(全国通用)2019届高考数学大一轮复习第九章平面解析几何9.5椭圆第2课时学案
高考数学一轮复习 《第九章 平面解析几何》9-5椭圆课件

2
2
Байду номын сангаас答案 D
解析
→ → 设点D(0,b),则 DF1 =(-c,-b), DA =(-
→ → → → a,-b),DF2 =(c,-b),由3DF1 =DA +2DF2 得-3c=-a 1 +2c,即a=5c,故e= . 5 5.(09·广东)已知椭圆G的中心在坐标原点,长轴在 x轴上,离心率为 3 ,且G上一点到G的两个焦点的距离之 2
2 2
答案
1 2
解析
由题意△ABF2的周长为8,根据椭圆的定义得4a
2 2 2
=8,即a=2.又c =a -b =1,所以椭圆的离心率e= 1 . 2
c = a
x y 4.(2011·金华十校)方程为 2 + 2 =1(a>b>0)的椭圆 a b 的左顶点为A,左、右焦点分别为F1、F2,D是它短轴上的 → → → 一个端点,若3 DF1 = DA +2 DF2 ,则该椭圆的离心率为 ( ) 1 A. 2 1 C. 4 1 B. 3 1 D. 5
∴b =a -c =25-9=16, x y 故动圆圆心的轨迹方程为 + =1. 25 16 x y (2)椭圆 + =1上一点P到左焦点距离为6,F是该 25 16 → 1 → → →| 椭圆的左焦点,若点M满足OM= (OP +OF),则|OM 2 =________.
2 2 2 2
2
2
2
【答案】
•
• • • • • • •
x y y x + = 1 , + 2 2 2 2=1.(其中a>b>0) a b a b 3.椭圆的几何性质
2
2
2
2
x y 4.方程:Ax +By =1或 + =1(A>0,B>0,A≠B)也表 A B
2019届高考数学一轮复习 第九章 平面解析几何 9-6 椭圆(二)课件 文

九
平面解析几何
章
第六节
椭圆(二)
高考概览 1.能够把直线与椭圆位置关系问题转化为研究方程的解的问 题,会根据韦达定理及判别式解决问题;2.进一步体会数形结合的 思想.
吃透教材 夯双基
填一填 记一记 厚积薄发
[知识梳理] 1.已知点 P(x0,y0)与椭圆ax22+by22=1(a>b>0)的位置关系
[答案] D
3.设 A1、A2 是椭圆x42+y22=1 的左、右顶点,P 在椭圆上, 若 kPA1=2,则 kPA2 的值为________.
[解析]
设 P(x0,y0),A1(-2,0),A2(2,0),∴kkPPAA12==xx00yy+-00 22=2
两式相乘得 2kPA2=x02y-02 4 又点 P(x0,y0)在x42+y22=1 上,∴x20+2y20=4 代入上式得 kPA2
=
0
,
x1
+
x2
=
83 5
,
x1x2
=
8 5
,
由
弦
长
公
式
得
|AB|
=
1+12[x1+x22-4x1x2]=85.
[答案]
8 5
考点突破 提能力
研一研 练一练 考点通关
考点一 直线与椭圆的位置关系——常考点 已知直线 l:y=2x+m,椭圆 C:x42+y22=1.试问当 m
取何值时,直线 l 与椭圆 C: (1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.
2.已知以 F1(-2,0),F2(2,0)为焦点的椭圆与直线 x+ 3y+4 =0,有且仅有一个交点,则椭圆的长轴长为( )
2019届高考数学一轮复习第九章解析几何9.5椭圆课件文新人教B版

-3知识梳理 双基自测 自测点评
1
2
2.椭圆的标准方程和几何性质
标准方程
x2 a2
+
y2 b2
=1(a>b>0)
y2 a2
+
x2 b2
=1(a>b>0)
图形Leabharlann -4知识梳理 双基自测 自测点评
1
2
y2 a2
标准方程 范围 对称性 性 质 顶点 轴 焦距 离心率
x2 a2
+
y2 b2
=1(a>b>0)
-11考点1 考点2 考点3
考点 1
椭圆的定义及其标准方程
例1(1)(2017河北衡水金卷一)已知点M是圆E:(x+1)2+y2=8上的动 点,点F(1,0),O为坐标原点,线段MF的垂直平分线交ME于点P,则动 点P的轨迹方程为 .
������2 (2)已知椭圆 C:������2
+
������2 ������
������ ������
=
√3
������ e=������
=
√3
关闭
2
,2b=4,得 b=2,
2
,
关闭
解析
答案
-10知识梳理 双基自测 自测点评
1.要熟练掌握椭圆中的参数a,b,c的内在关系及椭圆的基本性质. 2.理解离心率的大小范围,并能根据离心率的变化情况来判断椭 圆的扁圆程度. 3.解决椭圆中的焦点三角形问题要充分运用椭圆的定义、三角 形的有关知识,对于其面积公式要熟记,以避免计算量太大而出错.
2 =1(a>b>0),F1,F2 分别是其左、右焦点,A
高考数学一轮复习第九章解析几何9.5椭圆学案理含解析北师大版

9.5 椭圆必备知识预案自诊知识梳理1.椭圆的定义平面内与两个定点F 1,F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.已知集合P={M||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a>0,c>0,且a ,c 为常数. (1)若a c ,则点M 的轨迹为椭圆; (2)若a c ,则点M 的轨迹为线段; (3)若a c ,则点M 不存在. 2.椭圆的标准方程及性质标准方程 x 2a2+y 2b 2=1(a>b>0)y 2a 2+x 2b2=1(a>b>0) 图形性 质 范围-a ≤x ≤a ,-b ≤y ≤b -b ≤x ≤b ,-a ≤y ≤a 对称性对称轴:坐标轴,对称中心:点(0,0) 顶点 A 1(-a ,0),A 2(a ,0) B 1(0,-b ),B 2(0,b ) A 1(0,-a ),A 2(0,a ) B 1(-b ,0),B 2(b ,0) 焦点 F 1(-c ,0),F 2(c ,0) F 1(0,-c ),F 2(0,c )轴长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b离心率e=ca ,且e ∈(0,1) a ,b ,c的关系c 2=a 2-b 2(1)过椭圆x 2a 2+y 2b 2=1上一点M (x 0,y 0)的切线方程为x 0xa 2+y 0y b 2=1.(2)若点P(x0,y0)在椭圆x2a2+y2b2=1外,过点P作椭圆的两条切线,切点为P1,P2,则切点弦P1P2所在的直线方程是x0xa2+y0yb2=1.(3)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P为短轴端点;当x=±a时,|OP|有最大值a,这时,P为长轴端点.(4)若P为椭圆x2a2+y2b2=1(a>b>0)上任意一点,则a-c≤|PF|≤a+c.(5)椭圆的焦半径公式设M(x0,y0)是椭圆x2a2+y2b2=1(a>b>0)上的任意一点,椭圆的焦点为F1(-c,0),F2(c,0),则|MF1|=a+ex0,|MF2|=a-ex0(其中e是离心率).(6)椭圆中点弦的斜率公式若M(x0,y0)是椭圆x2a2+y2b2=1(a>b>0)的弦AB(AB不平行y轴)的中点,则有k AB·k OM=-b2a2,即k AB=-b2x0a2y0.(7)弦长公式:若直线y=kx+b与椭圆相交于两点A(x1,y1),B(x2,y2),则|AB|=√1+k2|x1-x2|=√(1+k2)[(x1+x2)2-4x1x2]=√1+1k2|y1-y2|=√(1+1k2)[(y1+y2)2-4y1y2].(8)若P是椭圆x2a2+y2b2=1(a>b>0)上的点,F1,F2为焦点,若∠F1PF2=θ,则△F1PF2的面积为b2tanθ2.(9)椭圆x2a2+y2b2=1的通径长为2b2a.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)平面内与两个定点F1,F2的距离的和等于常数的点的轨迹是椭圆.()(2)椭圆的离心率e越大,椭圆就越圆.()(3)关于x,y的方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(4)椭圆x2x2+x2x2=1(a>b>0)与椭圆x2x2+x2x2=1(a>b>0)的焦距相同.()(5)椭圆上一点P与两个焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).()2.设F1,F2分别是椭圆x225+x216=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则点P与椭圆左焦点间的距离为()A.4B.3C.2D.53.(2020江西南昌三中期末)已知椭圆C:x2x2+x2x2=1(a>b>0)的左、右焦点为F1,F2,离心率为√33,过F2的直线l交C于A,B两点,若△AF1B的周长为4√3,则椭圆C的方程为()A.x23+x22=1 B.x23+y2=1C.x212+x28=1 D.x212+x24=14.“0<m<2”是“方程x2x +x22-x=1表示椭圆”的条件(填“充分不必要”“必要不充分”或“充要”).5.(2020天津河北区线上测试,12)已知椭圆C:x2x2+x2x2=1(a>b>0)的离心率为√32,焦距为2√3,则椭圆的方程为.关键能力学案突破考点椭圆的定义及应用【例1】(1)已知F1,F2分别是椭圆E:x225+x29=1的左、右焦点,P为椭圆E上一点,直线l 为∠F1PF2的外角平分线,过点F2作l的垂线,交F1P的延长线于点M,则|F1M|=()A.10B.8C.6D.4(2)(2020山东东营联考)设F1,F2是椭圆x24+x2x2=1(0<b<2)的左、右焦点,过F1的直线l 交椭圆于A,B两点,若|AF2|+|BF2|最大值为5,则椭圆的离心率为()A.12B.√22C.√5-12D.√32思考具有哪些特征的问题常利用椭圆的定义求解?解题心得常利用椭圆的定义求解的问题:(1)求解问题的结论中含有椭圆上动点到焦点的距离;(2)求解问题的条件中含有椭圆上动点到焦点的距离.对点训练1(1)过椭圆x225+x216=1的中心任作一直线交椭圆于P,Q两点,F是椭圆的一个焦点,则△PFQ的周长的最小值为()A.12B.14C.16D.18(2)已知点P(x,y)在椭圆x236+x2100=1上,F1,F2是椭圆的两个焦点,若△PF1F2的面积为18,则∠F1PF2的余弦值为.考点椭圆的标准方程及应用【例2】(1)(2020福建福州三模,理10)已知椭圆C:x2x2+x2x2=1(a>b>0)的焦距为2,右顶点为A.过原点与x轴不重合的直线交椭圆C于M,N两点,线段AM的中点为B,若直线BN经过椭圆C的右焦点,则椭圆C的方程为()A.x24+x23=1 B.x26+x25=1C.x29+x28=1 D.x236+x232=1(2)椭圆的离心率为√22,F为椭圆的一个焦点,若椭圆上存在一点与F关于直线y=x+4对称,则椭圆的方程为.(3)已知方程x2|x|-1+x22-x=1表示焦点在y轴上的椭圆,则m的取值范围是.思考求椭圆的标准方程的基本方法是什么?利用该方法应注意些什么?解题心得1.求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后根据条件建立关于a,b的方程组.2.若椭圆的焦点位置不确定,则要分焦点在x轴上或在y轴上两种情况求解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0且m≠n)的形式,避免讨论.3.椭圆的标准方程的两个应用:(1)椭圆x2x2+x2x2=1(a>b>0)与椭圆x2x2+x2x2=λ(a>b>0,λ>0)有相同的离心率.(2)与椭圆x2x2+x2x2=1(a>b>0)共焦点的椭圆系方程为x2x2+x+x2x2+x=1(a>b>0,b2+k>0).恰当运用椭圆系方程,可使运算简便.4.用待定系数法求椭圆标准方程的一般步骤.(1)作判断:根据条件判断椭圆的焦点在x 轴上,还是在y轴上,还是两个坐标轴都有可能;(2)设方程:根据上述判断设椭圆标准方程为x2 x2+x2x2=1(a>b>0)或x2x2+x2x2=1(a>b>0);(3)找关系:根据已知条件,建立关于a,b的方程组;(4)得方程:解方程组求出a,b,即可得到椭圆的标准方程.对点训练2(1)(2020山东聊城调研)过点(3,2)且与椭圆3x2+8y2=24有相同焦点的椭圆方程为()A.x25+x210=1 B.x210+x215=1C.x215+x210=1 D.x225+x210=1(2)如图,中心在坐标原点,焦点分别在x轴和y轴上的椭圆C1,C2都过点A(0,-√2),且椭圆C1,C2的离心率相等,以椭圆C1,C2的四个焦点为顶点的四边形面积为2√2,则椭圆C1的标准方程为.(3)(2020湖南郴州二模)已知椭圆E的中心为原点,焦点在x轴上,椭圆上一点到焦点的最小距离为2√2-2,离心率为√22,则椭圆E的方程为.考点椭圆的几何性质及应用【例3】(1)(2020安徽合肥一中等六校检测)已知椭圆C:x2x2+x2x2=1(a>b>0)的右焦点为F,短轴的一个端点为P,直线l:4x-3y=0与椭圆相交于A,B两点.若|AF|+|BF|=6,点P到直线l的距离不小于65,则椭圆离心率的取值范围为()A.(0,95] B.(0,√32]C.(0,√53] D.(13,√32](2)设F1,F2是椭圆E:x2x2+x2x2=1(a>b>0)的左、右焦点,P为直线x=2a上一点,△F2PF1是底边为PF1的等腰三角形,且直线PF1的斜率为13,则椭圆E的离心率为()A.1013B.58C.35D.23(3)已知椭圆x2x2+x2x2=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=2c,若椭圆上存在点M使得在△MF1F2中,sin∠xx1x2x=sin∠xx2x1x,则该椭圆离心率的取值范围为()A.(0,√2-1)B.(√22,1)C.(0,√22) D.(√2-1,1)思考求离心率的方法有哪些?解题心得求离心率常见的三种方法①求出a,c,代入公式e=xx;②由a与b的关系求离心率,利用变形公式e=√x2x2=√x2-x2x2=√1-x2x2求解;③只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).对点训练3(1)(2020河南洛阳一模)已知椭圆x211-x+x2x-3=1的长轴在y轴上,且焦距为4,则m等于()A.5B.6C.9D.10(2)设F 是椭圆E :x 2x 2+x 2x 2=1(a>b>0)的右焦点,A 是椭圆E 的左顶点,P 为直线x=3x 2上一点,△APF 是底角为30°的等腰三角形,则椭圆E 的离心率为( )A.34 B.23C.12D.13(3)设椭圆x 2x 2+x 2x 2=1(a>b>0)的左、右焦点分别为F 1,F 2,点P 在椭圆上运动,|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的最大值为m ,xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为n ,且m ≥2n ,则该椭圆的离心率的取值范围为 .考点直线与椭圆的综合问题 (多考向探究)考向1 与弦长有关的问题【例4】已知椭圆M :x 2x 2+x 2x 2=1(a>b>0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B.(1)求椭圆M 的方程;(2)若k=1,求|AB|的最大值;(3)设点P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若点C ,D 和点Q (-74,14)共线,求k 的值.思考利用哪种弦长公式能使求直线和椭圆相交所得的弦长变简单?如何设直线的方程能减少计算量?解题心得与椭圆中点弦有关的问题应用椭圆中点弦的斜率公式k AB·k OM=-x2x2,即k AB=-x2x0x2x0比较方便快捷,其中点M的坐标为(x0,y0).解决此类问题常用方法是“韦达定理”和“点差法”.这两种方法的前提都是必须保证直线和椭圆有两个不同的公共点.对点训练4(2020山东菏泽一模,21)已知椭圆C:x2x2+x2x2=1(a>b>0)的左、右焦点分别为F1,F2,以M(-a,b),N(a,b),F2和F1为顶点的梯形的高为√3,面积为3√3.(1)求椭圆C的标准方程;(2)设A,B为椭圆C上的任意两点,若直线AB与圆O:x2+y2=127相切,求△AOB面积的取值范围.考向2中点弦、弦中点问题【例5】已知椭圆x22+y2=1.(1)求斜率为2的平行弦中点的轨迹方程;(2)求过点P12,12且被点P平分的弦所在直线的方程.思考如何快捷求解弦中点、中点弦的问题?点差法应用于何种题型?解题心得直线方程的设法,根据题意,如果需要讨论斜率不存在的情况,则设直线方程为x=ty+m,避免讨论;若所研究的直线的斜率存在,则可设直线方程为y=kx+b的形式,若平行于坐标轴的直线都包含,则不要忘记斜率不存在的情况的讨论.对点训练5(2020山西太原五中3月摸底)若过椭圆x216+x24=1内一点P(3,1)的弦被该点平分,则该弦所在的直线方程为()A.3x+4y-13=0B.3x-4y-5=0C.4x+3y-15=0D.4x-3y-9=0考向3直线与椭圆的综合【例6】(2020北京,20)已知椭圆C:x2x2+x2x2=1(a>b>0)过点A(-2,-1),且a=2b.(1)求椭圆C的方程;(2)过点B(-4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=-4于点P,Q,求|xx||xx|的值.思考求解直线与椭圆的综合问题的基本思想是什么?什么是设而不求思想?解题心得求解直线与椭圆的综合问题的基本思想是方程思想,即根据题意,列出有关的方程,利用代数的方法求解.为减少计算量,在代数运算中,经常运用设而不求的方法,即把题目中涉及的点的坐标利用未知量设出来,但不需求出这些未知量,只需联立方程,判别式Δ>0,然后根据韦达定理列出x1+x2,x1x2的关系式,利用弦长公式|AB|=√x2+1|x1-x2|=√x2+1√(x1+x2)2-4x1x2=√1+1x2|y1-y2|=√1+1x2√(x1+x2)2-4x1x2=√x2+1√x|x|,选好公式能减少计算量.对点训练6(2020北京西城一模)设椭圆E:x22+y2=1,直线l1经过点M(m,0),直线l2经过点N(n,0),直线l1∥直线l2,且直线l1,l2分别与椭圆E相交于A,B两点和C,D两点.(1)若M,N分别为椭圆E的左、右焦点,且直线l1⊥x轴,求四边形ABCD的面积;(2)若直线l2的斜率存在且不为0,四边形ABCD为平行四边形,求证:m+n=0;(3)在(2)的条件下,判断四边形ABCD能否为矩形,说明理由.1.求椭圆标准方程的两种常用方法定义法根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程待定系数法若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B)求椭圆的方程,先定性,后定量,利用待定系数法求解,注意焦点位置不定的要讨论.2.椭圆定义的应用技巧求方程通过对题设条件分析、转化后,能够明确动点P满足椭圆的定义,便可直接求解其轨迹方程求最值抓住|PF1|与|PF2|之和为定值,可联系到基本不等式求|PF1|·|PF2|的最值;利用定义|PF1|+|PF2|=2a转化或变形,借助三角形性质求最值3.直线与椭圆相交时有关弦的问题的处理方法一般是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,注意直线斜率存在与否的讨论和判别式的符号判断的应用.数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征.数学抽象主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法与思想,认识数学结构与体系.在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用弦中点的斜率公式:一、问题的提出在研究直线与椭圆相交形成的弦中点的有关问题时,往往需要求出弦的斜率.如果已知直线l与椭圆x 2x2+x 2x2=1(a>b>0)相交于A 、B 两点,线段AB 的中点为M (x 0,y 0),请抽象出弦AB的斜率公式并以结论的形式表达出来,然后给出结论的证明.结论:若M (x 0,y 0)是椭圆x 2x 2+x 2x 2=1(a>b>0)的弦AB (AB 不平行y 轴)的中点,则有k AB =-x 2x 0x 2x 0.证明设A (x 1,y 1),B (x 2,y 2), 则有k AB =x 1-x 2x 1-x 2,{x 12x 2+x 12x 2=1,x 22x 2+x 22x 2=1,两式相减,得x 12-x 22x 2+x 12-x 22x 2=0,整理得x 12-x 22x 12-x 22=-x 2x2,即(x 1+x 2)(x 1-x 2)(x 1+x 2)(x 1-x 2)=-x 2x 2(x 1≠-x 2).因为M (x 0,y 0)是弦AB 的中点,所以k OM =x 0x 0=2x02x 0=x 1+x 2x 1+x 2,所以k AB ·k OM =-x 2x 2即k AB =-x 2x 0x 2x 0.当x 1=-x 2时,AB 平行于x 轴,此时x 0=0,k AB =0,k AB =-x 2xx 2x 0也成立,综上,k AB =-x 2x0x 2x 0.二、定理的应用应用一 求椭圆的基本元素 【例1】已知椭圆x 2x 2+x 2x 2=1(a>b>0),点F 为左焦点,点P 为下顶点,平行于FP 的直线l交椭圆于A ,B 两点,且AB 的中点为M (1,12),则椭圆的离心率为( )A.√22 B.12C.14D.√32答案A解析设A (x 1,y 1),B (x 2,y 2),∵AB 的中点为M (1,12),∴x 1+x 2=2,y 1+y 2=1,又A ,B 在椭圆上,∴x 12x 2+x 12x 2=1,x 22x 2+x 22x 2=1.两式相减,得x 1-x 2x 1-x 2·x 1+x 2x 1+x 2=-x 2x 2,∵k AB =x 1-x 2x 1-x 2=k FP =-x x ,∴x x=2x 2x 2,∴a 2=2bc.∴a 4=4(a 2-c 2)c 2, ∴x 2x 2=12,∴x x =√22.故选A.评析1.中点弦斜率公式适用于有关椭圆的弦的中点问题.2.利用中点弦的斜率公式求离心率,就是根据中点弦斜率与椭圆方程中的a ,b ,c 之间的关系,利用椭圆的有关性质构造齐次方程,抽象转化为解关于a ,b ,c 的方程.应用二 求中点弦所在直线方程【例2】过椭圆x 216+x 24=1内一点M (2,1)画一条弦,使弦被点M 平分,则这条弦所在的直线方程为 .答案x+2y-4=0解析(方法1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),M (2,1)为AB 的中点,所以x 1+x 2=4,y 1+y 2=2,又A ,B 两点在椭圆上,则x 12+4x 12=16,x 22+4x 22=16,两式相减,得(x 12−x 22)+4(x 12−x 22)=0,所以x 1-x 2x 1-x 2=-x 1+x24(x 1+x 2)=-12,即k AB =-12.故所求直线方程为x+2y-4=0.(方法2)设所求直线方程为y-1=k (x-2),代入椭圆方程并整理得,(4k 2+1)x 2-8(2k 2-k )x+4(2k-1)2-16=0.又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程的两个根,于是x 1+x 2=8(2x 2-x )4x 2+1,又M 为AB 的中点,所以x 1+x 22=4(2x 2-x )4x 2+1=2,解得k=-12,故所求直线方程为x+2y-4=0.(方法3)设所求直线与椭圆的一个交点为A (x ,y ),由于弦的中点为M (2,1),则另一个交点为B (4-x ,2-y ),因为A ,B 两点在椭圆上,所以{x 2+4x 2=16,(4-x )2+4(2-x )2=16,两式相减得x+2y-4=0,由于过A ,B 的直线只有一条,故所求直线方程为x+2y-4=0.评析求中点弦所在的直线方程,一般先利用椭圆中点弦斜率公式求得中点弦的斜率,再根据点斜式求得中点弦所在的直线方程.应用三 求曲线轨迹方程【例3】过椭圆x 264+x 236=1上一点P (-8,0)作直线交椭圆于Q 点,则PQ 中点的轨迹方程为 .答案(x +4)216+x 29=1(x ≠-8)解析(方法1)设弦PQ 中点为M (x ,y ),弦端点P (x 1,y 1),Q (x 2,y 2),则有{9x 12+16x 12=576,9x 22+16x 22=576,两式相减得9(x 12−x 22)+16(x 12−x 22)=0,又因为x 1+x 2=2x ,y 1+y 2=2y ,所以9×2x (x 1-x 2)+16×2y (y 1-y 2)=0,所以x 1-x 2x 1-x 2=-9x 16x ,而k PQ =x -0x -(-8),故-9x 16x =xx +8.化简可得9x 2+72x+16y 2=0(x ≠-8).所以PQ 中点M 的轨迹方程为(x +4)216+x 29=1(x ≠-8).(方法2)设弦中点M (x ,y ),Q (x 1,y 1),由x=x 1-82,y=x 12可得x 1=2x+8,y 1=2y ,又因为Q 在椭圆上,所以x 1264+x 1236=1,即4(x +4)264+4x 236=1,所以PQ 中点M 的轨迹方程为(x +4)216+x 29=1(x ≠-8).评析求解椭圆的弦中点的轨迹问题,一般利用椭圆中点弦斜率公式求得弦的斜率,再根据已知点与弦中点连线的斜率与已知直线的斜率相等求得轨迹方程,注意弦中点对方程的限制.应用四 求参数的范围【例4】已知椭圆x 2x 2+x 2x 2=1(a>b>0),A ,B 是椭圆上的两点,线段AB 的垂直平分线l 与x轴交于点P (x 0,0),求证:-x 2-x 2x <x 0<x 2-x 2x. 证明设AB 的中点为M (x 1,y 1),由题设可知AB 与x 轴不垂直,∴y 1≠0.由椭圆的中点弦斜率公式,得k AB =-x 2x 2·x 1x 1,∴k l =x 2x1x 2x 1.∴直线l 的方程为y-y 1=x 2x1x 2x 1(x-x 1).把(x 0,0)代入得x 1=x 2x 2-x 2x 0.∵|x 1|<a ,∴-a<x 2x 2-x 2x 0<a ,即-x 2-x 2x <x 0<x 2-x 2x. 评析利用中点弦斜率公式求得弦的斜率,写出弦所在直线的方程,并用弦中点的横坐标的范围抽象出不等式来求解参数范围.技巧一 巧用平面几何性质【例1】已知椭圆C :x 24+x 23=1的右焦点为F ,P 为椭圆C 上一动点,定点A (2,4),则|PA|-|PF|的最小值为 .答案1解析设椭圆C 的左焦点为F',则|PF|+|PF'|=4,所以|PF|=4-|PF'|,所以|PA|-|PF|=|PA|+|PF'|-4.如图,易知当点P 在线段AF'上时,|PA|+|PF'|取最小值|AF'|=√(2+1)2+(4-0)2=5.所以|PA|-|PF|的最小值为1.解题心得解决此类问题要熟练掌握平面几何的性质,利用数形结合,找到解题的关键. 技巧二 设而不求,整体代换【例2】已知椭圆E :x 2x 2+x 2x 2=1(a>b>0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B两点.若AB 的中点坐标为M (1,-1),则椭圆E 的标准方程为( )A.x 245+x 236=1 B.x 236+x 227=1 C.x 227+x 218=1 D.x 218+x 29=1答案D解析设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,x 12x 2+x 12x 2=1,x 22x 2+x 22x 2=1, 两式相减得(x 1+x 2)(x 1-x 2)x 2+(x 1+x 2)(x 1-x 2)x 2=0,所以k AB =x 1-x 2x 1-x 2=-x 2(x 1+x 2)x 2(x 1+x 2)=x 2x 2. 又k AB =0+13-1=12,所以x 2x 2=12.又a 2-b 2=c 2=9,所以b 2=9,a 2=18. 所以椭圆E 的标准方程为x 218+x 29=1.解题心得本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简【例3】已知椭圆x 24+y 2=1的左顶点为A ,过点A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一个定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.解(1)当直线AM 的斜率为1时,直线AM 的方程为y=x+2,代入椭圆方程并化简得5x 2+16x+12=0,解得x 1=-2,x 2=-65.所以点M (-65,45).(2)由题意可知直线AM ,AN 的斜率存在,且不为0.设直线AM 的斜率为k (k ≠0),直线AM 的方程为y=k (x+2),直线AN 的方程为y=-1x (x+2).由{x =x (x +2),x 24+x 2=1,化简得(1+4k 2)x 2+16k 2x+16k 2-4=0, 则x A +x M =-16x 21+4x 2.又x A =-2,所以x M =-x A -16x 21+4x 2=2-16x 21+4x 2=2-8x 21+4x 2. 同理,可得x N =2x 2-8x 2+4.当x M =x N 时,2-8x 21+4x2=2x 2-8x 2+4,解得k=±1.此时直线MN 的方程为x=-65,直线MN 过x 轴上的点(-65,0).当x M ≠x N 时,k ≠±1,因为点M (2-8x 21+4x 2,4x 1+4x 2),N2x 2-8x 2+4,-4xx 2+4,所以k MN=4x 1+4x 2+4xx 2+42-8x 21+4x 2-2x 2-8x 2+4=5x 4-4x 2,所以直线MN 的方程为y-4x1+4x 2=5x4-4x 2x-2-8x 21+4x 2.令y=0,得x=-65. 所以直线MN 过x 轴上的点(-65,0). 综上所述,直线MN 过x 轴上的定点(-65,0).解题心得在圆锥曲线问题中,常设出直线与圆锥曲线的两个交点坐标,联立直线方程与圆锥曲线方程,消元得到一元二次方程,利用根与系数的关系,得到两个交点横坐标或纵坐标的关系.这是解决圆锥曲线问题的常用方法.通过设而不求,大大降低了运算量,体现了整体思想.技巧四 巧妙“换元”减少运算量【例4】如图,已知椭圆C 的离心率为√32,A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-√32.(1)求椭圆C 的方程;(2)已知直线l :y=kx+m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.解(1)由已知得椭圆C 的焦点在x 轴上,设椭圆C 的方程为x 2x 2+x 2x 2=1(a>b>0),则点A (a ,0),B (0,b ),F (c ,0),c=√x 2-x 2.由已知得e2=x 2x 2=x 2-x 2x 2=34,所以a 2=4b 2,即a=2b ,则c=√3b.又S △ABF =12|AF||OB|=12(a-c )b=1-√32, 所以12(2b-√3b )b=1-√32,解得b=1.所以a=2,c=√3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心坐标为(0,0),半径r=1,由直线l :y=kx+m 与圆O :x 2+y 2=1相切,得|x |√1+x 2=1,故m 2=1+k 2.由{x 24+x 2=1,x =xx +x 消去y ,得(1+4k 2)x 2+8kmx+4(m 2-1)=0. 由题意可知k ≠0,所以Δ=16(4k 2-m 2+1)=48k 2>0. 设点M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8xx4x 2+1,x 1x 2=4x 2-44x 2+1,所以|x 1-x 2|=√(x 1+x 2)2-4x 1x 2=√(-8xx 4x 2+1)2-4×4x 2-44x 2+1=√16(4x 2-x 2+1)(4x 2+1)2=√48x 2(4x 2+1)2,所以|x 1-x 2|=4√3|x |4x 2+1.所以|MN|=√1+x 2|x 1-x 2|=√1+x 2·4√3|x |4x 2+1=4√3x 2(x 2+1)4x 2+1.所以△OMN 的面积S=12|MN|×1=2√3x 2(x 2+1)4x 2+1.令t=4k 2+1,则t>1,k 2=x -14,所以S=2√3×x -14(x -14+1)x2=√32√(x -1)(x +3)x 2=√32√x 2+2x -3x 2=√32√-3x2+2x +1=32√-(1x -13)2+49.当t=3,即4k 2+1=3,即k=±√22时,S 取得最大值,最大值为32×√49=1.解题心得圆锥曲线中的最值问题往往转化为函数的最值问题,可先根据已知条件建立目标函数,再求出函数的最值.在求函数的最值时,有时会利用换元,起到消除根号、降次等目的.9.5 椭圆必备知识·预案自诊知识梳理1.(1)> (2)= (3)<考点自诊1.(1)×(2)×(3)√(4)√(5)√2.A由题意知,OM是△PF1F2的中位线,所以|OM|=12|PF2|,所以|PF2|=6,所以|PF1|=2a-|PF2|=10-6=4.3.A因为△AF1B的周长为4√3,且△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,所以4a=4√3,则a=√3,又因为xx =√33,解得c=1,所以b=√x2-x2=√2,故椭圆C的方程为x23+x22=1.4.必要不充分方程x2x +x22-x=1表示椭圆,即{x>0,2-x>0,x≠2-x,解得0<m<2,且m≠1,所以“0<m<2”是“方程x2x +x22-x=1表示椭圆”的必要不充分条件.5.x24+y2=1由题意,椭圆的焦距2c=2√3,所以c=√3,又离心率e=xx=√32,所以a=2,所以b=√x2-x2=1,所以椭圆C的方程为x24+y2=1.关键能力·学案突破例1(1)A(2)A(1)(1)如图,由直线l为∠F1PF2的外角平分线,l⊥F2M,可得|PM|=|PF2|.而在椭圆E:x225+x29=1中,a=5,2a=|PF1|+|PF2|=|PF1|+|PM|=|F1M|=10.故选A.(2)因为x24+x2x2=1,则a=2,由0<b<2可知,焦点在x轴上.因为过点F1的直线l交椭圆于A,B两点,则|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8,所以|BF2|+|AF2|=8-|AB|,当AB垂直于x轴时|AB|最小,|BF2|+|AF2|值最大,此时|AB|=2x2x,又a=2,所以5=8-b2,解得b=√3,则椭圆的离心率e=xx =√1-x2x2=12.对点训练1(1)D(2)35(1)由椭圆的对称性可知,P,Q两点关于原点对称.设F'为椭圆另一焦点,则四边形PFQF'为平行四边形,由椭圆定义可知|PF|+|PF'|+|QF|+|QF'|=4a=20.又|PF|=|QF'|,|QF|=|PF'|,∴|PF|+|QF|=10.又PQ为椭圆内过原点的弦,∴|PQ|min=2b=8,∴△PFQ的周长的最小值为10+8=18.故选D.(2)椭圆x 236+x 2100=1的两个焦点为F 1(0,-8),F 2(0,8),由椭圆的定义知|PF 1|+|PF 2|=20,两边平方得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=202,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos ∠F 1PF 2=|F 1F 2|2=162,两式相减得2|PF 1||PF 2|(1+cos ∠F 1PF 2)=144.又x △xx 1x 2=12|PF 1||PF 2|sin ∠F 1PF 2=18,所以1+cos ∠F 1PF 2=2sin ∠F 1PF 2.解得cos ∠F 1PF 2=35. 例2(1)C (2)x 218+x 29=1或x 218+x 29=1 (3)m<-1或1<m<32 (1)(方法1)设M (x 0,y 0),则N (-x 0,-y 0),因为A (a ,0)且线段AM 的中点为B ,所以B (x +x 02,x 02),由B ,F ,N 三点共线,得xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∥xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,依题意,F (1,0),故xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-x 0-1,-y 0),xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x +x 02-1,x 02),即-(x 0+1)x 02+(x +x 02-1)y 0=0,又y 0≠0,解得a=3,所以b 2=32-12=8,所以椭圆C 的标准方程为x 29+x 28=1.故选C.(方法2)设M (x 0,y 0),则N (-x 0,-y 0),依题意,A (a ,0),因为AO 和NB 是△AMN 的中线,所以F (1,0)为△AMN 的重心,故x 0-x 0+x3=1,解得a=3,所以b 2=32-12=8,所以椭圆C 的标准方程为x 29+x 28=1.故选C.(2)由题意知xx =√22,得a 2=2b 2=2c 2.当焦点在x 轴上时,设椭圆的方程为x 2x 2+x 2x 2=1(a>b>0),在椭圆上任取一点P (x 0,y 0),取焦点F (-c ,0),则PF 的中点M 为(x 0-x 2,x 02),根据条件可得x 02=x 0-x 2+4,k PF =x 0x0+x=-1,联立两式解得x 0=-4,y 0=4-c ,代入椭圆方程解得a=3√2,b=3.由此可得椭圆的方程为x 218+x 29=1,同理,当焦点在y 轴上时,椭圆的方程为x 218+x 29=1.(3)由x 2|x |-1+x 22-x =1表示焦点在y 轴上的椭圆,得2-m>|m|-1>0,解得m<-1或1<m<32.对点训练2(1)C (2)x 24+x 22=1(3)x28+x24=1(1)椭圆3x2+8y2=24化为x28+x23=1,它的焦点为(±√5,0),可得c=√5,设椭圆的方程为x2x2+x2x2=1(a>b>0),可得9x2+4x2=1,又a2-b2=5,所以a=√15,b=√10,故所求的椭圆方程为x215+x210=1.(2)由题意可设椭圆C1:x2x2+x22=1,C2:x22+x2x2=1(a>√2,0<b<√2),由x2-2x2=2-x22,得ab=2,由2√x2-2·√2-x2=2√2,可得(a2-2)(2-b2)=2,解得a=2,b=1,即椭圆C1的标准方程为x24+x22=1.(3)因为椭圆上一点到焦点的最小距离为a-c,所以a-c=2√2-2,因为离心率e=√22,所以x x =√22,解得a=2√2,c=2,则b2=a2-c2=4,所以椭圆E的方程为x28+x24=1.例3(1)C(2)A(3)D(1)设椭圆的左焦点为F',P为短轴的上端点,连接AF',BF',如下图所示:由椭圆的对称性可知,A,B关于原点对称,则|OA|=|OB|,又|OF'|=|OF|,∴四边形AFBF'为平行四边形,∴AF=BF',又|AF|+|BF|=|BF|+|BF'|=2a=6,∴a=3,∵点P(0,b)到直线l距离d=|-3x|5≥65,∴b≥2,∴√x2-x2=√9-x2≥2,即0<c≤√5,∴e=xx ∈(0,√53].故选C.(2)由题意,因为△F2PF1是底边为PF1的等腰三角形,所以|PF2|=|F2F1|.因为P为直线x=2a上一点,直线PF1的斜率为13,△PDF2是直角三角形,所以|PD|2+|DF2|2=|PF2|2,即(2x+x3)2+(2a-c)2=4c2,可得13e2+16e-20=0,解得e=1013或e=-2(舍去).故选A.(3)由正弦定理,可得|xx 1|sin∠xx 2x 1=|xx 2|sin∠xx 1x 2,结合题意可得|xx 1|x=|xx 2|x,所以|xx 1|x=|xx 2|x=|xx 1|+|xx 2|x +x .根据椭圆的定义可得|MF 1|+|MF 2|=2a ,所以|MF 1|=2xxx +x ,|MF 2|=2x 2x +x ,易知|MF 2|>|MF 1|.因为M 为椭圆上一点,所以a-c<|MF 2|<a+c ,即a-c<2x 2x +x <a+c , 整理得c 2+2ac-a 2>0,所以e 2+2e-1>0,解得√2-1<e<1.故选D. 对点训练3(1)C (2)B (3)12,1 (1)由椭圆x 211-x +x 2x -3=1的长轴在y 轴上,且焦距为4,可得√x -3-11+x =2,解得m=9.故选C .(2)如图,设直线x=3x 2与x 轴的交点为C ,由△APF 是底角为30°的等腰三角形和椭圆性质可知PF=AF=a+c ,FC=OC-OF=3x 2-c ,由题意可知∠PFC=60°,所以cos ∠PFC=xxxx=3x2-x x +x=12,解得e=xx =23.故选B.(3)∵|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |+|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2a ,∴|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2a-|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗|(a-c ≤|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |≤a+c ). ∴|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |(2a-|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |)=-|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |2+2a|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗|=-(|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |-a )2+a 2. ∵a-c ≤|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |≤a+c ,∴|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=-(|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |-a )2+a 2∈[b 2,a 2].∴|xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ |的最大值m=a 2. 设P (x ,y ),则xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-c-x ,-y )·(c-x ,-y )=x 2+y 2-c 2=x 2+x 2x 2(a 2-x 2)-c 2=1-x 2x 2x 2+b 2-c 2,∵x ∈[-a ,a ],∴x 2∈[0,a 2],xx 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·xx 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为n=b 2-c 2.由m ≥2n ,得a 2≥2(b 2-c 2)=2(a 2-2c 2),∴a 2≤4c 2,解得e=x x ∈12,1.例4解(1)由题意,得2c=2√2,所以c=√2.又e=xx =√63,所以a=√3,所以b 2=a 2-c 2=1,所以椭圆M 的方程为x 23+y 2=1.(2)设直线AB 的方程为y=x+m.由{x =x +x ,x 23+x 2=1消去y ,得4x 2+6mx+3m 2-3=0,则Δ=36m 2-4×4(3m 2-3)=48-12m 2>0,即m 2<4.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-3x 2,x 1x 2=3x 2-34,所以|AB|=√1+x 2|x 1-x 2|=√1+x 2·√(x 1+x 2)2-4x 1x 2=√6×√4-x 22,易得当m 2=0时,|AB|max =√6,故|AB|的最大值为√6.(3)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),则x 12+3x 12=3,x 22+3x 22=3.又P (-2,0),所以可设k 1=k PA =x 1x 1+2,直线PA 的方程为y=k 1(x+2).由{x =x 1(x +2),x 23+x 2=1消去y ,得(1+3x 12)x 2+12x 12x+12x 12-3=0,则x 1+x 3=-12x 121+3x 12,即x 3=-12x 121+3x 12-x 1.又k 1=x 1x1+2,代入上式可得x 3=-7x 1-124x 1+7,所以y 3=x14x 1+7, 所以点C (-7x 1-124x 1+7,x14x 1+7). 同理可得点D (-7x 2-124x 2+7,x 24x 2+7). 故xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x 3+74,x 3-14),xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x 4+74,x 4-14).因为Q ,C ,D 三点共线,所以(x 3+74)(x 4-14)-x 4+74(x 3-14)=0.将点C ,D 的坐标代入化简可得x 1-x2x 1-x 2=1,即k=1.对点训练4解(1)由题意,得b=√3,且2x +2x2·√3=3√3,所以a+c=3.又a 2-c 2=3,解得a=2,c=1. 所以椭圆C 的方程为x 24+x 23=1.(2)如图,设A (x 1,y 1),B (x 2,y 2).当圆O 的切线l 的斜率存在时,设l 的方程为:y=kx+m.切点为H ,连接OH ,则OH ⊥AB.联立{x =xx +x ,x 24+x 23=1,整理得(3+4k 2)x 2+8kmx+4m 2-12=0.所以x 1+x 2=-8xx 4x 2+3,x 1x 2=4x 2-124x 2+3.又直线l 与圆O :x 2+y 2=127相切,所以OH=|x |√x 2+1=√127.所以m 2=12(1+x 2)7.又|AB|=√1+x 2·√(x 1+x 2)2-4x 1x 2=√1+x 2·√64x 2x 2-4(4x 2-12)(4x 2+3)(4x 2+3)2=√1+x 2·√48(3+4x 2-x 2)(4x 2+3)2=4√3√7√(1+x 2)(9+16x 2)(4x 2+3)2=4√3√7√1+x216x 4+24x 2+9.①若k ≠0时,|AB|=4√3√7√1+116x 2+24+9x 2. 因为16k 2+24+9x 2≥2√16×9+24=48,当且仅当k=±√32时,等号成立.所以|AB|≤4√3√7×√1+148=4√3√7×74√3=√7,易知|AB|>4√3√7,即4√3√7<AB ≤√7. ②当k=0时,|AB|=4√3√7.所以4√3√7≤|AB|≤√7.又|OH|=2√3√7,所以S △AOB =12|AB|·|OH|=2√32√7|AB|∈[127,√3].当圆O 的切线斜率不存在时,则AB 的方程为x=√127,或x=-√127.此时A ,B 的坐标分别为√127,√127,√127,-√127或-√127,√127,-√127,-√127. 此时S △AOB =127.综上,△AOB 面积的取值范围为[127,√3].例5解设弦的两端点为A (x 1,y 1),B (x 2,y 2),中点为M (x 0,y 0),则有x 122+x 12=1,x 222+x 22=1,两式作差,得(x 2-x 1)(x 2+x 1)2+(y 2-y 1)(y 2+y 1)=0,因为x 1+x 2=2x 0,y 1+y 2=2y 0,x 2-x1x 2-x 1=k AB ,所以k AB =-x02x 0.①(1)设弦中点为M (x ,y ),由①式,2=-x2x ,所以x+4y=0.故所求的轨迹方程为x+4y=0-43<x<43.(2)由①式及题意可知,弦所在的直线的斜率k=-x 02x 0=-12,所以其方程为y-12=-12x-12,即2x+4y-3=0.对点训练5A 设弦的两端点为A (x 1,y 1),B (x 2,y 2),P 为AB 中点.A ,B 在椭圆上,则x 1216+x 124=1,x 2216+x 224=1,两式相减,得x 12-x 2216+x 12-x 224=0,又因为x 1+x 2=6,y 1+y 2=2,可得x 1-x 2x 1-x 2=-34,则k=-34,直线AB 过点P (3,1),所以该弦所在的直线方程为y-1=-34(x-3),整理得3x+4y-13=0.故选A .例6解(1)由题意可得{4x 2+1x 2=1,x =2x ,解得{x 2=8,x 2=2,故椭圆C 的方程为x 28+x 22=1.(2)设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为y=k (x+4),与椭圆方程x 28+x 22=1联立,可得x 2+4k 2(x+4)2=8,即(4k 2+1)x 2+32k 2x+(64k 2-8)=0,则x 1+x 2=-32x 24x 2+1,x 1x 2=64x 2-84x 2+1.直线MA 的方程为y+1=x 1+1x 1+2(x+2),令x=-4,可得y P =-2×x 1+1x 1+2-1=-2×x (x 1+4)+1x 1+2−x 1+2x 1+2=-(2x +1)(x 1+4)x 1+2,同理可得y Q =-(2x +1)(x 2+4)x 2+2.很明显y P y Q <0,且|xx ||xx |=|xx x x|,注意到y P +y Q =-(2k+1)x 1+4x 1+2+x 2+4x 2+2=-(2k+1)×(x 1+4)(x 2+2)+(x 2+4)(x 1+2)(x 1+2)(x 2+2),而(x 1+4)(x 2+2)+(x 2+4)(x 1+2)=2[x 1x 2+3(x 1+x 2)+8]=264x 2-84x 2+1+3×(-32x 24x 2+1)+8=2×(64x 2-8)+3×(-32x 2)+8(4x 2+1)4x 2+1=0,故y P +y Q =0,y P =-y Q .从而|xx ||xx |=|xx x x|=1.对点训练6(1)解由题意可得M (-1,0),N (1,0),令x=-1,得y=±√22,所以|AB|=√2,因为|BC|=|MN|=2,且四边形ABCD 是矩形,所以四边形ABCD 的面积为S=|AB|·|BC|=2√2. (2)证明设l 1为y=k (x-m ),则{x 22+x 2=1,x =x (x -x ),故(2k 2+1)x 2-4k 2mx+2m 2k 2-2=0,设A (x 1,y 1),B (x 2,y 2), 故{x 1+x 2=4x 2x2x 2+1,x 1x 2=2x 2x 2-22x 2+1,|AB|=√1+x 2|x 1-x 2|=√1+x 2√(x 1+x 2)2-4x 1x 2 =√1+x 2√16x 2-8x 2x 2+82x 2+1,同理可得|CD|=√1+x 2√16x 2-8x 2x 2+82x 2+1,因为四边形ABCD 为平行四边形,所以|AB|=|CD|,故√1+x 2√16x 2-8x 2x 2+82x 2+1=√1+x 2√16x 2-8x 2x 2+82x 2+1,即m 2=n 2,又m ≠n ,所以m+n=0. (3)解设AB 中点为P (a ,b ),则x 122+x 12=1,x 222+x 22=1,两式相减,得(x1+x2)(x1-x2)2+(y1+y2)(y1-y2)=0,即a+2kb=0, 同理可得CD的中点Q(c,d),满足c+2kd=0,故k PQ=x-xx-x =x-x-2xx+2xx=-12x≠-1x,故四边形ABCD不能为矩形.。
(全国通用版)2019版高考数学大一轮复习第九章平面解析几何第5节第1课时椭

第1课时椭圆及其标准方程最新考纲 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.知识梳理1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b2 [常用结论与微点提醒]1.过椭圆的一个焦点且与长轴垂直的弦的长为2b2a,称为通径.2.椭圆离心率e=ca=a2-b2a=1-b2a2.3.应用“点差法”时,要检验直线与圆锥曲线是否相交.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.( )(2)椭圆的离心率e越大,椭圆就越圆.( )(3)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.( )(4)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.( )解析(1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.(2)因为e=ca=a2-b2a=1-ba2,所以e越大,则ba越小,椭圆就越扁.答案(1)×(2)×(3)√(4)√2.(2017·浙江卷)椭圆x29+y24=1的离心率是( )A.133B.53C.23D.59解析由已知,a=3,b=2,则c=9-4=5,所以e=ca=53.答案 B3.(2018·张家口调研)椭圆x216+y225=1的焦点坐标为( )A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)解析根据椭圆方程可得焦点在y轴上,且c2=a2-b2=25-16=9,∴c=3,故焦点坐标为(0,±3),故选 B.答案 B4.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则椭圆C的方程是( )A.x23+y24=1 B.x24+y23=1C.x24+y22=1 D.x24+y23=1。
新课改地区高考数学一轮复习第九章平面解析几何95椭圆课件新人教B版

新课改地区高考数学一轮复习第九章平面解析几何9.5椭圆课件新人教B版
2021/4/17
新课改地区高考数学一轮复习第九章平面解析几何95椭圆课件新 人教B版
1
第五节 椭 圆
新课改地区高考数学一轮复习第九章平面解析几何95椭
必备知识·自主学习 核心考点·精准研析 核心素养测评
长轴A1A2的长为_2_a_ 短轴B1B2的长为_2_b
|F1F2|=_2_c_
e= c ∈_(_0_,__1_)_
a
新课改地区高考数学一轮复习第九章平面解析几何95椭
2021/4/17
7
圆课件新人教B版
【常用结论】
1.椭圆的标准方程有两种形式,若含x2项的分母大于含y2项的分母,则椭圆的
焦点在x轴上,反之焦点在y轴上.求椭圆的标准方程时易忽视判断焦点的位置,
新课改地区高考数学一轮复习第九章平面解析几何95椭
2021/4/17
17
圆课件新人教B版
2.(选修2-1P46练习AT2(5)改编)已知中心在原点的椭圆C的右焦点为F(1,0),
离心率为 1 ,则C的方程是 ( )
2
A. x 2 y 2 1
34
B. x 2 y 2 1
24
C. x 2 y 2 1
新课改地区高考数学一轮复习第九章平面解析几何95椭
2021/4/17
3
圆课件新人教B版
新课改地区高考数学一轮复习第九章平面解析几何95椭
2021/4/17
4
圆课件新人教B版
【教材·知识梳理】
1.椭圆的定义
(1)平面内与两个定点F1,F2的距离的__和___等于常数(大于|F1F2|)的点的轨迹 叫做椭圆.这两个定点叫做椭圆的_焦__点__,两焦点间的距离叫做椭圆的_焦__距__.
2019届高考数学大一轮复习讲义:第九章 平面解析几何 9.5 椭圆 第1课时
§9.5椭圆1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和简单性质知识拓展点P (x 0,y 0)和椭圆的位置关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1.(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( × )(2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( √ )(3)椭圆的离心率e 越大,椭圆就越圆.( × )(4)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( √ ) (5)y 2a 2+x 2b 2=1(a ≠b )表示焦点在y 轴上的椭圆.( × ) (6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相等.( √ ) 题组二 教材改编2.椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( )A .4B .8C .4或8D .12答案 C解析 当焦点在x 轴上时,10-m >m -2>0, 10-m -(m -2)=4,∴m =4.当焦点在y 轴上时,m -2>10-m >0,m -2-(10-m )=4,∴m =8. ∴m =4或8.3.过点A (3,-2)且与椭圆x 29+y24=1有相同焦点的椭圆的方程为( )A.x 215+y 210=1 B.x 225+y 220=1 C.x 210+y 215=1 D.x 220+y 215=1 答案 A解析 由题意知c 2=5,可设椭圆方程为x 2λ+5+y 2λ=1(λ>0),则9λ+5+4λ=1,解得λ=10或λ=-2(舍去),∴所求椭圆的方程为x 215+y 210=1.4.已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为__________________. 答案 ⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0).由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,所以P 点坐标为⎝⎛⎭⎫152,1或⎝⎛⎭⎫152,-1.题组三 易错自纠5.若方程x 25-m +y 2m +3=1表示椭圆,则m 的取值范围是( )A .(-3,5)B .(-5,3)C .(-3,1)∪(1,5)D .(-5,1)∪(1,3)答案 C解析 由方程表示椭圆知⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1.6.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21D.1925或21 答案 Cb 2=9,则c =k -5,由c a =45,即k -54+k =45,解得k =21.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 答案 A解析 ∵△AF 1B 的周长为43,∴4a =43, ∴a =3,∵离心率为33,∴c =1, ∴b =a 2-c 2=2,∴椭圆C 的方程为x 23+y 22=1.故选A.第1课时 椭圆及其性质题型一 椭圆的定义及应用1.如图所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆答案 A解析 由条件知|PM |=|PF |,∴|PO |+|PF |=|PO |+|PM |=|OM |=R >|OF |. ∴P 点的轨迹是以O ,F 为焦点的椭圆.2.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( ) A .2 B .4 C .8 D .2 2 答案 B解析 椭圆方程变形为y 21+x 214=1,∴椭圆长轴长2a =2,∴△ABF 2的周长为4a =4.3.(2017·承德模拟)椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于( ) A.72 B.32C. 3 D .4答案 A解析 F 1(-3,0),∵PF 1⊥x 轴, ∴P ⎝⎛⎭⎫-3,±12,∴|PF 1→|=12, ∴|PF 2→|=4-12=72.4.(2017·呼和浩特模拟)已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|P A |+|PF |的最大值为________,最小值为________. 答案 6+2 6- 2解析 椭圆方程化为x 29+y 25=1,设F 1是椭圆的右焦点,则F 1(2,0), ∴|AF 1|=2,∴|P A |+|PF |=|P A |-|PF 1|+6,又-|AF 1|≤|P A |-|PF 1|≤|AF 1|(当P ,A ,F 1共线时等号成立), ∴|P A |+|PF |≤6+2,|P A |+|PF |≥6- 2. 思维升华椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.题型二 椭圆的标准方程命题点1 利用定义法求椭圆的标准方程典例 (1)(2018·济南调研)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1 D.x 264+y 248=1 答案 D解析 设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16>8=|C 1C 2|, 所以M 的轨迹是以C 1,C 2为焦点的椭圆, 且 2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1.(2)在△ABC 中,A (-4,0),B (4,0),△ABC 的周长是18,则顶点C 的轨迹方程是( ) A.x 225+y 29=1(y ≠0) B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.y 216+x 29=1(y ≠0) 答案 A解析 由|AC |+|BC |=18-8=10>8知,顶点C 的轨迹是以A ,B 为焦点的椭圆(A ,B ,C 不共线).设其方程为x 2a 2+y 2b 2=1(a >b >0),则a =5,c =4,从而b =3.由A ,B ,C 不共线知y ≠0.故顶点C 的轨迹方程是x 225+y 29=1(y ≠0).命题点2 利用待定系数法求椭圆方程典例 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝⎛⎭⎫-32,52,(3,5),则椭圆方程为______________________________________. 答案 y 210+x 26=1解析 设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ). 由⎩⎪⎨⎪⎧⎝⎛⎭⎫-322m +⎝⎛⎭⎫522n =1,3m +5n =1,解得m =16,n =110.∴椭圆方程为y 210+x 26=1.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为________________.答案 y 220+x 24=1解析 方法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =(3-0)2+(-5+4)2 +(3-0)2+(-5-4)2,解得a =2 5. 由c 2=a 2-b 2可得b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.方法二 ∵所求椭圆与椭圆y 225+x 29=1的焦点相同,∴其焦点在y 轴上,且c 2=25-9=16. 设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).∵c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.① 又点(3,-5)在所求椭圆上, ∴(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.② 由①②得b 2=4,a 2=20,∴所求椭圆的标准方程为y 220+x 24=1.思维升华 (1)求椭圆的标准方程多采用定义法和待定系数法.(2)利用定义法求椭圆方程,要注意条件2a >|F 1F 2|;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.跟踪训练设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为______________. 答案 x 2+32y 2=1解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,设点A 在x 轴上方,则A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0). ∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b23. 将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y 2b 2=1,得b 2=23. ∴椭圆E 的方程为x 2+32y 2=1.题型三 椭圆的简单性质典例 (1)(2017·安庆模拟)P 为椭圆x 216+y 215=1上任意一点,EF 为圆N :(x -1)2+y 2=4的任意一条直径,则PE →·PF →的取值范围是( ) A .[0,15] B .[5,15] C .[5,21] D .(5,21) 答案 C解析 PE →·PF →=(PN →+NE →)·(PN →+NF →)=(PN →+NE →)·(PN →-NE →)=PN →2-NE →2=|PN →|2-4,因为a -c ≤|PN →|≤a +c ,即3≤|PN →|≤5,所以PE →·PF →的取值范围是[5,21].(2)(2018届晋豫名校调研)已知椭圆x 2a 2+y 2b 2=1的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,点A 在椭圆上,AF 1→·F 1F 2→=0,AF 1→·AF 2→=c 2,则椭圆的离心率e 等于( ) A.33 B.3-12 C.5-12D.22答案 C解析 由于AF 1→·F 1F 2→=0,则A ⎝⎛⎭⎫-c ,b2a ,F 1(-c,0),F 2(c,0), ∴AF 1→=⎝⎛⎭⎫0,-b 2a ,AF 2→=⎝⎛⎭⎫2c ,-b 2a ,AF 1→·AF 2→=b 4a2=c 2,得b 2=ac ,即a 2-c 2=ac ,即1-e 2=e ,∴e 2+e -1=0,解得e =-1±52,∵0<e <1,∴e =5-12,故选C. 思维升华 (1)利用椭圆简单性质的注意点及技巧 ①注意椭圆简单性质中的不等关系在求与椭圆有关的一些范围问题时,经常用到x ,y 的范围,离心率的范围等不等关系. ②利用椭圆简单性质的技巧求解与椭圆简单性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系. (2)求椭圆的离心率问题的一般思路求椭圆的离心率或其范围时,一般是依据题设得出一个关于a ,b ,c 的等式或不等式,即可得离心率或离心率的范围.跟踪训练 (1)(2017·德阳模拟)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________. 答案3解析 由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知2b 2a=3.所以b 2=3,即b = 3.(2)(2018届武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上的不同两点且关于x 轴对称,设直线AP ,BQ 的斜率分别为m ,n ,若点A 到直线y =1-mn x 的距离为1,则该椭圆的离心率e 为( ) A.12 B.24 C.13 D.22答案 B解析 由椭圆x 29+y 2b 2=1(0<b <3),得A (-3,0),B (3,0). 设P (x 0,y 0),则Q (x 0,-y 0), ∴m =y 0x 0+3,n =-y 0x 0-3,mn =-y 20x 20-9,又∵y 20=-b 29(x 20-9),∴mn =b29,点A 到直线y =1-mnx 的距离为d =31-mn 1-mn +1=31-b 292-b 29=1, 解得b 2=638,∴c 2=9-638=98,∴c =322,∴e =c 3=24,故选B.1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( ) A .4 B .3 C .2 D .5 答案 A解析 由题意知|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.2.(2018·开封模拟)曲线C 1:x 225+y 29=1与曲线C 2:x 225-k +y 29-k =1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等答案 D解析 因为c 21=25-9=16,c 22=(25-k )-(9-k )=16,所以c 1=c 2,所以两个曲线的焦距相等.3.已知圆(x -1)2+(y -1)2=2经过椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 和上顶点B ,则椭圆C 的离心率为( ) A.12 B. 2 C .2 D.22 答案 D解析 由题意得,椭圆的右焦点F 为(c,0),上顶点B 为(0,b ).因为圆(x -1)2+(y -1)2=2经过右焦点F 和上顶点B ,所以⎩⎪⎨⎪⎧(c -1)2+1=2,1+(b -1)2=2,解得b =c =2,则a 2=b 2+c 2=8,解得a =22,所以椭圆C 的离心率e =c a =222=22,故选D.4.(2017·西宁模拟)设F 1,F 2分别为椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上,且|PF 1→+PF 2→|=23,则∠F 1PF 2等于( ) A.π6 B.π4 C.π3 D.π2 答案 D解析 因为PF 1→+PF 2→=2PO →,O 为坐标原点,|PF 1→+PF 2→|=23,所以|PO |=3,又|OF 1|=|OF 2|=3,所以P ,F 1,F 2在以点O 为圆心的圆上,且F 1F 2为直径,所以∠F 1PF 2=π2.5.(2017·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( ) A .8 B .10 C .12 D .15答案 D解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义,得|PF 1|+|PF 2|=2a =8,(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=64,所以34+2|PF 1|·|PF 2|=64,所以|PF 1|·|PF 2|=15.故选D. 6.(2017·湖南百校联盟联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( ) A.35 B.12 C.23 D.34答案 A解析 ∵圆O 与直线BF 相切,∴圆O 的半径为bc a ,即|OC |=bca ,∵四边形F AMN 是平行四边形,∴点M 的坐标为⎝⎛⎭⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,∴5e 2+2e -3=0,又0<e <1,∴e =35.故选A.7.焦距是8,离心率等于0.8的椭圆的标准方程为________________.答案x 225+y 29=1或y 225+x29=1 解析 由题意知⎩⎪⎨⎪⎧2c =8,c a=0.8,解得⎩⎪⎨⎪⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,当焦点在x 轴上时,椭圆方程为x 225+y 29=1,当焦点在y 轴上时,椭圆方程为y 225+x 29=1.8.若椭圆x 2a 2+y 2b 2=1(a >0,b >0)的焦点在x 轴上,过点(2,1)作圆x 2+y 2=4的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为________________. 答案 x 220+y 216=1解析 设切点坐标为(m ,n ), 则n -1m -2·n m=-1, 即m 2+n 2-n -2m =0.∵m 2+n 2=4,∴2m +n -4=0, 即直线AB 的方程为2x +y -4=0.∵直线AB 恰好经过椭圆的右焦点和上顶点, ∴2c -4=0,b -4=0,解得c =2,b =4, ∴a 2=b 2+c 2=20, ∴椭圆方程为x 220+y 216=1.9.(2017·湖北重点中学联考)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与椭圆C 2:y 2a 2+x 2b 2=1(a >b >0)相交于A ,B ,C ,D 四点,若椭圆C 1的一个焦点F (-2,0),且四边形ABCD 的面积为163,则椭圆C 1的离心率e 为________. 答案22解析 联立⎩⎨⎧x 2a 2+y 2b 2=1,y 2a 2+x2b 2=1,两式相减得x 2-y 2a 2=x 2-y 2b2,又a ≠b ,所以x 2=y 2=a 2b2a 2+b 2,故四边形ABCD 为正方形,4a 2b 2a 2+b2=163,(*)又由题意知a 2=b 2+2,将其代入(*)式整理得3b 4-2b 2-8=0,所以b 2=2,则a 2=4, 所以椭圆C 的离心率e =22. 10.(2017·湖南东部六校联考)设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________. 答案733解析 由圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为 d =x 2+(y -1)2=-3y 2-2y +5 =-3⎝⎛⎭⎫y +132+163, ∵-1≤y ≤1,∴当y =-13时,d 取最大值433,∴P ,Q 两点间的最大距离为d max +3=733. 11.(2017·陕西西北大学附中期末)已知椭圆的长轴长为10,两焦点F 1,F 2的坐标分别为(3,0)和(-3,0).(1)求椭圆的标准方程;(2)若P 为短轴的一个端点,求△F 1PF 2的面积. 解 (1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎪⎨⎪⎧2a =10,c =3,因此a =5,b =4,所以椭圆的标准方程为x 225+y 216=1.(2)易知|y P |=4,又c =3, 所以S12F PF =12|y P |×2c =12×4×6=12. 12.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解 椭圆方程可化为x 2m +y2mm +3=1,m >0.∵m -m m +3=m (m +2)m +3>0,∴m >mm +3,∴a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32,得m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1,∴a =1,b =12,c =32.∴椭圆的长轴长和短轴长分别为2a =2和2b =1,焦点坐标为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0,四个顶点的坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12.13.已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( ) A.3-1 B .2- 3 C.22D.32答案 A解析 ∵过F 1的直线MF 1是圆F 2的切线, ∴∠F 1MF 2=90°,|MF 2|=c ,∵|F 1F 2|=2c ,∴|MF 1|=3c ,由椭圆定义可得|MF 1|+|MF 2|=c +3c =2a ,∴椭圆离心率e =21+3=3-1.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B ,C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C =________.答案 3解析 在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e=3.15.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是( ) A.⎣⎡⎭⎫12,1 B.⎣⎡⎦⎤22,32 C.⎣⎡⎭⎫22,1D.⎣⎡⎭⎫32,1答案 C解析 从椭圆上长轴端点P ′向圆引两条切线P ′A ,P ′B ,则两切线形成的∠AP ′B 最小. 若椭圆C 1上存在点P ,所作圆C 2的两条切线互相垂直,则只需∠AP ′B ≤90°, 即α=∠AP ′O ≤45°,∴sin α=b a ≤sin 45°=22.又b 2=a 2-c 2,∴a 2≤2c 2,∴e 2≥12,即e ≥22.又0<e <1,∴22≤e <1,即e ∈⎣⎡⎭⎫22,1. 16.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A 分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,求PF →·P A →的最大值和最小值.解 设P 点坐标为(x 0,y 0).由题意知a =2, ∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.所求椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.又F (-1,0),A (2,0),PF →=(-1-x 0,-y 0), P A →=(2-x 0,-y 0),∴PF →·P A →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2. 当x 0=2时,PF →·P A →取得最小值0, 当x 0=-2时,PF →·P A →取得最大值4.。
2019届高考(新课标)数学(理)大一轮复习课件第九章 平面解析几何 9-5
[考纲要求] 1.掌握椭圆的定义、几何图形、标准方程及 简单性质.2.了解圆锥曲线的简单应用.3.理解数形结合的思
想.
1.椭圆的概念
平 面 内 与 两 个 定 点 F1 , F2 的 距 离 的 和 等 于 常 数 ( 大 于 |F1F2|)的点的轨迹叫做_椭__圆__.这两个定点叫做椭圆的_焦__点_, 两焦点的距离叫做椭圆的_焦__距___.
1.(教材改编)椭圆10x-2 m+m-y2 2=1 的焦距为 4,则 m 等于
() A.4
B.8
C.4 或 8
D.12
【解析】 当焦点在x轴上时,10-m>m-2>0, 10-m-(m-2)=4,∴m=4. 当焦点在y轴上时,m-2>10-m>0,m-2-(10-m)= 4, ∴m=8. 【答案】 C
(2)求椭圆标准方程的基本方法是待定系数法,具体过 程是先定形,再定量,即首先确定焦点所在位置,然后再 根据条件建立关于a,b的方程组.如果焦点位置不确定, 要考虑是否有两解,有时为了解题方便,也可把椭圆方程 设为mx2+ny2=1(m>0,n>0,m≠n)的形式.
离心率为 33,过 F2 的直线 l 交 C 于 A,B 两点,若△AF1B 的周
长为 4 3,则 C 的方程为( A.x32+y22=1 C.1x22 +y82=1
) B.x32+y2=1 D.1x22 +y42=1
【解析】 ∵△AF1B 的周长为 4 3,∴4a=4 3, ∴a= 3,∵离心率为 33,∴c=1, ∴b= a2-c2= 2,∴椭圆 C 的方程为x32+y22=1. 故选 A.
【答案】 A
4.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么 实数k的取值范围是________.
高考数学(理)一轮复习人教A版-第九章 平面解析几何-第5节 椭 圆 第2课时
考点二 椭圆性质的应用
[训练 2] (1)(2018·贵州七校联考)以椭圆上一点和两个焦点为顶点的三角形的面 积的最大值为 1,则椭圆长轴长的最小值为( ) A.1 B. 2 C.2 D.2 2
解析 (1)设 a,b,c 分别为椭圆的长半轴长,短半轴长,半焦距, 依题意知,当三角形的高为 b 时面积最大, 所以12×2cb=1,bc=1, 而 2a=2 b2+c2≥2 2bc=2 2 (当且仅当 b=c=1 时取等号),故选 D. 答案 (1)D
考点三 直线与椭圆(多维探究)
弦及弦中点问题的解决方法 (1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数关系 表示中点;(2)点差法:利用弦两端点适合椭圆方程,作差构造中点、 斜率.
考点三 直线与椭圆(多维探究)
解决直线与椭圆的位置关系的相关问题,先把直
命题角度 2
直线与椭圆的位置关系(易错警示)
解得 k2<4, 综上可得43<k2<4,
则
23<k<2
或-2<k<-
3 2.
则满足条件的斜率 k 的取值范围为-2,- 23∪ 23,2.
考点三 直线与椭圆(多维探究)
1.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭 圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问
考点二 椭圆性质的应用
利用椭圆几何性质的注意点及技巧 (1)在求与椭圆有关的一些量的范围,或者最值时,经常用到椭圆标 准方程中 x,y 的范围,离心率的范围等不等关系.(2)求解与椭圆几 何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长 轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.
点,当坐标原点 O 位于以 MN 为直径的圆外时,求直线 l 斜率的取值范围.
(新课标)2019届高考数学一轮复习第九章平面解析几何9.
自查自纠
1.定点 定长 集合 圆心 半径长 2.(1)(a,b) r D E 1 2 2 - ,- (2)D +E -4F>0 2 2 D +E -4F 2
2 2
3.(1)(x0-a)2+(y0-b)2=r2 (2)(x0-a)2+(y0-b)2>r2 (3)(x0-a)2+(y0-b)2<r2
第九章 第一章
集合与常用逻辑用语 平面解析几何
9.3
圆的方程
1.圆的定义 在平面内,到____________的距离等于____________的点的____________叫圆.确 定一个圆最基本的要素是____________和____________. 2.圆的标准方程与一般方程 (1) 圆的标准方程: 方程 (x - a)2 + (y - b)2 = r2(r>0) 叫做以点 ____________ 为圆心, ____________为半径长的圆的标准方程. (2)圆的一般方程:方程 x2+y2+Dx+Ey+F=0(____________)叫做圆的一般方程. D2 E2 D2+E2-4F 注:将上述一般方程配方得 x+ 2 + y+ 2 = ,此为该一般方程对应 4 的标准方程,表示的是以____________为圆心,____________为半径长的圆.
2 2 2 2 2 2 2 2
(2016· 柳州模拟)若方程 x2+y2-2x+2my+2m2 -6m+9=0 表示圆,则 m 的取值范围是____________; 当半径最大时,圆的标准方程为____________.
解:原方程可化为 (x- 1)2+ (y +m)2=-m2+ 6m -8, 则 r2=-m2+6m-8=-(m-2)(m-4)>0,所以 2<m<4. 当 m=3 时,r 最大为 1,此时圆的方程为(x-1)2 +(y+3)2=1.故填(2,4);(x-1)2+(y+3)2=1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 直线与椭圆题型一 直线与椭圆的位置关系1.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 方法一 由于直线y =kx +1恒过点(0,1), 所以点(0,1)必在椭圆内或椭圆上, 则0<1m≤1且m ≠5,故m ≥1且m ≠5. 方法二 由⎩⎪⎨⎪⎧y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立, 即5mk 2+m 2-m ≥0对一切k ∈R 恒成立, 由于m >0且m ≠5,∴m ≥1且m ≠5.2.已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.思维升华 研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.题型二 弦长及弦中点问题命题点1 弦长问题典例 斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105 D.8105答案 C解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5=425·5-t 2, 当t =0时,|AB |max =4105.命题点2 弦中点问题典例 已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1答案 D解析 设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a2(x -3),联立直线与椭圆的方程得 (a 2+b 2)x 2-6b 2x +9b 2-a 4=0, 所以x 1+x 2=6b2a 2+b2=2,又因为a 2-b 2=9,解得b 2=9,a 2=18.命题点3 椭圆与向量等知识的综合典例 (2017·沈阳质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),e =12,其中F 是椭圆的右焦点,焦距为2,直线l 与椭圆C 交于点A ,B ,线段AB 的中点横坐标为14,且AF →=λFB →(其中λ>1).(1)求椭圆C 的标准方程; (2)求实数λ的值.解 (1)由椭圆的焦距为2,知c =1,又e =12,∴a =2,故b 2=a 2-c 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)由AF →=λFB →,可知A ,B ,F 三点共线,设点A (x 1,y 1),点B (x 2,y 2). 若直线AB ⊥x 轴,则x 1=x 2=1,不符合题意; 当AB 所在直线l 的斜率k 存在时, 设l 的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0.①①的判别式Δ=64k 4-4(4k 2+3)(4k 2-12) =144(k 2+1)>0.∵⎩⎪⎨⎪⎧x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴x 1+x 2=8k 24k 2+3=2×14=12,∴k 2=14.将k 2=14代入方程①,得4x 2-2x -11=0,解得x =1±354.又AF →=(1-x 1,-y 1),FB →=(x 2-1,y 2),AF →=λFB →, 即1-x 1=λ(x 2-1),λ=1-x 1x 2-1,又λ>1,∴λ=3+52. 思维升华 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,应用根与系数的关系,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).(3)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.跟踪训练 (2018·长春调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点. (1)若直线l 的方程为y =x -4,求弦MN 的长;(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 解 (1)由已知得b =4,且c a =55, 即c 2a 2=15,∴a 2-b 2a 2=15, 解得a 2=20,∴椭圆方程为x 220+y 216=1.将4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029.(2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知 BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),即⎩⎪⎨⎪⎧2=2(x 0-2),-4=2y 0,故得x 0=3,y 0=-2,即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4, 且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得(x 1+x 2)(x 1-x 2)20+(y 1+y 2)(y 1-y 2)16=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.高考中求椭圆的离心率问题考点分析 离心率是椭圆的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求椭圆的离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a ,b ,c 的关系式(等式或不等式),并且最后要把其中的b 用a ,c 表示,转化为关于离心率e 的关系式,这是化解有关椭圆的离心率问题难点的根本方法.典例1 已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1 解析 设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则M 到直线l 的距离d =4b 5≥45,∴1≤b <2.离心率e =ca=c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎥⎤0,32, 故选A. 答案 A典例2 (12分)(2016·浙江)如图,设椭圆方程为x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.规范解答解 (1)设直线y =kx +1被椭圆截得的线段为AM ,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0,[2分] 故x 1=0,x 2=-2a 2k1+a 2k 2,因此|AM |=1+k 2|x 1-x 2| =2a 2|k |1+a 2k2·1+k 2.[4分] (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2, 且k 1>0,k 2>0,k 1≠k 2.[5分] 由(1)知|AP |=2a 2|k 1|1+k 211+a 2k 21, |AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22, 所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.[7分] 由k 1≠k 2,k 1>0,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝ ⎛⎭⎪⎫1k 21+1⎝ ⎛⎭⎪⎫1k 22+1=1+a 2(a 2-2),①因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2.因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2,[10分]由e =c a =a 2-1a 2=1-1a 2,得0<e ≤22. 所以离心率的取值范围是⎝ ⎛⎦⎥⎤0,22.[12分]1.若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是( ) A .至多为1 B .2 C .1D .0答案 B 解析 由题意知,4m 2+n2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2.2.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.43 B.53 C.54 D.103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝ ⎛⎭⎪⎫53,43,不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53, 故选B.3.中心为(0,0),一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是( ) A.2x 275+2y225=1 B.x 275+y 225=1 C.x 225+y 275=1 D.2x 225+2y275=1 答案 C解析 c =52,设椭圆方程为x 2a 2-50+y 2a 2=1,联立方程⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2,消去y ,整理得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,由根与系数的关系得x 1+x 2=12(a 2-50)10a 2-450=1,解得a 2=75,所以椭圆方程为x 225+y 275=1. 4.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线与椭圆C 交于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 23=1C.x 24+y 23=1 D.x 25+y 24=1 答案 C解析 设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则c =1.因为过F 2且垂直于x 轴的直线与椭圆交于A ,B 两点,且|AB |=3,所以b 2a =32,b 2=a 2-c 2,所以a 2=4,b 2=a 2-c 2=4-1=3,椭圆的方程为x 24+y 23=1.5.从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( ) A.24 B.12 C.22D.32答案 C解析 由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-ba,由于OP ∥AB ,∴-y 0c =-b a ,y 0=bc a,把P ⎝ ⎛⎭⎪⎫-c ,bc a 代入椭圆方程得(-c )2a2+⎝ ⎛⎭⎪⎫bc a 2b 2=1,∴⎝ ⎛⎭⎪⎫c a 2=12,∴e =c a =22.故选C.6.已知椭圆E 的左、右焦点分别为F 1,F 2,过F 1且斜率为2的直线交椭圆E 于P ,Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为( ) A.53B.23C.23 D.13答案 A解析 由题意可知,∠F 1PF 2是直角,且tan∠PF 1F 2=2,∴|PF 2||PF 1|=2,又|PF 1|+|PF 2|=2a , ∴|PF 1|=2a 3,|PF 2|=4a3.根据勾股定理得⎝ ⎛⎭⎪⎫2a 32+⎝ ⎛⎭⎪⎫4a 32=(2c )2,所以离心率e =c a =53. 7.设F 1,F 2分别是椭圆x 24+y 2=1的左、右焦点,若椭圆上存在一点P ,使(OP →+OF 2→)·PF 2→=0(O 为坐标原点),则△F 1PF 2的面积是( ) A .4 B .3 C .2 D .1 答案 D解析 ∵(OP →+OF 2→)·PF 2→=(OP →+F 1O →)·PF 2→=F 1P →·PF 2→=0, ∴PF 1⊥PF 2,∠F 1PF 2=90°. 设|PF 1|=m ,|PF 2|=n ,则m +n =4,m 2+n 2=12,2mn =4,mn =2, ∴12F PF S V =12mn =1.8.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF ,若|AB |=10,|AF |=6,cos∠ABF =45,则椭圆C 的离心率e =________.答案 57解析 设椭圆的右焦点为F 1,在△ABF 中,由余弦定理可解得|BF |=8,所以△ABF 为直角三角形,且∠AFB =90°,又因为斜边AB 的中点为O ,所以|OF |=c =5,连接AF 1,因为A ,B 关于原点对称,所以|BF |=|AF 1|=8,所以2a =14,a =7,所以离心率e =57.9.P 为椭圆x 29+y 28=1上的任意一点,AB 为圆C :(x -1)2+y 2=1的任一条直径,则PA →·PB →的取值范围是______. 答案 [3,15]解析 圆心C (1,0)为椭圆的右焦点, PA →·PB →=(PC →+CA →)·(PC →+CB →) =(PC →+CA →)·(PC →-CA →) =PC → 2-CA →2=|PC →|2-1,显然|PC →|∈[a -c ,a +c ]=[2,4], 所以PA →·PB →=|PC →|2-1∈[3,15].10.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过F 1的直线l 与椭圆交于A ,B两点.若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则椭圆C 的离心率为________. 答案5311.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点、上顶点分别为A ,B ,且|AB |=52|BF |.(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知|AB |=52|BF |,即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2,∴3a 2=4c 2, ∴e =ca =32. (2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1.设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b2=1,消去y ,得x 2+4(2x +2)2-4b 2=0, 即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717. x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0, 5x 1x 2+4(x 1+x 2)+4=0. 从而5(16-4b 2)17-12817+4=0,解得b =1,满足b >21717.∴椭圆C 的方程为x 24+y 2=1.综上可知,直线l 的方程为2x -y +2=0, 椭圆C 的方程为x 24+y 2=1.12.(2016·全国Ⅰ)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.解 (1)因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为x 24+y 23=1(y ≠0).(2)当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),x 24+y23=1,得(4k 2+3)x 2-8k 2x +4k 2-12=0.点(1,0)在椭圆内部,故直线l 与椭圆必有两交点.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k(x -1),点A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).13.(2018·广州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2,O 为坐标原点,M 为y轴上一点,点A 是直线MF 2与椭圆C 的一个交点,且|OA |=|OF 2|=2|OM |,则椭圆C 的离心率为( ) A.13 B.25 C.55D.53答案 D解析 方法一 ∵|OA |=|OF 2|=2|OM |,∴M 在椭圆C 的短轴上,设椭圆C 的左焦点为F 1,连接AF 1,∵|OA |=|OF 2|,∴|OA |=12·|F 1F 2|,∴AF 1⊥AF 2,从而△AF 1F 2∽△OMF 2,∴|AF 1||AF 2|=|OM ||OF 2|=12,又|AF 1|2+|AF 2|2=(2c )2, ∴|AF 1|=255c ,|AF 2|=455c ,又∵|AF 1|+|AF 2|=2a ,∴655c =2a ,即c a =53.故选D.方法二 ∵|OA |=|OF 2|=2|OM |,∴M 在椭圆C 的短轴上,在Rt△MOF 2中,tan∠MF 2O =|OM ||OF 2|=12,设椭圆C 的左焦点为F 1,连接AF 1, ∵|OA |=|OF 2|,∴|OA |=12|F 1F 2|,∴AF 1⊥AF 2,∴tan∠AF 2F 1=|AF 1||AF 2|=12, 设|AF 1|=x (x >0),则|AF 2|=2x ,∴|F 1F 2|=5x , ∴e =2c 2a =|F 1F 2||AF 1|+|AF 2|=5x x +2x =53,故选D.14.(2017·安庆二模)已知椭圆x 2a 2+y 2b2=1(a >b >0)短轴的端点为P (0,b ),Q (0,-b ),长轴的一个端点为M ,AB 为经过椭圆中心且不在坐标轴上的一条弦,若PA ,PB 的斜率之积等于-14,则点P 到直线QM 的距离为________. 答案455b 解析 设A (x 0,y 0),则B 点坐标为(-x 0,-y 0),则y 0-b x 0·-y 0-b -x 0=-14,即y 20-b 2x 20=-14,由于x 20a 2+y 20b 2=1,则y 20-b2x 20=-b 2a2,故-b 2a 2=-14,则b a =12,不妨取M (a,0),则直线QM 的方程为bx -ay -ab =0,则点P 到直线QM 的距离为 d =|2ab |a 2+b2=2·b1+⎝ ⎛⎭⎪⎫b a 2=455b .15.(2017·广东广州一模)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( ) A.⎝⎛⎭⎪⎫22,1 B.⎝ ⎛⎭⎪⎫12,1 C.⎝⎛⎭⎪⎫0,22 D.⎝ ⎛⎭⎪⎫0,12 答案 A解析 设P (x 0,y 0),F 1(-c,0),F 2(c,0),由题易知|x 0|<a ,因为存在点P ,使∠F 1PF 2为钝角,所以PF 1→·PF 2→<0有解,即c 2>x 20+y 20有解,即c 2>(x 2+y 20)min,又y 20=b 2-b 2a 2x 20,b 2+c 2=a 2,x 20<a 2,故x 20+y 20=b 2+c 2a2x 20∈[b 2,a 2),所以(x 2+y 20)min=b 2,故c 2>b 2,所以e 2=c 2a 2>12,又0<e <1,所以22<e <1,故椭圆C 的离心率的取值范围是⎝⎛⎭⎪⎫22,1,故选A.16.(2017·湖南六校联考)过椭圆y 2a 2+x 2b 2=1(a >b >0)上的动点M 作圆x 2+y 2=b 22的两条切线,切点分别为P 和Q ,直线PQ 与x 轴和y 轴的交点分别为E 和F ,则△EOF 面积的最小值是________.答案 b 34a解析 设M (x 0,y 0),P (x 1,y 1),Q (x 2,y 2),则直线MP 和MQ 的方程分别为x 1x +y 1y =b 22,x 2x +y 2y =b 22.因为点M 在MP 和MQ 上,所以有x 1x 0+y 1y 0=b 22,x 2x 0+y 2y 0=b 22,则P ,Q 两点的坐标满足方程x 0x +y 0y =b 22,所以直线PQ 的方程为x 0x +y 0y =b 22,可得E ⎝ ⎛⎭⎪⎫b 22x 0,0和F ⎝ ⎛⎭⎪⎫0,b 22y 0,所以S △EOF =12·|OE ||OF |=b48|x 0y 0|,因为b 2y 20+a 2x 20=a 2b 2,b 2y 20+a 2x 20≥2ab |x 0y 0|,所以|x 0y 0|≤ab2,所以S △EOF =b 48|x 0y 0|≥b 34a,当且仅当b 2y 20=a 2x 20=a 2b 22时取“=”,故△EOF 面积的最小值为b 34a.。