基于GPRS农业自动灌溉系统解决方案设计

合集下载

农业现代化智能灌溉系统方案

农业现代化智能灌溉系统方案

农业现代化智能灌溉系统方案第一章:引言 (2)1.1 系统背景 (2)1.2 系统目标 (2)1.3 系统意义 (2)第二章:智能灌溉系统设计 (3)2.1 系统架构 (3)2.2 系统模块划分 (3)2.3 系统关键技术 (4)第三章:硬件设施选型 (4)3.1 传感器选型 (4)3.2 执行器选型 (4)3.3 数据传输设备选型 (5)第四章:软件系统设计 (5)4.1 系统开发环境 (5)4.2 数据库设计 (5)4.3 系统功能模块设计 (6)4.3.1 用户管理模块 (6)4.3.2 设备管理模块 (6)4.3.3 数据管理模块 (7)4.3.4 系统设置模块 (7)第五章:智能灌溉策略研究 (7)5.1 灌溉策略原理 (7)5.2 灌溉策略制定 (7)5.3 灌溉策略优化 (8)第六章:系统集成与调试 (8)6.1 硬件系统集成 (8)6.1.1 系统硬件构成 (8)6.1.2 硬件设备选型 (8)6.1.3 硬件连接与调试 (9)6.2 软件系统集成 (9)6.2.1 软件系统架构 (9)6.2.2 软件开发与调试 (9)6.2.3 软硬件协同调试 (9)6.3 系统调试与优化 (9)6.3.1 系统功能测试 (9)6.3.2 系统功能测试 (9)6.3.3 系统优化 (9)6.3.4 系统现场部署与调试 (10)第七章:系统功能评估 (10)7.1 系统稳定性评估 (10)7.2 系统可靠性评估 (10)7.3 系统经济性评估 (10)第八章应用案例分析 (11)8.1 案例一:某地区农田灌溉 (11)8.2 案例二:某地区果园灌溉 (11)8.3 案例三:某地区设施农业灌溉 (12)第九章:市场前景分析 (12)9.1 国内外市场需求 (12)9.2 市场竞争分析 (12)9.3 发展趋势预测 (13)第十章:总结与展望 (13)10.1 系统总结 (13)10.2 系统改进方向 (13)10.3 未来发展展望 (14)第一章:引言1.1 系统背景我国经济的持续发展和农业现代化的深入推进,农业生产的效率和效益日益成为关注的焦点。

自动灌溉系统的设计

自动灌溉系统的设计

自动灌溉系统的设计一、系统概述自动灌溉系统是一种利用现代信息技术和自动化控制技术,对农田进行智能化灌溉的系统。

该系统能够根据农田的土壤湿度、天气情况、作物需水量等因素,自动调节灌溉时间和水量,提高灌溉效率,降低水资源浪费,促进农业可持续发展。

二、系统目标1. 提高灌溉效率:通过自动化控制,实现精准灌溉,减少水资源浪费。

2. 降低人工成本:减少人工操作,降低人力成本。

3. 提高作物产量:根据作物需水规律,提供适时适量的灌溉,促进作物生长。

4. 保护环境:合理利用水资源,减少农业面源污染。

三、系统组成1. 传感器:用于监测土壤湿度、温度、光照等环境参数。

2. 控制器:根据传感器采集的数据,自动调节灌溉时间和水量。

3. 执行器:包括水泵、阀门等,用于执行灌溉操作。

4. 通信模块:实现控制器与执行器之间的数据传输和指令下达。

5. 用户界面:用于设置系统参数、查看灌溉状态和数据记录。

四、系统工作原理1. 传感器采集农田环境参数,如土壤湿度、温度、光照等。

2. 控制器根据传感器采集的数据,结合预设的灌溉策略,自动计算出灌溉时间和水量。

3. 控制器通过通信模块,向执行器发送灌溉指令。

4. 执行器接收指令,执行灌溉操作。

5. 用户界面实时显示灌溉状态和数据记录,方便用户监控和管理。

五、系统特点1. 精准灌溉:根据作物需水规律,实现适时适量的灌溉。

2. 自动化控制:减少人工操作,降低人力成本。

3. 节能环保:合理利用水资源,减少农业面源污染。

4. 可扩展性:可根据农田规模和作物种类,灵活调整系统配置。

5. 远程监控:用户可通过手机、电脑等设备远程查看灌溉状态和数据记录。

通过自动灌溉系统的设计和实施,可以有效提高农田灌溉效率,降低人工成本,促进作物生长,同时保护环境,实现农业可持续发展。

六、系统设计原则1. 用户友好:系统界面直观、易操作,减少用户的学习成本。

2. 模块化设计:系统采用模块化设计,便于维护和升级。

3. 可靠性:选用高质量、可靠的传感器和执行器,确保系统稳定运行。

农业科技农场智能灌溉系统建设方案

农业科技农场智能灌溉系统建设方案

农业科技农场智能灌溉系统建设方案第一章概述 (2)1.1 项目背景 (2)1.2 项目目标 (2)1.3 项目意义 (3)第二章系统设计原则 (3)2.1 系统设计理念 (3)2.2 技术选型原则 (4)2.3 系统安全与稳定性 (4)第三章系统架构 (4)3.1 总体架构设计 (4)3.2 硬件系统设计 (5)3.3 软件系统设计 (5)第四章传感器与监测设备 (6)4.1 传感器选型与布设 (6)4.2 数据采集与传输 (6)4.3 监测设备维护与管理 (6)第五章智能决策系统 (7)5.1 数据处理与分析 (7)5.2 灌溉策略制定 (7)5.3 决策执行与反馈 (8)第六章自动控制系统 (8)6.1 自动控制原理 (8)6.2 控制系统设计 (8)6.3 控制执行与监控 (9)第七章网络与通信系统 (9)7.1 网络架构设计 (9)7.1.1 设计原则 (9)7.1.2 网络架构组成 (10)7.2 通信协议与接口 (10)7.2.1 通信协议 (10)7.2.2 接口设计 (10)7.3 网络安全与维护 (10)7.3.1 安全措施 (11)7.3.2 维护措施 (11)第八章系统集成与调试 (11)8.1 系统集成流程 (11)8.2 调试与优化 (12)8.3 系统运行监测 (12)第九章项目实施与管理 (12)9.1 项目组织与管理 (12)9.1.1 组织结构 (12)9.1.2 职责划分 (13)9.1.3 管理制度 (13)9.2 项目进度控制 (13)9.2.1 进度计划 (13)9.2.2 进度监控 (14)9.3 风险评估与应对 (14)9.3.1 风险识别 (14)9.3.2 风险评估 (14)9.3.3 风险应对 (14)第十章运营维护与培训 (14)10.1 运营维护体系 (14)10.1.1 运营维护目标 (14)10.1.2 运营维护内容 (15)10.1.3 运营维护组织架构 (15)10.2 培训与技能提升 (15)10.2.1 培训目标 (15)10.2.2 培训内容 (15)10.2.3 培训方式 (16)10.3 长期运行优化与升级 (16)10.3.1 运行优化 (16)10.3.2 系统升级 (16)第一章概述1.1 项目背景我国经济的快速发展和农业现代化的推进,农业科技在农业生产中的应用日益广泛。

农业种植行业智能灌溉系统方案

农业种植行业智能灌溉系统方案

农业种植行业智能灌溉系统方案第一章智能灌溉系统概述 (2)1.1 系统简介 (2)1.2 系统组成 (2)2.1 数据采集模块 (2)2.2 数据处理模块 (2)2.3 控制执行模块 (2)2.4 通信模块 (2)2.5 用户界面 (3)2.6 电源管理模块 (3)2.7 安全保护模块 (3)第二章智能灌溉系统设计原理 (3)2.1 灌溉需求分析 (3)2.2 系统设计原则 (3)2.3 系统功能模块设计 (4)第三章硬件设备选型与配置 (4)3.1 传感器选型 (4)3.2 执行器选型 (5)3.3 数据传输设备选型 (5)第四章数据采集与处理 (5)4.1 数据采集方法 (5)4.2 数据处理技术 (6)4.3 数据存储与管理 (6)第五章控制策略与算法 (7)5.1 控制策略设计 (7)5.2 算法实现 (7)5.3 系统优化 (8)第六章智能灌溉系统软件设计 (8)6.1 系统架构设计 (8)6.2 界面设计 (9)6.3 功能模块开发 (9)第七章系统集成与调试 (9)7.1 硬件集成 (10)7.2 软件集成 (10)7.3 系统调试 (10)第八章系统运行与维护 (11)8.1 系统运行管理 (11)8.2 系统维护方法 (11)8.3 故障处理 (12)第九章智能灌溉系统应用案例 (12)9.1 应用场景分析 (12)9.2 系统实施与效果评估 (12)9.2.1 系统实施 (12)9.2.2 效果评估 (13)9.3 案例总结 (13)第十章发展前景与趋势 (13)10.1 行业发展趋势 (13)10.2 技术创新方向 (13)10.3 市场前景分析 (13)第一章智能灌溉系统概述1.1 系统简介智能灌溉系统是利用先进的计算机技术、通信技术、传感器技术和自动控制技术,实现对农业种植过程中灌溉的智能化管理。

该系统通过实时监测土壤湿度、气象数据等信息,根据作物需水规律和土壤水分状况,自动调节灌溉水量和灌溉时间,以达到节水和提高作物产量的目的。

农业行业智能灌溉系统实施方案

农业行业智能灌溉系统实施方案

农业行业智能灌溉系统实施方案第一章:项目背景与目标 (2)1.1 项目背景 (2)1.2 项目目标 (3)第二章:智能灌溉系统概述 (3)2.1 系统定义 (3)2.2 系统架构 (3)2.3 系统功能 (4)第三章:硬件设施选型 (4)3.1 灌溉设备选型 (4)3.2 传感器选型 (5)3.3 数据传输设备选型 (5)第四章:软件系统设计 (5)4.1 系统模块设计 (5)4.2 系统界面设计 (6)4.3 系统安全性设计 (6)第五章:数据采集与处理 (7)5.1 数据采集方式 (7)5.2 数据处理方法 (7)5.3 数据存储与管理 (8)第六章:灌溉策略制定 (8)6.1 灌溉模型建立 (8)6.1.1 模型选择 (8)6.1.2 参数设置 (8)6.2 灌溉策略优化 (8)6.2.1 优化目标 (9)6.2.2 优化方法 (9)6.3 灌溉指令执行 (9)6.3.1 灌溉指令 (9)6.3.2 灌溉指令传输 (9)6.3.3 灌溉指令执行 (9)6.3.4 灌溉效果评估 (9)第七章:系统实施与调试 (9)7.1 系统安装 (9)7.1.1 安装准备 (9)7.1.2 设备安装 (10)7.1.3 系统接线 (10)7.2 系统调试 (10)7.2.1 单体设备调试 (10)7.2.2 系统联动调试 (10)7.3 系统运行维护 (10)7.3.1 运行监测 (11)7.3.2 维护保养 (11)7.3.3 故障处理 (11)第八章:经济效益分析 (11)8.1 节水效果分析 (11)8.2 节能效果分析 (12)8.3 投资回报分析 (12)第九章:环境保护与可持续发展 (12)9.1 环境保护措施 (12)9.1.1 节水灌溉技术 (12)9.1.2 精准施肥 (13)9.1.3 农药减量 (13)9.1.4 废弃物处理 (13)9.2 可持续发展战略 (13)9.2.1 优化农业产业结构 (13)9.2.2 推广绿色农业技术 (13)9.2.3 强化政策支持 (13)9.2.4 加强国际合作 (13)9.3 社会责任与义务 (13)9.3.1 倡导绿色生活 (13)9.3.2 保障粮食安全 (13)9.3.3 推动农村经济发展 (14)9.3.4 培养农业人才 (14)第十章:项目总结与展望 (14)10.1 项目成果总结 (14)10.2 项目不足与改进 (14)10.3 项目未来展望 (15)第一章:项目背景与目标1.1 项目背景我国农业现代化的不断推进,农业生产的自动化、智能化水平逐渐提高,智能灌溉系统作为农业现代化的重要组成部分,日益受到广泛关注。

农田灌溉自动化控制系统的设计与实现

农田灌溉自动化控制系统的设计与实现

农田灌溉自动化控制系统的设计与实现一、引言随着科技的不断发展和农业现代化的推进,农田灌溉自动化控制系统成为提高农田灌溉效率和水资源利用率的重要手段。

本文将介绍农田灌溉自动化控制系统的设计与实现,包括系统框架、关键技术和优势。

二、系统框架农田灌溉自动化控制系统主要由以下几个模块组成:1. 传感器模块:通过感知农田的土壤湿度、空气温度、湿度和作物生长状态等信息,实时监测农田的灌溉需求。

2. 控制器模块:根据传感器模块获取的数据,经过数据处理和分析,制定最优的灌溉策略,并通过控制执行机构实现自动灌溉。

3. 执行机构模块:根据控制器模块的指令,控制水泵、阀门等灌溉设备的开关,实现农田的自动灌溉。

三、关键技术1. 传感技术:选择合适的传感器,如土壤湿度传感器、温湿度传感器等,准确感知农田的环境参数,并提供准确的数据支持。

2. 数据处理与分析技术:通过对传感器获取的数据进行处理和分析,结合农田的灌溉需求和作物的生长情况,制定合理的灌溉策略,以节约水资源并提高灌溉效率。

3. 控制算法技术:利用控制算法,根据传感器获取的数据和灌溉需求制定最优的灌溉方案,并控制执行机构实现自动灌溉。

4. 通信技术:将传感器模块、控制器模块和执行机构模块进行联网,实现实时数据传输和指令控制,提高灌溉系统的智能化和交互性。

四、优势农田灌溉自动化控制系统具有以下优势:1. 提高灌溉效率:通过实时监测农田的环境参数和作物生长情况,并结合科学的控制算法,制定最优的灌溉策略,减少水资源的浪费,提高灌溉效率。

2. 节约劳动力:自动化控制系统可以代替人工进行农田灌溉的监测和控制,减少人力资源的投入,提高农民的劳动效率。

3. 降低成本:自动化控制系统可以根据实际情况动态调整灌溉方案,减少灌溉所需的水、电和化肥等资源的费用,降低农田灌溉的成本。

4. 提高产量和品质:科学合理的灌溉策略可以保证作物的生长需要得到满足,提高产量和品质,增加农民的收入。

五、实例分析以某农田为例,该农田的自动化灌溉系统由土壤湿度传感器、温湿度传感器、水泵、阀门和控制器等组成。

农业灌溉系统施工方案(滴灌与喷灌设计)精选3篇

《农业灌溉系统施工方案(滴灌与喷灌设计)》一、项目背景随着农业现代化的发展,高效、节水的灌溉方式越来越受到重视。

本项目旨在为[具体农田区域名称]建设一套先进的农业灌溉系统,采用滴灌与喷灌相结合的设计,以提高水资源利用效率,满足农作物生长的需求,同时降低劳动力成本,提高农业生产效益。

该农田区域面积为[X]亩,主要种植[农作物种类]。

目前,传统的灌溉方式存在水资源浪费严重、灌溉不均匀等问题,影响了农作物的产量和质量。

因此,建设一套科学合理的灌溉系统势在必行。

二、施工步骤1. 现场勘查与规划(1)组织专业技术人员对农田区域进行详细的现场勘查,了解地形地貌、土壤类型、水源情况等。

(2)根据勘查结果,结合农作物的需水特性,制定合理的灌溉系统规划方案,确定滴灌和喷灌的布局。

2. 水源工程建设(1)如果有现成的水源,如河流、湖泊、水井等,需要对水源进行评估和改造,确保水源的水量和水质满足灌溉要求。

(2)如果没有现成的水源,需要新建水源工程,如打井、修建蓄水池等。

3. 管道铺设(1)根据规划方案,确定管道的走向和铺设深度。

一般来说,主管道埋深应在[具体深度]以下,支管道埋深可适当减小。

(2)采用专业的管道铺设设备,将管道铺设在预定位置,并进行连接和固定。

确保管道连接紧密,无漏水现象。

4. 滴灌和喷灌设备安装(1)滴灌设备安装:在支管道上安装滴灌带或滴灌管,根据农作物的种植间距和需水量,确定滴头的间距和流量。

同时,安装过滤器、施肥器等配套设备,确保滴灌系统的正常运行。

(2)喷灌设备安装:在适当的位置安装喷灌喷头,根据农田的面积和形状,确定喷头的类型和数量。

安装喷头时,要保证喷头的喷射角度和射程能够覆盖整个农田区域。

5. 控制系统安装(1)安装灌溉控制系统,包括定时器、电磁阀、传感器等设备。

通过控制系统,可以实现自动化灌溉,提高灌溉效率和精度。

(2)对控制系统进行调试,确保各个设备之间的通信正常,能够按照预设的程序进行灌溉。

自动化灌溉设计方案

自动化灌溉设计方案一、方案目标与范围1.1 目标我们的目标是设计一个高效又环保的自动化灌溉系统,帮助农民更好地管理水资源。

这样不仅能让灌溉更有效,还能减少水的浪费,降低人工成本。

最终,这一系统会推动农业的可持续发展,提升作物的产量和质量,真是个双赢的方案。

1.2 范围这个方案适合中小型农场、花园、温室以及城市绿化等多种场景。

我们会涵盖系统设计、设备选择、实施步骤以及后期的维护,确保每个细节都考虑周全。

二、组织现状与需求分析2.1 当前现状传统的灌溉方式依靠人工或固定设备,问题不少:- 水资源经常被浪费,灌溉效率跟不上。

- 灌溉时间不准,导致作物生长参差不齐。

- 人工管理成本高,劳动强度大,让人头疼。

2.2 需求分析从农场主的反馈来看,需求主要集中在以下几点:- 需要一个能自动监测土壤湿度的系统,根据实际情况来灌溉。

- 系统最好能远程控制,随时随地都能通过手机或电脑操作。

- 数据分析功能也很重要,这样能优化灌溉策略,做到更精准。

- 还要能应对各种天气,保证系统在不同环境下正常运作。

三、实施步骤与操作指南3.1 设备选型根据需求,我们推荐以下设备:- 土壤湿度传感器:实时监测土壤湿度,推荐型号XX-123,价格大约200元一个。

- 智能控制器:用来接收传感器数据并控制灌溉,推荐型号YY-456,价格大约800元一台。

- 喷灌设备:根据作物种类选择合适的喷头,平均价格300元一个。

- 水泵:根据灌溉规模选择,价格在1000到5000元不等。

- 水管和连接件:按需采购,平均每亩地大约需1000元。

3.2 系统设计1. 系统架构:包括传感器、控制器、水泵和喷灌设备,形成一个完整的自动化灌溉系统。

2. 数据传输:利用无线传输技术(比如LoRa或Wi-Fi),将传感器数据实时传回控制器。

3. 控制流程:- 土壤湿度传感器定期检查土壤湿度。

- 控制器根据设定的湿度范围来决定是否启动灌溉。

- 启动水泵,控制喷灌设备,直到土壤湿度达到设定值。

智能农业灌溉系统解决方案分享

智能农业灌溉系统解决方案分享智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。

智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。

智能农业灌溉系统智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。

有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16%到30%。

背景在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。

我们的智能农业灌溉系统在这种背景下应运而生了。

系统结构本设计采用了可以无限扩展的开放式设计思路,并采用先进的集木式构建。

整个系统由多组集群控制单元组成,每组集群控制单元管理一片区域,每一个片区由多台控制器、电磁阀、传感器组成。

因此本系统可以根据用户的需求,方便快速地组建智能农业灌溉系统。

用户只需增加各级控制设备的数量即可实现整个系统的无限扩容。

本系统可适用于小到某块棉田的自动灌溉,大到整个兵团所有作物地块,包括绿地的自动灌溉。

并且系统容量越大,平均投资成本愈低,生产效率也越高。

本系统遵循了以下设计原则:1、系统模块化、层次化设计,以提高效率,增加可维护性,便于扩展;2、灵活的硬件配置,用户可以任意升级、更换被控硬件设备,而不需要更换软件;3、人机界面友好,实现灌溉过程的无人值守,减少人员的工作强度,提高灌溉效率;4、抗电磁干扰的能力强,保证系统在野外强电磁干扰的恶劣环境下能可靠地运行;5、故障自动检测功能,提高系统的健壮性,各种设备的布局要求美观。

农业智能化精准灌溉系统设计

农业智能化精准灌溉系统设计随着科技的发展,农业领域也在不断地进行创新和改进。

其中,农业智能化精准灌溉系统的设计和应用成为了农业领域的关注焦点。

本文将围绕农业智能化精准灌溉系统的设计进行探讨,并提出一种可行的解决方案。

首先,农业智能化精准灌溉系统的设计需要考虑到农作物的需水量以及土壤的水分情况。

通过采集土壤水分数据和气象数据,系统可以分析出作物的需水量,并根据土壤实际水分情况进行相应的灌溉调度。

这样可以避免过量或不足的灌溉,提高水资源的利用效率,减少灌溉水的浪费。

其次,农业智能化精准灌溉系统的设计还需要考虑到农田的地理分布和灌溉设施的布局。

根据农田的实际情况,系统可以提供不同的灌溉方案,采用局部灌溉、滴灌、喷灌等多种方式,以适应不同农田的需求。

同时,系统还可以根据农田的地势和水利条件,合理安排灌溉设施的布局,确保水资源能够均匀地分布到每一处农田。

另外,农业智能化精准灌溉系统的设计还需要考虑到农民的实际操作情况。

系统应该简单易用,使得农民可以方便地进行操作和管理。

同时,系统应该提供实时监测和报警功能,及时提醒农民土壤的水分状况和灌溉设备的工作状态,以便农民能够及时采取相应的措施。

基于以上需求,我提出了一种可行的解决方案。

首先,系统采用物联网技术,通过传感器实时监测土壤的水分情况和气象数据。

传感器可以埋入土壤中,通过无线传输技术将数据传送到中央控制器。

中央控制器可以根据传感器数据和预设的灌溉方案,智能地控制灌溉设备的开关,实现对农田的精准灌溉。

其次,系统可以提供一个用户友好的界面,使得农民可以方便地进行操作和管理。

界面可以显示土壤的水分情况、气象数据和灌溉设备的工作状态。

农民可以根据界面上的信息,调整灌溉方案和灌溉设备的工作模式。

系统还可以提供报警功能,当土壤的水分状况异常或灌溉设备的故障时,会及时发送报警信息给农民,以便其能够及时采取措施。

最后,为了内网环境稳定和可靠,在系统设计中采用了云计算技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于GPRS农业自动灌溉系统解决方案设计水是生命的基础,植物正常的生命活动就是建立在不断地吸水、传导与运输、利用和散失的过程之上。

在我国水资源却严重不足,使我国成为世界上13个淡水资源最贫乏的国家之一。

人均占有淡水资源仅为世界人均占有量的四分之一。

水资源的匮乏给我国农业发展带来了极大的障碍和困难。

农作物生长的土壤需要保持一定的湿度,人们通常根据种植的经验对农作物进行灌溉,不能及时或不能精确地控制浇水的多少,往往造成大水漫灌,在很大程度上白白地浪费掉一大部分水资源。

如何利用有限的水资源,走“节水农业”已经成为农业生产获得最佳的效益和持续稳定发展的增长点。

因此使用自来水发电的智能灌溉系统,控制喷灌和微灌系统,能有效地减少田间灌水过程中的渗漏和蒸发损失。

现有的灌溉系统都要外接电源,存在一定的安全隐患且较麻烦。

本系统可在无供电条件的地区使用,其最大优点为节水、节能、节约劳动力。

水是一切生命过程中不可替代的基本要素,水资源是国民经济和社会发展的重要基础资源。

我国是世界上13个贫水国之一,人均水资源占有量2300立方米,只有世界人均水平的1/4,居世界第109位。

而且时空分布很不均匀,南多北少,东多西少;夏秋多,冬春少;占国土面积50%以上的华北、西北、东北地区的水资源量仅占全国总量的20%左右。

近年来,随着人口增加、经济发展和城市化水平的提高,水资源供需矛盾日益尖锐,农业干旱缺水和水资源短缺已成为我国经济和社会发展的重要制约因素,而且加剧了生态环境的恶化。

按现状用水量统计,全国中等干旱年缺水358亿立方米,其中农业灌溉缺水300亿立方米。

20世纪90年代以来,我国农业年均受旱面积达2000万公顷以上,全国660多个城市中有一半以上发生水危机,北方河流断流的问题日益突出,缺水已从北方蔓延到南方的许多地区。

由于地表水资源不足导致地下水超采,全国区域性地下水降落漏斗面积已达8.2万平方公里。

发达国家的农业用水比重一般为总用水量的50%左右。

目前,我国农业用水比重已从1980年的88%下降到目前的70%左右,今后还会继续下降,农业干旱缺水的局面不可逆转。

北方地区水资源开发利用程度已经很高,开源的潜力不大。

南方还有一些开发潜力,但主要集中在西南地区。

我国农业灌溉用水量大,灌溉效率低下和用水浪费的问题普遍存在。

目前
全国灌溉水利用率约为43%,单方水粮食生产率只有10公斤左右,大大低于发达国家灌溉水利用率70-80%、单方水粮食生产率2.0公斤以上的水平。

通过采用现代节水灌溉技术改造传统灌溉农业,实现适时适量的“精细灌溉”,具有重要的现实意义和深远的历史意义。

在灌溉系统合理地推广自动化控制,不仅可以提高资源利用率,缓解水资源日趋紧张的矛盾,还可以增加农作物的产量,降低农产品的成本。

自动灌溉监控系统有如下优点:
1、将充分发挥现有的节水设备作用,优化调度,提高效益。

2、通过自动控制技术的应用,更加节水节能,降低灌溉成本,提高灌溉质量。

3、将使灌溉更加科学,方便、提高管理水平。

研制和推广节水灌溉控制新技术是实现农业现代化的需要。

GPRS农业自动化灌溉系统:
GPRS农业自动化灌溉系统主要由中心主控系统(主计算机)、GPRS采集控制终端、电磁阀、田间湿度传感器(可测土壤湿度绝对值)、气象观测站(可测量气温、风向、风速)等设备所组成。

操作人员可坐在控制室里,对传上来的气象资料、田间土壤湿度等数据进行综合分析,利用自动方式,足不出户的对整个小区进行灌溉。

同时还可以利用数据查询系统和打印系统,随时记录、查询、打印整个灌溉小区的气象资料、土壤湿度、灌溉设置、灌溉进程、灌水历史记录等数据。

GPRS农业自动化灌溉系统网络结构分为三层:
第一层为控制中心由电脑和以太网组成,在这里进行灌溉参数设置,及对灌溉情况进行统计,并可通过专用软件在计算机上存储,显示数据和图表。

同时可以人工进行特殊操作。

通过互联网获取天气信息,有预见性地实施灌溉。

第二层为四信通信GPRS 无线传输终终端,支持RS232/RS485(符合ModBus 协议)方式的用户数据接口,可接入电子式传感器、PLC等各种设备,搭建数据传输通道,把现场数据发送到中心计算机;
第三层为传感器采集与电磁阀,所有的传感器感知的数据通过四信GPRS 无线传输终端传送至第三层。

通过传感器采集来的多路数据,经过A/D 转换,信号处理,在微处理器中,根据不同植被需求,确定灌溉量,然后控制信号输出,结合中央管理计算机的指令,控制电磁阀的开关,即可以实现自动灌溉。

结论
GPRS农业自动化灌溉系统将传统的充分灌溉向非充分灌溉发展,对灌区用水进行监测预报,实际动态管理。

采用传感器来监测土壤的墒情和农作物的生长,实现水管理的自动化。

高效农业和精细农业要求我们必须提高水资源的利用率。

要真正实现水资源的高效,仅凭单项节水灌溉技术是不可能解决的。

必须将水源开发、输配水、灌水技术和降雨、蒸发、土壤墒情和农作物需水规律等方面统一考虑。

做到降雨、灌溉水、土壤水和地下水联合调用,实现按期、按需、按量自动供水。

附录---托普物联网简介
托普物联网是浙江托普仪器有限公司旗下的重要项目。

浙江托普仪器是国内领先的农业仪器研发生产商,依据自身在农业领域的研发实力,和自主研发的配套设备,在农业物联网领域崭露头角!
托普物联网以客户需求为源头,结合现代农业科技、通信技术、计算机技术、GIS信息技术,以及物联网技术,竭诚为传统行业提供信息化、智能化的产品与端到端的解决方案。

主要有:大田种植智能解决方案、畜牧养殖管理解决方案、食品安全溯源解决方案、食用菌种植智能化管理解决方案、水产养殖管理解决方案、温室大棚智能控制解决方案等。

托普物联网三大系统产品
我们知道物联网主要包括三大层次,即感知层、传输层和应用层。

因此托普物联网产品主要以这三个层次延伸,涵盖了感知系统(环境监测传感设备)、传输系统(数据传输处理网络)、应用系统(终端智能控制平台。


托普物联网模块化智能集成系统
托普物联网依据自身研发优势,开发了多种模块化智能集成系统。

1、传感模块:即环境传感监测系统。

它依据各类传感设备可以完成整个园区或完成对异地园区所需数据监测的功能。

2、终端模块:即终端智能控制系统。

它可以完成整个园区或远程控制异地园区进行自动灌溉、自动降温、自动开启风机,自动补光及遮阳,自动卷帘,自动开窗关窗,自动液体肥料施肥、自动喷药等各类农业生产所需的自动控制。

3、视频监控模块:即实时视频监控系统。

主要是通过监控中心实时得到植物生长信息,在监控中心或异地互联网上既可随时看到作物的实时生长状况。

4、预警模块:即远程植保预警系统。

可以通过声光报警、短信报警、语音报警等方式进行预警。

5、溯源模块:即农产品安全溯源系统。

该系统对农产品从种植准备阶段、种植和培育阶段、生长阶段、收获阶段等对作物生长环境、喷药施肥情况、病虫害状况等实施实时信息自动记录,有据可查,在储藏、运输、销售阶段采用二维码或者RFID射频技术对各个阶段数据记录,这样就能实现消费者拿到农产品时通过终端设备或网络就能查看到各类信息,才能放心食用。

6、作业模块:即中央控制室。

可通过总控室对整个区域情况进行监测,包括各个区域采集点参数、控制作业状态、实时视频图像、施肥喷药状况、报警信息等。

出师表
两汉:诸葛亮
先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。

诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。

若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。

先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。

侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。

先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。

后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。

受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。

今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。

此臣所以报先帝而忠陛下之职分也。

至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。

若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。

臣不胜受恩感激。

今当远离,临表涕零,不知所言。

相关文档
最新文档