批发分别需要多少元?(2)如果他批发x 千克猕猴桃(1500<x<2000),请你分别用含x 的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克猕猴桃,你能帮助他选择在哪家批发更优惠吗?请说明理由.27.小明妈妈在某玩具厂工作,厂里规定每个工人生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈十天内的生产情况记录表(超过记为正、不足记为负):天数12214增、减产值+6﹣7﹣4+5﹣1(1)与原计划相比,小明妈妈十天生产玩具总计超过或不足多少个?(2)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,求小明妈妈这十天的工资总额是多少元?参考答案1.B【解析】【分析】根据相反数的定义求解即可.【详解】解:根据相反数的定义:−2021的相反数是2021,【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.B 【解析】【分析】根据整式加减法的运算法则“如果遇到括号.按去括号法则先去括号:括号前是“+”号,把括号和它前面的“+”号去掉.括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉.括号里各项都改变符号.合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.”进行逐项判断即可.【详解】解:A.43m m -=,故A 选项错误;B.22223a a a -=-,故B 选项正确;C.不是同类项,无法进行减法运算,故C 选项错误;D.()2x y x x y --=+,故D 选项错误;故答案为:B.【点睛】本题考查整式加减运算.合并同类项关键把握字母相同,并且各字母的指数也分别对应相同.需要注意,所有的常数项也都是同类项.去括号时,括号前是负号,去括号后括号里各项都变号.3.D 【解析】把选项中的4个数按从小到大排列,即可得出最大的数.【详解】由于-3<-2<0<1,则最大的数是1故选:D.【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.A【解析】【分析】直接利用倒数的定义得出答案.【详解】解:12的倒数是:-2.故选:A.【点睛】本题主要考查了倒数,正确掌握相关定义是解题关键.5.A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号6.C 【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数,据此分析即可.【详解】解:8285000000 2.8510=⨯故选:C 【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.7.A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.D【解析】【分析】把万分位后的数字6进行四舍五入即可.【详解】解:精确到万分位,0.003560.0036故选:D【点睛】此题考查了近似数和有效数字,解题关键在于掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.9.C【解析】【分析】根据新定义的公式代入计算即可.【详解】∵()*23m n m n =+⨯-,∴()6*3-=()623(3)27+⨯--=,故选C.【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.10.C 【解析】【分析】根据绝对值的含义和数轴的性质判断即可.【详解】解:由a a =-,b b =,a b>可得:0a ≤,0b ≥,a 到原点的距离大于b 到原点的距离,观察各选项,可得C 选项符合题意,故选C 【点睛】本题考查了绝对值的意义和数轴的性质,解题的关键是熟练掌握绝对值和数轴的基础性质.11.﹣8%【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】如果把“增加16%”记作“16%”,那么“﹣8%”表示“减少8%”.故答案为:﹣8%.12.5000【解析】【分析】根据题意列式10000+(-5000)计算即可.【详解】根据题意,得飞机的飞行高度是10000+(-5000)=5000(m),故答案为:5000.【点睛】本题考查了有理数的加法,熟练掌握有理数加法的运算法则是解题的关键.13.4##四【解析】【分析】根据多项式次数的定义求解即可,多项式的次数是指多项式中次数最高的项的次数.【详解】解:多项式232xy x y -+含有两个单项式2xy -,32x y ,它们的次数分别为34,所以,多项式232xy x y -+的次数为4故答案为4此题考查了多项式次数的定义,掌握多项式次数的定义是解题的关键.14.8【解析】【分析】根据同类项的定义,列式计算即可.【详解】∵223m n x y -与35m x y -是同类项,∴2m-2=m,n=3,∴n m =32=8,故答案为:8.【点睛】本题考查了同类项即含有的字母相同且相同字母的指数也相同,熟练掌握定义并灵活计算是解题的关键.15.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】解:由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.故答案为:2【点睛】本题考查了相反数的性质以及一元一次方程的解法.16.②③④.【解析】【分析】由数轴分别得出a、b、c三个数的范围,再根据有理数的运算法则对四个结论一一判断即可.【详解】由数轴可得:﹣3<a<﹣2,0<b<1,﹣1<c<0,①数轴上右边的点表示的数总比左边的点表示的数大,所以a<c<b,此结论正确;②由数轴图不难得出2<﹣a<3,所以﹣a>b,此结论错误;③异号两数相加,取绝对值大的加数的符号,很明显,|a|>|b|,所以a+b<0,此结论错误;④正数减去负数所得差必为正数,所以c﹣a>0,此结论错误.故答案为②③④.【点睛】本题主要考查数轴、有理数的加减运算法则.17.22【解析】【分析】先对已知条件进行代入变形,可得代数式4a-b的值,再把所求代数式化成已知的形式,然后利用整体代入法求解即可.解:当x=2时,代数式3182117ax bx a b +=+=---,∴8218a b -=-,∴()2418a b -=-,∴49a b -=-,当1x =-时,代入33125bx ax -+-,原式3125b a =--,()345a b =---,()395=-⨯--,275=-,22=,∴代数式33125bx ax -+-的值等于22,故答案为:22.【点睛】题目主要考查利用“整体代入法”求解代数式的值,从题设中获取条件,对代数式化简代入求值是解题关键.18.0【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可求得a,b 的值,继而可求得a+b.解:∵单项式﹣23a x y 与﹣2513b x y +是同类项,∴a=2,b+5=3,解得a=2,b=﹣2,∴a+b=2﹣2=0.故答案为:0.【点睛】本题考查了同类项即所含字母相同,并且相同字母的指数也相同,准确理解定义满足的条件是解题的关键.19.16【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号先算括号里面的;【详解】解:原式()11711291716666=--⨯-=-+⨯=-+=.【点睛】此题要注意正确掌握运算顺序以及符号的处理.20.1【解析】【分析】先算乘方,再算利用乘法分配律将小括号展开,再计算加减法,最后算除法.【详解】解:()()22711150679126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦71115036499126⎡⎤⎛⎫=--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦711150363636499126⎡⎤⎛⎫=-⨯-⨯+⨯÷ ⎪⎢⎥⎝⎭⎣⎦[]502833649=-+-÷4949=÷1=【点睛】本题主要考查了有理数的乘方、乘除以及加减,熟练掌握有理数的乘方、乘除以及加减法则是解答此题的关键.21.229a ab -;27【解析】【分析】先去括号,再合并同类项,然后将值代入计算即可.【详解】解:原式2236333a ab a b ab b=--+--229a ab=-当3a =-,13b =时,原式212(3)9(3)3=⨯--⨯-⨯27=.【点睛】本题考查整式的加减.去括号时,注意要正确运用去括号法则考虑括号内的符号是否变号.22.(1)2m =;(2)14-.【解析】【分析】(1)先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值;(2)由(1)得m=2,先化简合并同类项,然后代入m 的值计算即可.【详解】解:(1)22622452x mxy y xy x --+-+,()22=6+42252x m xy y x ---+由题意中不含xy 项,可得4-2m=0,∴m=2;(2)32322125m m m m m m ---+--++=3226m m --+.23.(1)a+b=0,cd=1,m=±2;(2)3或-1【解析】【分析】(1)根据相反数的性质,倒数的性质,绝对值的性质计算即可;(2)根据(1)中的计算结果整体代入计算即可.【详解】解:(1)因为a、b 互为相反数,c、d 互为倒数,m 的绝对值为2;所以a+b=0,cd=1,2m =±.故答案为:0,1,2±.(2)当m=2时,原式02132=++=;当2m =-时,原式02112=-++=--.所以原式的值为3或1-.【点睛】本题考查相反数的性质,倒数的性质和绝对值的性质,熟练掌握以上知识点是解题关键,同时注意分类讨论思想的应用.24.(1)减少了;(2)5天前仓库里存有货品529吨;(3)这5天一共要付548元装卸费.【解析】【分析】(1)求出这5天的进出货的总和,根据总和的结果,判断货品的增多或减少.(2)根据现在的货品的吨数,逆推出5天前的货品的吨数.(3)计算进出货的绝对值的和,再乘以单价即可.【详解】(1)23﹣30﹣16+35﹣33=﹣21吨,答:仓库的货品减少了,故答案为:减少了;(2)508﹣(﹣21)=529吨,答:5天前仓库里存有货品529吨;(3)4×(|+23|+|﹣30|+|﹣16|+|+35|+|﹣33|)=4×137=548元,答:这5天一共要付548元装卸费.【点睛】本题考查了正数和负数在实际生活中的应用,掌握有理数的加法法则,正数和负数的意义是解题的关键.25.(1)225517xxy y -+;(2)22545x xy y -++【解析】【分析】(1)用多项式替换,适当添加括号,去括号后,合并同类项即可;(2)先计算A+B,根据已知C=-(A+B)即可得到结果.【详解】(1)∵2244A x xy y =-+,225B x xy y =--,∴23A B -=222(44)x xy y -+-223(5)xxy y --=22882x xy y -+-223315x xy y ++=225517x xy y -+;(2)∵2244A x xy y =-+,225B x xy y =--,∴A+B=22(4)4xxy y -++22(5)x xy y --=2244x xy y -++225x xy y --=22554x xy y --,∵0A B C ++=,∴C=-(A+B)=-(22554xxy y --)=22545x xy y -++.【点睛】本题考查了整式的加减中的化简,去括号,合并同类项,熟练掌握去括号,添括号的法则,灵活进行合并同类项是解题的关键.26.(1)A家:3312元,B家:3360元;(2)A家:275x;B家:912002x+;(3)选择B家更优惠,理由见解析【解析】【分析】(1)根据题意和表格可以得到他批发600千克猕猴桃时,在A、B两家批发各需要花费多少钱,从而本题得以解决;(2)根据题意和表格可以得到他批发x千克猕猴桃时(1500<x<2000),在A、B两家批发分别需要花费多少钱,从而本题得以解决;(3)将x=1800分别代入(2)求得的两个式子,计算出结果,然后进行比较,即可解答本题.【详解】解:(1)由题意可得,当批发600千克猕猴桃时,在A家批发需要:6×600×92%=3312(元),当批发600千克猕猴桃时,在B家批发需要:6×500×95%+6×(600-500)×85%=2850+510=3360(元);(2)由题意可得,当他批发x千克猕猴桃(1500<x<2000),他在A家批发需要:6×x×90%=275x(元),当他批发x千克猕猴桃(1500<x<2000),他在B家批发需要:6×500×95%+6×(1500-500)×85%+6×(x-1500)×75%=2850+5100+4.5x-6750=912002x+(元);(3)现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.理由:当他要批发1800千克猕猴桃时,他在A家批发需要:5.4×1800=9720(元),当他要批发1800千克猕猴桃时,他在B家批发需要:4.5×1800+1200=9300(元),∵9720>9300,∴现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.【点睛】本题考查列代数式和代数式求值,解题的关键是明确题意,列出相应的代数式,求相应的代数式的值.27.(1)司机最后在原地的东边,离原地3千米(2)925元【解析】【分析】(1)根据有理数的加法运算法则和乘法运算法则列式计算即可;(2)用小明妈妈十天生产玩具的总数乘5即可.【详解】解:(1)(+6)×1+(﹣7)×2+(﹣4)×2+(+5)×1+(﹣1)×4=﹣15(个),故与原计划相比,小明妈妈十天生产玩具总计不足15个;(2)5×(20×10﹣15)=925(元).故小明妈妈这一周的工资总额是925元.21。

人教版数学七年级上册期中同步测练练习试题(部分含答案)共3份

广东省惠州市博文学校2020年七年级上册期中考试试数学卷(附答案)考试范围:第1-3章时间90分钟分值:120分一.选择题(共10小题,满分30分,每小题3分)1.﹣2的绝对值是()A.4B.﹣4C.2D.﹣22.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab3.下列说法中正确的是()A.最小的整数是0B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等4.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1D.5a2b﹣5ba2=05.某种鲸鱼的体重约为1.36×105kg,关于这个近似数,下列说法正确的是()A.它精确到百位B.它精确到0.01C.它精确到千分位D.它精确到千位6.已知等式2a=3b+4,则下列等式中不成立的是()A.2a﹣3b=4B.2a+1=3b+5C.2ac=3bc+4D.a=b+27.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>08.解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x9.互联网“微商”经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为()A.80元B.100元C.150元D.180元10.a、b是有理数,下列各式中成立的是()A.若a≠b,则|a|≠|b|B.若|a|≠|b|,则a≠bC.若a>b,则|a|>|b|D.若|a|>|b|,则a>b二.填空题(共7小题,满分28分,每小题4分)11.若a、b是互为倒数,则2ab﹣5=.12.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.13.已知地球上海洋面积约为316000000km2,316000000这个数用科学记数法可表示为.14.买一个篮球需要x元,买一个排球需要y元,则买3个篮球和2排球共需元.15.绝对值不大于5的所有整数的和是.16.已知x=3是方程3x﹣2a=5的解,则a=.17.定义运算“@”的运算法则为:x@y=xy﹣1,则(2@3)@4=.三.解答题(一)(共3小题,满分18分)18.(6分)计算:﹣32+(﹣12)×||﹣6÷(﹣1).19.(6分)解方程:(1)5x+4=3(x﹣4)(2)﹣1=.20.(6分)化简求值:(﹣3x2﹣4y2+2x)﹣(2x2﹣5y2)+(5x2﹣8)+6x,其中x,y满足|y ﹣5|+(x+4)2=0.四.解答题(二)(共3小题,满分24分)21.(8分)某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、﹣3、+4、+2、﹣8、+13、﹣2、﹣12、+8、+5(1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?22.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.23.(8分)肖坝社区惠民水果店第一次用615元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多15千克,甲、乙两种苹果的进价和售价如下表:甲乙进价(元/千克)58售价(元/千克)1015(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为735元,求第二次乙种苹果按原价打几折销售?五.解答题(三)(共2小题,满分20分)24.(10分)先观察下列等式,然后用你发现的规律解答下列问题.……(1)计算=;(2)探究=;(用含有n的式子表示)(3)若的值为,求n的值.25.(10分)如图,已如数轴上点A表示数是6,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数;当t=1时,点P所表示的数是;(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时PR相距2个单位长度?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:|﹣2|=2,即﹣2的绝对值是2,故选:C.2.解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a和字母b的指数都不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选:A.3.解:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和﹣1的绝对值相等,但+1不等于﹣1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|﹣1|=1,所以正确;故选:D.4.解:A、3a+2b无法计算,故此选项错误;B、2a3+3a2无法计算,故此选项错误;C、5a2﹣4a2=a2,故此选项错误;D、5a2b﹣5ba2=0,正确.故选:D.5.解:1.36×105精确到千位.故选:D.6.解:∵2a=3b+4,∴2ac=3bc+4c,故C不成立故选:C.7.解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.8.解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.9.解:设这件商品的进价为x元,依题意,得:0.8×(1+50%)x﹣x=30,解得:x=150.故选:C.10.解:A.1≠﹣1,但|1|=|﹣1|,此选项错误;B.|a|≠|b|,则a≠b,此选项正确;C.如1>﹣2,但|1|<|﹣2|,此选项错误;D.|﹣2|>|+1|,但﹣2<+1,此选项错误;故选:B.二.填空题(共7小题,满分28分,每小题4分)11.解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.12.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.13.解:316000000=3.16×108.故答案为3.16×108.14.解:∵买一个篮球需要x元,买一个排球需要y元,∴买3个篮球和2排球共需:(3x+2y)元.故答案为:(3x+2y).15.解:绝对值不大于5的所有整数为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,它们的和为0.故答案为:0.16.解:∵x=3是方程3x﹣2a=5的解,∴9﹣2a=5,解得:a=2.故答案为:2.17.解:根据题意,得:(2@3)@4=(2×3﹣1)×4﹣1=19.故答案是19.三.解答题(一)(共3小题,满分18分)18.解:﹣32+(﹣12)×||﹣6÷(﹣1)=﹣9+(﹣12)×+6=﹣9+(﹣6)+6=﹣9.19.解:(1)5x+4=3(x﹣4),去括号,得5x+4=3x﹣12,移项,得5x﹣3x=﹣12﹣4,合并同类项,得2x=﹣16,系数化成1,得x=﹣8;(2)﹣1=,去分母,得3(4x﹣3)﹣15=5(2x﹣2),去括号,得12x﹣9﹣15=10x﹣10,移项,得12x﹣10x=﹣10+9+15,合并同类项,得2x=14,系数化成1,得x=7.20.解:原式=﹣3x2﹣4y2+2x﹣2x2+5y2+5x2﹣8+6x=y2+8x﹣8,∵|y﹣5|+(x+4)2=0,∴x=﹣4,y=5,则原式=25﹣32﹣8=﹣15.四.解答题(二)(共3小题,满分24分)21.解:(1)10﹣3+4+2﹣8+13﹣2﹣12+8+5=17(千米).答:收工时距O地17千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|﹣12|+|+8|+|+5|=67,67×0.2=13.4(升).答:从O地出发到收工时共耗油13.4升.22.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.23.解:(1)设惠民水果店第一次购进乙种苹果x千克,则购进甲种苹果(2x+15)千克,依题意,得:5(2x+15)+8x=615,解得:x=30,∴2x+15=75.答:惠民水果店第一次购进甲种苹果75千克,乙种苹果30千克.(2)设第二次乙种苹果按原价打y折销售,依题意,得:(10﹣5)×75+(15×﹣8)×30×3=735,解得:y=8.答:第二次乙种苹果按原价打8折销售.五.解答题(三)(共2小题,满分20分)24.解:(1)原式=1﹣﹣+﹣+﹣+﹣=1﹣=;(2)原式=1﹣﹣+﹣+﹣+…+﹣=1﹣=;(3)=+…+==由=,解得n=17,经检验n=17是方程的根,∴n=17.25.解:(1)∵数轴上点A表示的数为6,B是数轴上一点,且AB=10,∴BO=4,∴数轴上点B表示的数为:﹣4,∵动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,∴当t=1时,OP=6.故答案为:﹣4,6;(2)如图1,设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,∵BC﹣OC=OB,∴8x﹣6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P.(3)设点R运动x秒时,PR=2.分两种情况:如图2,一种情况是当点R在点P的左侧时,依题意有8x=4+6x﹣2,解得x=1;如图3,另一种情况是当点R在点P的右侧时,依题意有8x=4+6x+2,解得x=3.综上所述R运动1或3秒时PR相距2个单位.2019—2020学年第一学期期中检测七年级数学试题(无答案)一、选择题(本大题共12小题)1. 如果高出海平面30米,记作30+米,那么20-米表示( ) A. 高出海平面20米 B. 低于海平面20米 C. 不足20米D. 低于海平面30米2. 一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是( ) A . 50.0千克 B. 50.3千克C. 49.7千克D. 49.1千克3. 下列说法中,正确的是( ) A 最大的负整数是﹣1B. 有理数分为正有理数和负有理数C. 如果两个数的绝对值相等,那么这两个数相等D. 零没有相反数4. 在112-,12,20-,0 ,()5--,- 1.5-中,负数的个数有( ); A. 2个B. 3 个C. 4 个D. 5 个5. 有理数a,b 在数轴上所对应的点如图所示,下列各选项中错误的是( )A .a 0b -<B. a 0b +<C. a 0b <D. >b a6. 下列各数中互为相反数的是( ) A. 7--和()7+- B. ()10+-和()10-+ C. ()43-和43-D. 54-和54-7. 下列语句:①一个数绝对值一定是正数; ②-a 一定是一个负数;③没有绝对值为-3的数;④若a =a ,则a 是一个正数;⑤离原点左边越远的数就越小;正确的有( )个.A. 0B. 3C. 2D. 48. 2015年在中国等发展中国家的带动下,全球可持续投资再创历史新高,达1550亿美元,这个数据用科学记数法可表示为( )美元.A. 101.5510⨯B. 111.5510⨯C. 121.5510⨯D.131.5510⨯9. 单项式243x y-的系数和次数分别是( )A. 4,3B.43,3 C. 43-,3 D. 43-,2 10. 下列判断正确的是( ). A. 23a b 与2ba 不是同类项B. 23m nπ不是整式C. 单项式32x y -的系数是1-D. 2235x y xy -+是二次三项式11. 在式子:35ab -,225x y ,2x y+,2a bc -,1,231x x -+中,单项式的个数为( ). A. 2个B. 3个C. 4个D. 5个12. 若关于x 、y 的多项式()222358735nx x x x y x -++---+的值与x 无关,则(n = )A. 2B. -2C. 3D. -3二、填空题13. 比较大小:710-______35(“>”,“<”连接). 14. 近似数1.31×810 精确到______位.15. 数轴上点A 所对应的数是-2,则与点A 的距离等于4的点B 所表示的数是 _____,如果点C 所表示的数是-3,则线段BC 的长度______.16. 若|x ﹣2|与(y+3)2互为相反数,则(x+y )2017=_____. 17. 若23x -=,则x 的值为______. 18. 若单项式212m x y -与313n x y -是同类项,则n m 的值是__________. 19. 在①xy ,②5x -,③75ab -,④2a b -+⑤0,⑥2415x -+,⑦2x y +-,⑧4x-,⑨2b π中,单项式有:________,多项式有:________,整式有:________ (填序号)20. 如图,用灰白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖数为______.三、解答题21. 画出数轴,把下列各数:5-、132、0、52-、2-在数轴上表示出来,并用“<”号从小到大连接.22. 请把下列各数填入相应的集合中:59-,-2,+72,-0.6,61,0,0.101,-8,-3.14,710负分数集合:{ …} 分数集合:{ …} 整数集合:{ …} 23. 计算 (1)113512682424⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭(2)()2018211(1)13223⎡⎤⎛⎫-+-⨯+-+ ⎪⎢⎥⎝⎭⎣⎦(3)()()()()322019234221-⨯-+-÷---(4)()()112524 2.584234⎛⎫--+⨯--⨯-⨯- ⎪⎝⎭(5)()225431x y x y +---(6)()()223432241x x x x -+--++24. (1)先化简,再求值,()()22225335a b ab ab a b --+其中13a =,12b =-.(2)已知22m x y 与3n xy -是同类项,计算()()223423m m n m n nm n -+-+-的值.25. 某出租车一天下午以车站为出发地在东西方向的大街上营运,规定向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:9+,3-,5-,4+,8-,6+,3-,6-,4-,+10.(1)将最后一名乘客送到目的地,出租车离车站出发点多远?在车站的什么方向? (2)出租车在行驶过程中,离车站最远的距离是多少?(3)出租车按物价部门规定,起步价(不超过3千米)为8元,超过3千米的部分每千米的价格为1.5元,司机一个下午的营业额是多少?26. 如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.七年级上册期中考试综合训练(附答案)一.选择题1.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.42.如果a与1互为相反数,那么a=()A.2B.﹣2C.1D.﹣13.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>0 4.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y5.某种鞋子进价为每双a元,销售利润率为20%,则这种鞋子的销售价格为()A.20%a B.80%a C.D.120%a 6.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 7.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.48.《算法统宗》是我国古代数学著作,其中记载了一道数学问题大意如下:若将绳子三折后测井深则多4尺;若将绳子四折去测井深则多1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.﹣4=﹣19.已知关于x的方程a﹣x=+3a的解是x=4,则代数式3a+1的值为()A.﹣5B.5C.8D.﹣810.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是.12.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.13.“绿水青山就是金山银山”,为了进一步优化环境,某区计划对长2000米的河道进行整治,原计划每天修x米,为减少施工对居民生活的影响,须缩短施工时间,实际施工时,每天的工作效率比原计划提高25%,那么实际整治这段河道的工期比原计划缩短了天.(结果化为最简)14.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题16.画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来:3,﹣2,1.5,0,﹣0.5.17.出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?18.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.19.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?20.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?参考答案一.选择题1.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.2.解:因为a与1互为相反数,﹣1与1互为相反数,所以a=﹣1,故选:D.3.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.4.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.5.解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.6.解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.7.解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.8.解:设井深为x尺,由题意得:3x+4=4x+1,故选:B.9.解:把x=4代入a﹣4=2+3a,移项合并得:﹣2a=6,解得:a=﹣3,则原式=﹣9+1=﹣8,故选:D.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:﹣2+4=2,故答案为:2.12.解:由a﹣2b+7=13可得a﹣2b=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故答案为:12.13.解:根据题意,得﹣=(天).故答案是:.14.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题16.解:如图所示:∴﹣2<﹣0.5<0<1.5<5.17.解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣5+6=45(千米)答:将最后一名乘客送到目的地时,小王距上午出车时的出发点45千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|+3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升).答:这天上午小王的汽车共耗油7.8升.18.先化简,再求值:解:(2a2b+4ab2)﹣(3ab2+a2b)=a2b+2ab2﹣3ab2﹣a2b=﹣ab2当a=2,b=﹣1时,原式=﹣2×1=﹣2.19.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.20.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.。

七年级上册数学期中考试试题含答案

七年级上册数学期中考试试卷2022年一、单选题1.-5的相反数是( )A .15-B .15C .5D .-5 2.下列运算正确的是( )A .2334a a a +=B .()33a b a b --=-+C .540a a -=D .2222a b a b a b -=-3.下列是一元一次方程的是( )A .231x y -=B .2331x x -=+C .35x +D .2320x x -+= 4.若233n a b +-与144m b a -可以合并,那么2m n -的值是( )A .2-B .1-C .0D .15.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为( )A .6750吨B .67500吨C .675000吨D .6750000吨 6.某商品先按批发价a 元提高20%零售,后又按零售价降低20%出售,则它最后的单价是( )元.A .aB .0.8aC .0.96aD .1.44a7.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是( ) A .28131x x +- B .2251x x -++ C .2851x x -+ D .2251x x -- 8.有理数a ,b 在数轴上的对应点的位置如图所示,则下列选项正确的是( )A .0a b +>B .0a b +<C .-0a b <D .-0a b =9.定义运算2a b ab a b =--★,如13132132=⨯-⨯-=★,则()24-★的值为( ) A .8 B .-8 C .16 D .-1610.下列说法:①符号相反的数互为相反数,①两个四次多项式的和一定是四次多项式:①若abc >0,则a b c a b c++ 的值为3或-1,①如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A .4个B .3个C .2个D .1个二、填空题11.比较大小:13-______0.3-(填“>”或“<”)12.计算:(﹣124)÷(237348-+)=_____.13.若352x y 与153n x y +-是同类项,则n =______.14.已知方程()2350m m x ---=是关于x 的一元一次方程,则m 的值是______.15.已知2320210a b -+=,则462021a b -+=______.16.如图是用大小相等的小正方形拼成的一组图案:观察并探索:第(2021)个图案中有小正方形的个数是______.17.已知2m n x y 与43x y 是同类项,则m -n=________.三、解答题18.计算.(1)()121821---;(2)()()20212223251--⨯-----.19.化简下列各式.(1)222262x y xy x y x y +--.(2)()()5234x y x y ++-.20.已知a ,b 互为相反数,且0a ≠,c ,d 互为倒数,2m =,求()21m a b cdm --++-的值.21.先化简,后求值.求()()22222512a b ab ab a b +--+-的值,其中1a =,2b =-.22.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?23.某城市鼓励市民节约用水,对自来水用户按以下标准收费:若每月用户用水不超过a 立方米,则每立方米的水价按3元收费;若超过a 立方米,则超过的部分每立方米按4元收费.(1)某用户居民在一个月内用水20立方米,那么他该缴多少水费?(2)在第(1)小题的基础上,若15a =,求该用户的水费是多少元?24.小明同学做一道题“已知两个多项式A 、B ,计算2A B -”,小黄误将2A B -看作2A B -,求得结果是C .若213322B x x =+-,2325C x x =--+,请你帮助小明求出2A B -的正确答案.25.(1)一天数学老师布置了一道数学题:已知2021x =,求整式()()()322332678323541x x x x x x x x x --+---+-+++-的值,小明观察后提出:“已知2021x =是多余的”,你认为小明的说法有道理吗?请解释.(2)已知整式2531M x ax x =+--,整式M 与整式N 之差是234x ax x +-.①求出整式N .①若a 是常数,且2M N +的值与x 无关,求a 的值.26.如图,在数轴A 、B 上两点对应的数分别为−40、20,数轴上一点P 对应的数为x . (1)若点P 在A 、B 两点之间,则点P 到A 、B 两点的距离的和为(2)如图,数轴上一点Q 在点P 的右侧,且与点P 始终保持相距18个单位长度.当x 取何值时,点A 与点P 的距离、点B 与点Q 的距离的和为48?(3)结合对前面问题的思考,若()()42530x x y y ++-⋅+-≤,求2x y -的最大值和最小值.参考答案1.C【解析】【分析】根据相反数的定义解答即可.【详解】-5的相反数是5.故选C .【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键.2.D【解析】【分析】根据同类项,合并同类项,去括号法则判断即可.【详解】解:A、3a2和a不能合并,故本选项错误;B、结果是-3a+3b,故本选项错误;C、结果是a,故本选项错误;D、结果是-a2b,故本选项正确;故选:D.【点睛】本题考查了同类项,合并同类项,去括号法则的应用,能熟记法则是解此题的关键.3.B【解析】【分析】一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式【详解】A:含有两个未知数x和y,不满足只含有一个未知数B:移项,合并同类项后为40x+=,符合一元一次方程的定义C:35x+为代数式,不是一元一次方程D:2320-+=不满足未知数的最高次数为1x x故选择:B【点睛】明确一元一次方程的定义是解题的关键4.C【解析】【分析】利用3an+2b3与4bm-1a4可以合并得出关于m,n的方程,进而得出m,n的值,然后代值计算即可得出答案.【详解】解:①-3an+2b3与4bm-1a4可以合并,①2413nm+=⎧⎨-=⎩,解得:42mn=⎧⎨=⎩,①m-2n=4-2×2=0.故选:C.【点睛】本题考查了合并同类项,掌握同类项的定义是解题的关键.5.B【解析】【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【详解】6.75×104吨,这个用科学记数法表示的数据的原数为67500吨.故选B.【点睛】本题考查了科学记数法﹣原数,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.6.C【解析】【分析】先求出零售价,然后求出降价之后的价钱.【详解】解:零售价为:1.2a,降价之后价钱为:1.2a(1-20%)=0.96a.故选C .【点睛】本题考查了列代数式的知识,解答本题的关键是按照步骤分别求出零售价和降价之后的价钱.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.A【解析】【分析】由数轴可知:b <0<a ,结合有理数a 、b 在数轴上的对应点的位置进行求解即可.【详解】由数轴观察到-1<b <0<1<a ,所以a+b >0,故A 正确;a+b >0,故B 错误;a -b >0,故C 、D 错误.故选:A .【点睛】本题考查了数轴,解答本题的关键在于结合有理数a 、b 在数轴上的对应点的位置进行判断求解.9.A【解析】【分析】由新定义的运算法则进行计算,即可得到答案.【详解】解:①2a b ab a b =--★,①()()()242422488-=-⨯-⨯--=-=★;故选:A .【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行解题. 10.D【解析】【分析】利用相反数,绝对值,以及倒数的性质判断即可.【详解】①只有符号相反的数互为相反数,不符合题意;①两个四次多项式的和不一定是四次多项式,不符合题意;①若abc>0,则abca b c ++的值为3或一1,符合题意;①如果a 大于b ,那么a 的倒数不一定小于b 的倒数,不符合题意,故选D .【点睛】此题考查了整式的加减,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键. 11.<【解析】【分析】两个负数比较大小,其绝对值大的反而小,据此判断即可.【详解】解:①110.333-==,|0.3|0.3-=, 又①10.33>, ①10.33-<-, 故答案为:<.【点睛】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.12.﹣1 19【解析】【分析】根据有理数的加减法和除法法则计算即可.【详解】解:原式=116182124242424⎛⎫⎛⎫-÷-+⎪ ⎪⎝⎭⎝⎭=1192424⎛⎫-÷⎪⎝⎭=1242419⎛⎫-⨯⎪⎝⎭=1 19 -故答案为:﹣1 19.【点睛】本题主要考查有理数的混合运算,掌握有理数混合运算的顺序和法则是关键.13.2【解析】【分析】根据同类项的意义列方程求解即可.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:由同类项的意义得,n+1=3,解得:n=2,故答案为:2.【点睛】本题考查同类项的意义,掌握含有的字母相同且相同字母的指数也相同的项是同类项是解决问题的关键.14.-3【解析】【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【详解】解:①(m -3)x |m |-2-5=0是关于x 的一元一次方程,①m−3≠0且|m|−2=1,解得m=-3.故答案为:-3.【点睛】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义.15.-2021【解析】【分析】先将已知等式变形为232021a b -=-,再将所求式子变形,整体代入计算即可.【详解】解:①2320210a b -+=,①232021a b -=-,①()()46202122320212202120212021a b a b -+=-+=⨯-+=-,故答案为:-2021.【点睛】本题考查了代数式求值,解题的关键是掌握整体思想的熟练运用.16.8081【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(n -1)+1个小正方形.【详解】解:由图片可知:第(1)个图案中有4×0+1=1个小正方形,第(2)个图案中有4×1+1=5个小正方形,第(3)个图案中有4×2+1=1个小正方形,…①规律为小正方形的个数=4(n-1)+1=4n-3.n=2021时,小正方形的个数=4n-3=8081.故答案为:8081.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n-1)+1个小正方形.17.3【解析】【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而判断得出答案.【详解】①2x m y n与3x4y是同类项,①m=4,n=1,①m-n=4-1=3.故答案为3.【点睛】此题主要考查了同类项,正确把握定义是解题关键.18.(1)9(2)0【解析】【分析】(1)从左往右计算即可求解;(2)先算乘方,再算乘法,最后算加减.(1)解:()121821---=121821+-=3021-=9;(2)()()20212223251--⨯-----=()4631-+---=4631-+-+=0【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)3x 2y+xy 2;(2)11x -7y【解析】【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项.【详解】解:(1)6x 2y+xy 2-x 2y -2x 2y=(6x 2y -x 2y -2x 2y )+xy 2=3x 2y+xy 2;(2)(5x+y )+2(3x -4y )=5x+y+6x -8y=11x -7y .【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.20.3或7【分析】由题意可知a+b=0,cd=1,m=±2,然后代入所求代数式进行计算即可.【详解】解:①a ,b 互为相反数,①a+b=0,①c ,d 互为倒数,①cd=1,①|m|=2,①m=±2,当m=2时,原式=4+1+0-2=3;当m=-2时,原式=4+1+0-(-2)=7.故m 2-(-1)+|a+b|-cdm 的值为3或7.【点睛】本题主要考查的是有理数的混合运算,求代数式的值、相反数、倒数、绝对值,求得a+b=0,cd=1,m=±2是解题的关键.21.22333a b ab --+,-3【解析】【分析】原式去括号、合并同类项化简,再将a ,b 的值代入计算可得.【详解】解:原式=2222225552a b ab ab a b +-+--=22333a b ab --+,当a=1,b=-2时,原式=()()223123123-⨯⨯--⨯⨯-+=3-【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握去括号、合并同类项法则. 22.(1)这个小组男生百米测试的达标率是62.5%;(2)这个小组8名男生的平均成绩是【解析】【分析】(1)根据非正数是达标数,解得达标数,再将达标数除以总人数即可解题;(2)计算数据的总和,再除以8即可解题.【详解】解:(1)达标人数为5,达标率为58×100%=62.5%.答:这个小组男生百米测试的达标率是62.5%;(2)1.20.7010.30.20.30.58-++--+++=﹣0.1(秒),14﹣0.1=13.9(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】本题考查正数、负数的实际应用,掌握非正数是达标数是解题关键.23.(1)若a≥20,应缴60元;若a<20,应缴(80-a)元(2)65元【解析】【分析】(1)分a≥20,a<20两种情况,根据收费方案列出水费;(2)将a=15代入(1)中对应情况求值即可.(1)解:由题意可得:若a≥20,则该缴3×20=60元;若a<20,则该缴3a+4(20-a)=(80-a)元;(2)当a=15时,该用户的水费是80-15=65元.【点睛】此题主要考查了列代数式,代数式求值,关键是正确理解题意,理清题目中的收费方式.24.-92x2+12x+1.【解析】【分析】将B代入A-2B中计算,根据结果为C,求出A,列出正确的算式,去括号合并即可得到正确结果.【详解】解:根据题意得:A-2B=C,即A-2(12x2+32x-3)=-3x2-2x+5,所以A=-3x2-2x+5+2(12x2+32x-3)=-3x2-2x+5+x2+3x-6 =-2x2+x-1,则2A-B=2(-2x2+x-1)-(12x2+32x-3)=-4x2+2x-2-12x2-32x+3=-92x2+12x+1.【点睛】本题考查了整式的加减,属于常考题型,熟练掌握整式加减的运算法则是解题的关键.25.(1)有道理,过程见解析;(2)①-2x2+(a-2)x-1;①8 11【解析】【分析】(1)根据整式的加减,可得答案.(2)①根据题意,可得N=(x2+5ax-3x-1)-(3x2+4ax-x),去括号合并即可;①把M与N代入2M+N,去括号合并得到最简结果,由结果与x值无关,求出a的值即可.【详解】解:(1)整式的值与x的取值无关,所以小明说的有道理,理由如下:原式=x3-6x2-7x+8+x2+3x-2x3+3+x3+5x2+4x-1=(1-2+1)x3+(-6+1+5)x2+(-7+3+4)x+(8+3-1)=10,由此可知整式的值与x 的取值无关,所以小明说的有道理.(2)①N=(x 2+5ax -3x -1)-(3x 2+4ax -x )=x 2+5ax -3x -1-3x 2-4ax+x=-2x 2+(a -2)x -1;①①M=x 2+5ax -3x -1,N=-2x 2+(a -2)x -1,①2M+N=2(x 2+5ax -3x -1)-2x 2+(a -2)x -1=2x 2+10ax -6x -2-2x 2+(a -2)x -1=(10a -6+a -2)x -3=(11a -8)x -3由结果与x 值无关,得到11a -8=0,解得:a=811. 【点睛】本题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.26.(1)60;(2)43x =-或5;(3)最大值为2,最小值为-14.【解析】【分析】(1)用B 点表示的数减去A 点表示的数即可求解;(2)根据题意Q 点表示的数为()18x +,分为四种情况讨论:①P 在A 点左边、①P Q 、都在A B 、点中间、①P 在A B 、中间,Q 在B 点右边、①P Q 、都在B 点右边,列出方程求解即可;(3)根据绝对值的意义和前两问的结果得到426x x ++-≥,55y y +-≥,结合题意得到()()42530x x y y ++-+-=,根据数轴解该方程即可,然后分类讨论即可求解.【详解】(1)()204060--=①距离为60个单位长度;(2)①若P 在A 点左边,则点P 与点A 的距离为40x --,点Q 与点B 的距离为()()201840201848x x x -+--+-+=,得43x =-,①若P Q 、都在A B 、点中间,此时距离和为601842-=,不符合题意;①若P 在A B 、中间,Q 在B 点右边,则点P 与点A 的距离为()40x --,点Q 与点B 的距离为()1820x +-,()()40182048x x --++-=,得5x =,①若P Q 、都在B 点右边,此时仅点P 与点A 的距离60>,不符合题意; 综上所述,当43x =-或5时,满足题意.(3)由前面可知,426x x ++-≥,55y y +-≥, ①()()42530x x y y ++-+-≥,①已知()()42530x x y y ++-+-≤,①()()42530x x y y ++-+-=,①42x -≤≤,05y ≤≤,当2x =,0y =时,2x y -有最大值:2-0=2,当4x =-,5y =时,2x y -有最小值:42514--⨯=-, 综上所述,2x y -的最大值为2,最小值为-14.。

山东省济南市章丘区2023-2024学年七年级上学期期中考试数学试题(含答案)

章丘区2023-2024学年第一学期期中质量监测七年级数学试题本试题分选择题和非选择题两部分.选择题部分共2页,满分为40分;非选择题部分共6页,满分为110分.本试题共8页,满分为150分.考试时间120分钟.本考试不允许使用计算器.选择题部分共40分一、选择题(本大题共10小题,每小题4分,共40分.在每个小题给出四个选项中,只有一项符合题目要求)1.若汽车向东行驶2km记作+2km,则向西行驶3km记作()A.+2kmB.-2kmC.+3kmD.-3km2.用一个平面去截下列选项中的几何体,截面不可能是圆的是( )3.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猎成交额高达2135亿元.将数据“2135亿”用科学记数法表示为( )A.2.135×1011B.2.135×107C.2.135×1012D.2.135×1034.在数8,- 0.5,-|-2|,0,(- 3)2,-12中,负数的个数是( )A.2B.3C.4D.55.如图是一个正方体的展开图,在原正方体中,与“祝”字所在面相对的面上的汉字是( )A.考B.试C.成D.功6.下列说法正确的有( )① 的系数和次数分别是,4;② -的底数是-2; ③两个数比较大小,绝对值大的反而小; ④最大的负整数是-1.A.1个B.2个C.3个D.4个7.实数a 、b 在数轴上的位置如图所,则下列结论不正确的是( ),A. a<-bB. b>1C. |a|<|b|D. a>-18.下列运算中,正确的是(C”A.3a+b=3abB.-3-2= -5C.D. -2(x-4) =-2x-89.已知|x|=2,y 是3的相反数,则xy 的值为( )A.-1B.-5C.±6D.-5或110小文在做多项式减法运算时,将减去2a 2+3a-5误认为是加上2a 2+3a-5,求得的答案是a 2+a- 4(其他运算无误),那么正确的结果是( )A.B.C.D.章丘区2023-2024学年第一学期期中质量监测七年级数学试题祝你考试成功23x y π-13-202022a 2a 4a 22232ab a b a b-+=-221a a --+234a a -+-24a a +-2356a a --+非选择题部分共110分二、填空题(本大题共6小题,每小题4分,共24分)I1.数插上与原点的距离等于5的点所表示的数是 .12.单项式的系数是 .13.已知x,y 是有理数,若,则的值 .14.将如图所示的平面展开图按虚线折叠成正方体,若其相对面上两个数之和为8,则x-y+2z 的值为 .15,若与-7xm-3y3是同类项,则m+n = .16.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期七年级数学期中模拟试卷
一、填空题(每空2分,共38分)
1.–2的倒数是________,_______5
2.绝对值最小的数__________,最大的负整数是__________。
3.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方
某地的气温是______℃。

4.直接写出计算结果:(1) ______248 (2) ______1352。
5.代数式5m+2n可以解释为_________________________________。
6.在数轴上,表示与2的点距离为3的数是_________。
7.数轴上,将表示–1的点向右移动 3 个单位后,对应点表示的数是_______
8.某校去年初一招收新生x人,今年比去年增加20%,用代数式表示今年该校初一学生人数为
____________。
9.若代数式mba53与22ban是同类项,那么______m,______n
10.一个两位数的个位数是a,十位数字是b,请用代数式表示这个两位数是________。
11.三角形的三边长分别是2x,4x,5x,这个三角形的周长是__________。
12.三个连续偶数中,n是最小的一个,这三个数的和是为_______________。
13.若|a|4,则a __________。
14.一个数是9,另一个数比9的相反数大2,那么这两个数的和为__________。
15. 你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。请问这样第__________次可拉出128根面条。 第一次捏合后 第二次捏合后 第三次捏合后 二、选择题(每小题3分,共30分) 16.如果 0ba,那么a与b之间的关系是( ) A.相等 B.符号相同 C.符号相反 D.互为相反数 17. 下列说法中正确的是( ). A. 0是最小的数 B. 最大的负有理数是1 C. 任何有理数的绝对值都是正数 D. 如果两个数互为相反数,那么它们的绝对值相等 18.数a,b在数轴上的位置如图所示,则ba是( ) (A)正数 (B)零 (C)负数 (D)都有可能 19.在2223)3(,2,)1(,)1(这四个数中,最大的数与最小的数的和等于( ) A.6 B.8 C.-5 D.5 20.用一个平面去截一个正方体,截出的截面不可能是( ) A.三角形 B.四边形 C.六边形 D.七边形 21.两个互为相反数的有理数相乘,积为( ) A.正数 B.负数 C.零 D.负数或零 22.下列各式中,正确的是( ) A.yxyxyx2222 B.abba532C.437abab D.523aaa 23.如果pmyx2与qnyx3是同类项,则( ) A.pnqm, B.pqmn C.qpnm D.qpnm且 24.已知代数式yx2的值是3,则代数式142yx的值是( ) A.1 B.4 C.7 D.不能确定 25.计算3的正数次幂,21873,7293,2433,813,273,93,337654321 65613,8„观察归纳各计算结果中个位数字的规律,可得20033的个位数字是( ) A.1 B.3 C.7 D.9 三、计算题(写出必要的演算步骤,每题5分,共30分) 26.)9()11()4()3( 27.8141211 28.6015112132 29.43233

30.18.0355124 31.
22
)7(])6()61121197(50[

四.化简下列名式
(每小题5分,共20分)

32.(1)baba45392222 (2) 2223321212abbabababa
33.先化简,再求值。 (1) 2)(2)(3yxyx,其中1x,.43y (2) yxyxx312331221 其中2,1yx 五、操作题与探索题 (每题10分,共20分) 34.如图是一个矩形娱乐场所,小亮为其设计的方案如图所示。其中半圆形休息区和矩形游泳池以外的地方都是绿地。 (1)游泳池和休息区的面积各是多少?(2分) (2)绿地面积是多少?(2分) (3)如果这个娱乐场所需要有一半以上的绿地,并且它的长是宽的1.5倍,小亮同学设计的游泳池的长和宽分别是大矩形长和宽的一半,你说他的设计合理吗?为什么?(2分) (4)你能给这个娱乐场所提供一个既符合要求又美观的方案吗?如果能,请画出来说明设计要求。(4分) 35.用棋子摆下面一组正方形图案

„„
○1 ○2 ○3
1) 依照规律填写表中空格:(4分)
图形序列 ○1 ○2 ○3 ○4 ○5 „

10

每边棋子颗数 2 3 „ „ „
棋子总颗数 4 8 „ „ „
2) 照这样的规律摆下去,当每边有n颗棋子时,这个图形所需要棋子总颗数是_____________,
第100个图形需要的棋子颗数是_____________。(6分)
六、(本题共12分)
36.“十一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的
人数,负数表示比前一天少的人数)。

1) 若9月30日外出旅游人数记为a,请用a的代数式表示10月2日外出旅游的人数。
2) 请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人。
3) 如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?

日期 10月1日 10月2日 10月3日 10月4日 10月5日 10月6日 10月7日
人数变化
单位:万人
+1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2

相关文档
最新文档