割补转化法求几何体的体积
利用“转化与化归思想”求解空间几何体的体积及知识点总结

利用“转化与化归思想”求解空间几何体的体积及知识点总结一、空间几何体的体积用到转化与化归思想的常见题型:1、求某些三棱锥、四棱锥体积:求解过程中当高不易求时,常需转换顶点利用等体积法解决.2、不规则几何体的体积的求解:求解时,常结合所给几何体的结构特征及条件,通过割、补等手段转化为规则几何体体积的和、差求解.二、典例剖析:【例题】如图所示,在四棱锥P-A BCD 中,底面ABCD 为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G 分别为PC,PD,BC 的中点.求:①四棱锥E-A BCD 的体积;②三棱锥P-E FG 的体积.【解题思路】①看到E 到平面ABCD 的距离不易求,想到转化与化归思想,EF∥平面ABCD 转化为求F-ABCD 的体积;②看到P 到平面EFG 的距离不易求,想到转化与化归思想转化为求G-PEF 的体积.【解析】①∵E,F 分别为PC,PD 的中点,∴EF∥DC,又∵DC ⊂平面ABCD,∴ EF∥平面ABCD,∵PD⊥平面ABCD,∴ FD⊥平面ABCD,且FD=1/2PD=1,②∵PD⊥平面ABCD,GC ⊂平面ABCD,∴GC⊥PD.又∵ABCD 为正方形,∴GC⊥CD.∵PD∩CD=D,∴ GC⊥平面PCD.∵PF=1/2 PD=1,EF=1/2 CD=1,∴S△PEF=1/2 EF×PF=1/2 .∵ GC=1/2 BC=1,习题练习一个空间几何体的三视图如图所示,该几何体的体积为 12π + 8√5/3,则该几何体的正(主)视图中x 的值为 ( )A.5 B.3 C.4 D.2【解析】由三视图知,几何体是一个组合体,上面是一个正四棱锥,四棱锥的底面是一个对角线为 4 的正方形,侧棱长是 3,如下图所示:根据勾股定理知正四棱锥的高是下面是一个圆柱,底面直径是 4,母线长是x,因为该几何体的体积为 12π + 8√5/3,【答案】 B三、知识总结:1.必记公式(1) 表面积公式表面积=侧面积+底面积,其中:①多面体的表面积为各个面的面积的和;②圆柱的表面积公式:③圆锥的表面积公式:④圆台的表面积公式:⑤球的表面积公式:(2) 体积公式2.重要结论①画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高;②三视图排列规则:俯视图放在正(主)视图的下面;侧(左)视图放在正(主)视图的右面.3.易错提醒①未注意三视图中实、虚线的区别:在画三视图时应注意看到的轮廓线画成实线,看不到的轮廓线画成虚线.②不能准确分析组合体的结构致误:对简单组合体表面积与体积的计算要注意其构成几何体的面积、体积是和还是差.。
割补法解立体几何中的技巧

解 题 技巧 与 方 法
・ 篇黑
・
舞
静静黼
●
●
剑排瀛解寞 挑俩
◎王 东 ( 甘 肃酒泉工 贸中等 专业 学校 , 甘 肃 酒泉
援
2 7 4 0 0 0 )
【 摘要】 割补法是计算平面几何图形面积的推导方法,
也是 一种 思考方 法. 在几 何 图形教 学 中, 有着 广泛 的应用.
为 , 故选 B .
面体 A B C D的外接球 的表 面积.
分析
由图 8 得 四面体 A B C D如 图 9所示 , 欲求其外接
球 的表 面积 , 先要找 出其 外接球心 所在的 位置 , 将 图 9补 成
数 学学习与研究
2 0 1 7 . 2 2
● ●
・
・
●
如图l 0所示的长方 体 , 易 知其外接 球心是 长方 体对 角线 的 中点 , 问题便 可以解决.
例4 已知曲线Y :, / 1 一 与 轴的交点为A , , 分别
由A 。 B两 点 向直 线 Y = √ 3 作 垂线 , 垂 足分别 为 C , D , 沿直
线 Y: 将平 面 A C D 折起 , 使平 面 A C D上平 面 B C D, 求四
等腰直角三角形 , 利用体积 相等 , 立即可求 得原 三棱锥 的高
证明 : 平面 G 。 A B上平 面 G l A D .
A . ÷
B . 4
D. 4
图5
图 6
国
图 1
图 2
分析
求点到面 的距 离通 常是 过点 作 面 的垂线 , 而由
图7
于该 图的局 限性 不太好 作垂线 , 考 虑 0为 A , c , 的中点 , 故 将要求 的距 离与 / I , 到面 A C , D, 的距离挂 钩 , 从 而与棱锥知
割补法在解题中的应用

巧用割补,化难为易顾介远割补法就是把图形切开,把切下来的那部分移动到其他位置,使题目便于解答;割补法是立体几何解题中的常用技巧,巧妙地对几何体进行分割与拼补,能够简化解题过程。
例如:已知正四面体的棱长为2,求其内切球和外接球的表面积与体积。
分析:本题的解题关键是求出正四面体的内切球和外接球的半径,用何种方法,怎样思维就成了解决本题的关键。
由几何图形我们不难看出球和正四面体都是对称的几何体,所以正四面体的外接球、内切球的球心与正四面体的几何中心重合。
将球心与正四面体的四个顶点连线,就可将这个正四面体分割成四个正四棱锥,这四个正四棱锥的底面分别是正四面体的侧面和底面,高是该正四面体的内切球的半径,侧棱为正四面体的外接球的半径,因此它们的体积相等且这四个正四棱锥的体积的和为正四面体的体积,从而我们可以得出结论:正四面体的外接球的半径是它的内切球的半径的3倍,它们的和等于该正四面的高。
令正四面体的高为h ,则h 2=SA 2-(32AE)2 =(2)2-(233)2,所以h=332;故该正四面体的外接球的半径R=43h=23,其表面积为S=3π;其体积为V=23π。
该正四面体的内切球半径r=41h=63,其表面积为s=31π,其体积v=183π。
如果把思维放开,这个正四面体可以看作是一个棱长为1的正方体ABCD-A /B /C /D /,“切去”四个“角”所对应的三棱锥得到正四面体C /-A /BD ,则该四面体与正方体具有公共的外接球,此时外接球的直径等于该正方体的体对角线的长,即2R=3,所以R=23,再根据R :r=3:1的关系,该四面体的内切球半径r 就很容易求得了。
高中数学学习的本质是提高学习者的思维品质,快快进行“头脑体操”的锻炼吧,它给你带来快乐和成就感一定会超过鸟叔的《江南style 》!。
2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(知识点讲解)含详解

专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R=2. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1∶4,则该圆台外接球的表面积为( )A .56πB .64πC .112πD .128πh r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )AB .CD 例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.6例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【总结提升】求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A. B. C. D例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.例18. (2019年高考天津卷理)的正方形,侧棱长均若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方25体确定直径解决外接问题.专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C【解析】【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为: 226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.h r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =故选:C.例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1⊙4,则该圆台外接球的表面积为( ) A .56πB .64πC .112πD .128π 【答案】C【解析】【分析】作出圆台的轴截面等腰梯形,其外接圆是圆台外接球的大圆,在这个轴截面中进行计算可得.【详解】如图等腰梯形ABCD 是圆台的轴截面,EF 是圆台的对称轴,圆台上、下底面的面积之比为1:4,则半径比为1:2,设圆台上、下底面半径分别为r ,2r ,因母线与轴的夹角是60︒,母线长为2,可得圆台的高为1,r =R ,球心到下底面(大圆面)的距离为x ,若球心在圆台两底面之间,如图点M 位置,则222R x =+且222(1)R x =-+,无解;若圆台两底面在球心同侧,如图点O 位置,则222R x =+且222(1)R x =++,解得4x =,则228R =, 则该圆台外接球的表面积为2112R 4π=π.故选:C .【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π【答案】B【解析】【分析】设圆锥的高为h ,利用母线与底面所成角求出高即可得解.【详解】设圆锥的高为h , 因为母线与底面所成的角为π6,所以πtan 61h =.圆锥的体积2π1π3=⨯⨯=V . 故选:B例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯ 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯' ()()679933320607109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) AB.CD【答案】C【解析】【分析】 设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙, 所以122r r =, 又12222r r l lπππ+=, 则121r r l +=, 所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以221122214313r h l V V r h ππ==甲乙 故选:C.例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.【答案】 203##263 22##322 【解析】【分析】第一空,将该多面体置于正方体中,由此可知该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,由此可求得其体积;第二空,结合阿基米德多面体的外接球刚好是补形后正方体的棱切球,再求M ,N 两点间距离的最大值即可.【详解】依题意,可将该多面体补成一个棱长为2的正方体,如图,所以该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,其体积112088111323V =-⨯⨯⨯⨯⨯=; 该阿基米德多面体的外接球刚好是正方体的棱切球,即与正方体的各条棱相切于棱的中点的球,该球直径为M ,N 两点间距离的最大值为外接球的直径,则max MN =故答案为:203; 【总结提升】1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:AB AD DB===∴ADB△是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△该几何体的表面积是:632⨯++ 故选:C.例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【答案】232π+33π##3π3【解析】【分析】先画出直观图,再求出圆锥的高,求出两个半圆锥的侧面积之和,从而求出此几何体的表面积和体积.【详解】该几何体为两个底面半径为1,母线长为2的半圆锥拼接而成,设圆锥的高为h,由勾股定理得:413h=-=,则两个半圆锥的侧面积之和为12π22π2⨯⨯=,如图,AB =2CD =,且AB CD ⊥,所以四边形ADBC 的面积为22÷=, 该几何体的表面积为232π+,该几何体的体积为21π13⨯=故答案为:2π 【总结提升】 求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,CD ∴= 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .2【答案】C【解析】 设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d = 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=3a =,2233r ∴==∴球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C . D【答案】D【解析】【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =, D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==PA PB PC ∴=====2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴R ∴=,34433V R ∴=π==,故选D. 例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B .34π C .2π D .4π 【答案】B 【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴2r ==. ∴圆柱的体积为V =πr 2h =34π×1=34π. 故选B .例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】B【解析】由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为68102+-=2,∴R ≤2. 又2R ≤3,∴R ≤32,∴V ma x =3439()322ππ=.故选B . 点睛:解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题.例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.【答案】144π【解析】【分析】设球心为O ,作出过球心的截面图如图所示,然后根据已知条件结合球的性质求解即可.【详解】 设球心为O,作出过球心的截面图如图所示,则OA =由截面圆的周长为6π,得26AB ππ⨯=,∴3AB =,6.所以该球的表面积为246=144ππ⨯.故答案为:144π.例18. (2019年高考天津卷理)的正方形,侧棱长若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】,借助勾股定理,可知四棱锥的高.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,圆柱的底面半径为, 故圆柱的体积为. 例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】 25π42=11221ππ124⎛⎫⨯⨯= ⎪⎝⎭易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O , 由于223122AM =-=,故1222222S =⨯⨯=△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:343V r π==.. 【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.。
空间几何体体积计算的常用技巧

【解析】 根据题意,折叠后的三棱锥 P—CDE 的各棱长都相等,且等于 1,根据此三 棱锥构造相应正方体(如图),则该正方体的棱长 为 22,故正方体的体积为( 22)3= 42,所以三棱锥 锥 P—CDE 的体积为 42-4×13×12× 22× 22× 22=122.
12
2
7
例 3 如图所示,已知底面半径为 r 的圆柱被一个平面所截,
剩下部分母线长的最大值为 a,最小值为 b,那么圆柱被截后剩
下的部分的体积是多少?
V=V1 +V2
1 r2
2
a
b
8
【解析】 方法一:过 B 点作平行于底面的截面,将几何体 分为两部分,下半部分是一个底面半径为 r,高为 b 的圆柱,其 体积为 V1=πr2b;将上半部分再补成圆柱,这样上半部分的体 积是所补成的圆柱体积的一半,为 V2=12πr2(a-b).则所求几何 体的体积为 V=V1+V2=12πr2(a+b).
设四边形acc四边形acqp割补法是处理立体几何问题的一种基本方法解题思路是以已知几何体为背景将其补成或分割成熟悉的更易利用已知条件解决的简单几何体
空间几何体体积计算的常用技巧
1.等积变换法
三棱锥也称为四面体,它的每一个面都可当做底面, 恰当地进行换底等积变换便于问题的求解.
1
例 1 如图所示,三棱锥的顶点为 P,PA、PB、PC 为三条 侧棱,且 PA、PB、PC 两两互相垂直,又 PA=2,PB=3,PC= 4,求三棱锥 P-ABC 的体积 V.
1 A.2V
1 C.4V
A1 B1
P
ห้องสมุดไป่ตู้
1 B.3V
2 D.3V
C1
Q
A
割补法在立体几何中的应用

WS自动填充功能快速填写重复内容自动填充功能是工作表软件(WS)中一个高效的工具,它可以帮助用户快速填写重复内容。
通过利用这一功能,用户可以大大提高数据录入的效率,节省时间和精力。
本文将介绍WS自动填充功能的使用方法和一些注意事项。
一、使用方法使用WS自动填充功能十分简便。
以下是具体操作步骤:1. 创建一个新的工作表或打开一个已有的工作表。
2. 在需要填写重复内容的单元格中输入第一个数值或文本。
3. 鼠标选中填写内容的单元格,使其被选中。
4. 在选中的单元格的右下角会出现一个小黑色方块,将鼠标放置在该方块上,鼠标指针会变成一个加号(+)。
5. 按住鼠标左键,拖动该小黑色方块至需要填充的单元格区域,可以是横向、纵向或是一个矩形区域。
6. 松开鼠标左键,重复内容会被自动填充至选中的单元格区域。
二、应用场景WS自动填充功能在很多场景下都非常实用。
以下是几个常见的应用场景:1. 数字序列的填充:有时候我们需要填写一列连续的数字,如1、2、3等。
使用WS自动填充功能,只需输入前几个数字,然后拖动填充方块即可快速生成整个序列。
2. 日期序列的填充:在某些情况下,我们需要填写一系列连续的日期,如每月的第一天或每周的某一天。
借助自动填充功能,我们只需输入一个日期,然后拖动填充方块即可轻松生成整个日期序列。
3. 文本的填充:有时候需要在表格中填写一些重复的文本,如产品名称或客户姓名。
使用自动填充功能,只需输入第一个文本,然后拖动填充方块即可快速将文本填充至其他单元格。
三、注意事项在使用WS自动填充功能时,需要注意以下几点:1. 填充方块大小的调整:在拖动填充方块之前,可以根据需要调整其大小。
只需将鼠标放置在填充方块的右下角,鼠标指针会变成双向箭头,然后按住鼠标左键拖动即可调整填充方块的大小。
2. 自动填充的规律:WS自动填充功能会根据已有的数据规律进行填充。
对于数字序列和日期序列,可以根据需要选择自增、自减或是使用特定的间隔。
高一数学下册第一单元期中章节复习要点空间几何体的表面积与体积
高一数学下册第一单元期中章节复习要点空间几何体的表面积与体积数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境域的追求。
以下是查字典数学网为大伙儿整理的高一数学下册第一单元期中章节复习要点,期望能够解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
1、几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的经历,最好结合几何体的侧面展开图来进行.2、求体积时应注意的几点:(1)、求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)、与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.3、求组合体的表面积时注意几何体的衔接部分的处理.三视图为载体的几何体1、以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2、多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3、旋转体的表面积问题注意其侧面展开图的应用.柱、锥、台体的体积1、运算柱、锥、台体的体积,关键是依照条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2、注意求体积的一些专门方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积运算常用的方法,应熟练把握.3、等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。
”因此看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。
可见,“教师”一说是比较晚的事了。
现在体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
四种方法求空间几何体的体积
ʏ廖庆伟求空间几何体体积的常用方法有:公式法㊁等积法㊁分割法㊁补体法等㊂下面举例分析,供大家学习与参考㊂一㊁公式法图1例1 如图1,正方体A B C D -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ㊁F ,且E F=1,则四面体A -E F B 的体积等于㊂解:连接B D 交A C于点O ,则O A 为四面体A -E F B 的高,且O A =22㊂因为S әE F B =12ˑ1ˑ1=12,所以V A -E F B =13ˑ12ˑ22=212㊂评析:锥体(棱锥和圆锥)的体积V =13S h ,其中S 是底面面积,h 是高㊂二㊁等积法图2例2 如图2,正方体A B C D -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段A A 1,B 1C 上的点,则三棱锥D 1-E DF 的体积为㊂解:三棱锥D 1-E D F的体积即为三棱锥F -D D 1E 的体积㊂在正方体A B C D -A 1B 1C 1D 1中,әE D D 1的面积为定值12,F 到平面A A 1D 1D 的距离为定值1,所以V D 1-E D F =V F -D D 1E =13ˑ12ˑ1=16㊂评析:三棱锥D 1-E D F 的体积不易求出,可利用等积法(转化底面和高),求出三棱锥F -E D D 1的体积即得结果㊂三㊁分割法例3 如图3所示,在多面体A B C D E F图3中,已知A B C D 是边长为1的正方形,且әA D E ,әB C F 均为正三角形,E F ʊA B ,E F =2,求多面体A B C D E F 的体积V ㊂解:取E F 的中点P ,则原几何体可分割为两个三棱锥和一个四棱锥㊂易知三棱锥P -A E D 和三棱锥P -B C F 都是棱长为1的正四面体,四棱锥P -A B C D 是棱长为1的正四棱锥,所以多面体A B C D E F 的体积V =13ˑ12ˑ22+2ˑ13ˑ34ˑ63=23㊂评析:本题是把原几何体分割成两个三棱锥和一个四棱锥求解的㊂把原几何体分割成两个三棱锥和一个直三棱柱也可求解,同学们不妨试一试㊂四㊁补体法图4例4 求图4中的阴影部分绕A B 旋转一周所形成的几何体的体积(单位:c m )㊂解:由题意可知,所求几何体的体积等于圆台的体积减去半球的体积㊂V 圆台=13ˑ(πˑ22+πˑ22ˑπˑ52+πˑ52)ˑ4=52π,V 半球=43πˑ23ˑ12=163π,故所求几何体的体积为V 圆台-V 半球=1403π(c m 3)㊂评析:解答本题的关键是利用圆台的体积减去半球的体积得到所求几何体的体积㊂作者单位:湖北省巴东县第三高级中学(责任编辑 郭正华)7数学部分㊃知识结构与拓展 高一使用 2020年11月。
17.求几何体体积的常用方法
1 2
A 1B 1,
A 1A ,如图,试求
三棱锥A 1—M N P 的体积.
分析
若用公式V =
1 3
Sh直接计算三棱锥A 1—M N P 的
体积,则需要求出△M N P 的面积和该三棱锥的高, 两者显然都不易求出,但若将三棱锥A 1—M N P 的顶点 和底面转换一下,变为求三棱锥P —A 1M N 的体积,显 然就容易解答了. 解析 V A MNP V P A MN 1 1
1 3 1 3 1 2 1 2 A1 M A1 N A1 P 1 2 a 2 3 a 3 4 a 1 24 a .
3
点评
转换顶点和底面是求三棱锥体积的一种常用的
方法,也是求后面要学习到的求点到平面距离的一个 理论依据,相应的方法叫等积法. 四、还原图形法 此类题主要是没有直接给出几何体,而是给出了几 何体的三视图,求体积时一般需要根据三视图还原 成直观图,再进行解答.
圆台
-V
圆锥
=7π -4
几何体之间的各数据的对应关系.
返回
S AGD S BHC V ABCDEF 1 2 1
1 2
2 2
1,
BHC
V E AGD V F BHC V AGD 2 2 1 1 3 1 2 1 2 2 1 2
2
2 3
.
点评 本题还可以这样来分割:取E F 的中点P ,则多面
备课资讯17
求几何体体积的常用方法
一、分割法 对于给出的一个不规则的几何体,不能直接套用公 式,常常需要运用分割法,按照结论的要求,将原 几何体分割成若干个可求体积的几何体,然后再求 和. 【例1】 如右图,在多面体A B C D E F 中, 已知A B C D 是边长为1的正方形,且 △ A D E 、△B C F 均为正三角形, E F ∥A B ,E F =2,则该多面体的体积为 .
立体几何--割补法3
分割法
5.已知正方体ABCD-A1B1C1D1的棱长为 a,E、F分别是棱AA1与CC1的中点,求四棱 锥A1-EBFD1的体积。 D C
1 1
A1
B1
F E
C
A
B
4.如图表示以AB=4,BC=3的长方形ABCD为底面 的长方体被平面斜着截断的几何体,EFGH是它的 截面,已知AE=5,BF=8,CG=12. 1)试判断截面四边形的形状,并证明你的结论;G 2)求DH的长; 3)求这个几何体的体积.
14 如图8-12,球面上有四个点P、 A、B、C,如果PA,PB,PC两两 互相垂直,且PA=PB=PC=a,求这 个球的表面积。
19、已知圆锥的 底面半径为5, 高为10,在这个 圆锥内有一个内 接圆柱,求圆锥 底面半径多大时, 才能使它有最大 的侧面积,并求 最大侧面积。
a b
例3.自球面上的一点P作球的两两垂直的三条 弦PA、PB、PC,球半径为R, 求PA2+PB2+PC2
12、斜三棱柱ABC-A1B1C1的底面为 直角三角形ABC,∠C=90º ,BC=2, 点B1在下底面ABC上的射影D恰好是 BC的中点,侧棱与底面的夹角为60º , 侧面A1ABB1与侧面B1BCC1的夹角 为30º ,求斜三棱柱的侧面积和体积。来自E HFD A
C
B
用“补形法”把原几何体补成一个直三棱柱。 E E
F D F D
A B C C
A
B
1 ∴V几何体= 2 V三棱柱
例5.如图在正方体ABCD-A1B1C1D1中, E、F分别是BB1、CD的中点,设AA1=2, 求三棱锥F-A1ED1的体积。
D1
C1
A1
B1
E
A
H
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
割补转化法求几何体的体积
一. “割形”与“补形”是解决立体几何问题的常用方法之一,通过“割”或“补”
可化复杂图形为已熟知的简单几何体,从而较快地找到解决问题的突破口,从而很方便
地进行计算使问题得到顺利的解决,是处理空间图形中惯用的手段。通过对该方法的学
习与探讨,使我们能正确地分析出几何中基本元素及其相互关系,能对图形进行分解、
组合和变形,进一步提高空间想象能力和逻辑思维能力。
方法5:如图,选取BC的中点D, 连结AD、PD,则BC⊥AD且BC⊥PD ∴BC
⊥平面APD∴VP-ABC=VB-APD+VC-APD=·S⊿APD
例2.如图的多面体是过正四棱柱的底面ABCD的点A作载面
AB1C1D1而截得的,且BB1=DD1.已知截面AB1C1D1与
底面ABCD成30°的二面角,AB=1,
则这个多面体的体积为( )
A. B.
C. D.
例3.2003年全国卷(12)一个四面体的所有棱长都为,四个顶点在同一球面上,则此
球的表面积为( )
(A) (B)4 (C) (D)
分析:本题中没有立方体,可充分挖掘是正四面体特点补形成立
方体.如图,将正四面体ABCD补成立方体,则正四面体、立方体
的中心与其外接球的球心共一点.因为正四面体的棱长为,
所以正方体棱长为1,从而外接球半径R=,得.选(A).
A B C
P
E
D
B
A
C
D
D
1
D
A B
B
1
C
C
1
例4、如图:直三棱柱ABC—A1B1C1的体积为V,点P、Q分别在侧
棱AA1和CC1上,AP=C1Q,则四棱锥B—APQC的体积为
A、 B、
C、 D、
例5.棱长为1的正方体容器ABCD-A1B1C1D1 , 在A1B、A1B1、B1C1的
中点E、F、G处各开有一个小孔. 若此容器可以任意放置, 则装水
最多的容积是(小孔面积对容积的影响忽略不计)
A. B. C. D.
例6、如图9-8-7,在正三棱柱ABC-A1B1C1中,高为3,底面边长为2,D、E分别是AC、BC
的中点,求四棱锥A-A1B1ED的体积.
解:连A1E,则SS△ABC,
故=3····22·3=.
例7.(2006江西理,12)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四
个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的
两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有( )
A.S1S2 B.S1S2
C.S1=S2 D.S1,S2的大小关系不能确定
解:连OA、OB、OC、OD,
则VA-BEFD=VO-ABD+VO-ABE+VO-BEFD,VA-EFC=VO-ADC+VO-AEC+VO-EFC又VA-BEFD=VA-EFC,
而每个三棱锥的高都是原四面体的内切球的半径,故SABD+SABE+SBEFD=SADC+SAEC+SEFC又
面AEF公共,故选C
例8.如图,三棱柱ABC—A1B1C1中,若E、F分别为AB、AC 的中点,平面EB1C
1
将三棱柱分成体积为V1、V2的两部分,那么V1∶V2= ____ _。
解:设三棱柱的高为h,上下底的面积为S,体积为V,则V=V1+V2=Sh。
∵E、F分别为AB、AC的中点,
∴S△AEF=S,V1=h(S+S+)=Sh,V2=Sh-V1=Sh,∴V1∶V2=7∶5。
例9.在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=
∠A1AD=,这个平行六面体的体积为____ _。
正四面体ABCD的棱长为a,球O是内切球,球O1是与正四面体的三个面和球O都相
切的一个小球,求球O1的体积。(2)如图,设球O半径为R,球O1的半径为r,E为CD
中点,球O与平面ACD、BCD切于点F、G,球O1与平面ACD切于点H
由题设
∵ △AOF∽△AEG ∴
,得
∵ △AO1H∽△AOF ∴ ,得
∴
思考题:1、(2008全国Ⅰ16)
等边三角形与正方形有一公共边,二
面角的余弦值为,分别是的中点,则所
成角的余弦值等于 .
2、已知二面角α-l-β为 ,动点P、Q分别在面α、β内,P到β的距离为,Q到
α的距离为,则P、Q两点之间距离的最小值为( )
(A) (B)2 (C) (D)4