201x届高考数学一轮复习 第九章 平面解析几何 9-6 椭圆(二) 文

合集下载

2019届高考数学一轮复习 第九章 平面解析几何 9-6 椭圆(二)课件 文

2019届高考数学一轮复习 第九章 平面解析几何 9-6 椭圆(二)课件 文


平面解析几何

第六节
椭圆(二)
高考概览 1.能够把直线与椭圆位置关系问题转化为研究方程的解的问 题,会根据韦达定理及判别式解决问题;2.进一步体会数形结合的 思想.
吃透教材 夯双基
填一填 记一记 厚积薄发
[知识梳理] 1.已知点 P(x0,y0)与椭圆ax22+by22=1(a>b>0)的位置关系
[答案] D
3.设 A1、A2 是椭圆x42+y22=1 的左、右顶点,P 在椭圆上, 若 kPA1=2,则 kPA2 的值为________.
[解析]
设 P(x0,y0),A1(-2,0),A2(2,0),∴kkPPAA12==xx00yy+-00 22=2
两式相乘得 2kPA2=x02y-02 4 又点 P(x0,y0)在x42+y22=1 上,∴x20+2y20=4 代入上式得 kPA2

0

x1

x2

83 5

x1x2

8 5







|AB|

1+12[x1+x22-4x1x2]=85.
[答案]
8 5
考点突破 提能力
研一研 练一练 考点通关
考点一 直线与椭圆的位置关系——常考点 已知直线 l:y=2x+m,椭圆 C:x42+y22=1.试问当 m
取何值时,直线 l 与椭圆 C: (1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.
2.已知以 F1(-2,0),F2(2,0)为焦点的椭圆与直线 x+ 3y+4 =0,有且仅有一个交点,则椭圆的长轴长为( )

高考数学一轮复习 第九章 平面解析几何9 (2)

高考数学一轮复习 第九章 平面解析几何9 (2)

高考数学一轮复习 第九章 平面解析几何9.11 圆锥曲线中定点与定值问题题型一 定点问题例1 已知定圆A :(x +3)2+y 2=16,动圆M 过点B (3,0),且和圆A 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)设不垂直于x 轴的直线l 与轨迹E 交于不同的两点P ,Q ,点N (4,0).若P ,Q ,N 三点不共线,且∠ONP =∠ONQ .证明:动直线PQ 经过定点.(1)解 圆A 的圆心为A (-3,0),半径r 1=4.设动圆M 的半径为r 2,依题意有r 2=|MB |.由|AB |=23,可知点B 在圆A 内,从而圆M 内切于圆A ,故|MA |=r 1-r 2,即|MA |+|MB |=4>2 3.所以动点M 的轨迹E 是以A ,B 为焦点,长轴长为4的椭圆,其方程为x 24+y 2=1. (2)证明 设直线l 的方程为y =kx +b (k ≠0),联立⎩⎪⎨⎪⎧y =kx +b ,x 2+4y 2=4, 消去y 得,(1+4k 2)x 2+8kbx +4b 2-4=0,Δ=16(4k 2-b 2+1)>0,设P (x 1,kx 1+b ),Q (x 2,kx 2+b ),则x 1+x 2=-8kb 1+4k 2,x 1x 2=4b 2-41+4k 2, 于是k PN +k QN =kx 1+b x 1-4+kx 2+b x 2-4=2kx 1x 2-4k -bx 1+x 2-8b x 1-4x 2-4, 由∠ONP =∠ONQ 知k PN +k QN =0.即2kx 1x 2-(4k -b )(x 1+x 2)-8b =2k ·4b 2-41+4k 2-(4k -b )-8kb 1+4k 2-8b =8kb 2-8k 1+4k 2+32k 2b -8kb 21+4k 2-8b =0, 得b =-k ,Δ=16(3k 2+1)>0.故动直线l 的方程为y =kx -k ,过定点(1,0).教师备选在平面直角坐标系中,已知动点M (x ,y )(y ≥0)到定点F (0,1)的距离比到x 轴的距离大1.(1)求动点M 的轨迹C 的方程;(2)过点N (4,4)作斜率为k 1,k 2的直线分别交曲线C 于不同于N 的A ,B 两点,且1k 1+1k 2=1.证明:直线AB 恒过定点.(1)解 由题意可知x 2+y -12=y +1,化简可得曲线C :x 2=4y .(2)证明 由题意可知,N (4,4)是曲线C :x 2=4y 上的点,设A (x 1,y 1),B (x 2,y 2),则l NA :y =k 1(x -4)+4,l NB :y =k 2(x -4)+4,联立直线NA 的方程与抛物线C 的方程,⎩⎪⎨⎪⎧ y =k 1x -4+4,x 2=4y⇒x 2-4k 1x +16(k 1-1)=0,解得x 1=4(k 1-1),①同理可得x 2=4(k 2-1),②而l AB :y -x 214=x 1+x 24(x -x 1),③又1k 1+1k 2=1,④ 由①②③④整理可得l AB :y =(k 1+k 2-2)x -4,故直线AB 恒过定点(0,-4).思维升华 求解直线或曲线过定点问题的基本思路(1)把直线或曲线方程中的变量x ,y 当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x ,y 的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点.(2)由直线方程确定其过定点时,若得到了直线方程的点斜式y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式y =kx +m ,则直线必过定点(0,m ).跟踪训练1 (2022·邯郸质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且过点⎝⎛⎭⎫3,12. (1)求椭圆方程;(2)设直线l :y =kx +m (k ≠0)交椭圆C 于A ,B 两点,且线段AB 的中点M 在直线x =12上,求证:线段AB 的中垂线恒过定点N .(1)解 椭圆过点⎝⎛⎭⎫3,12,即3a 2+14b2=1, 又2c =23,得a 2=b 2+3,所以a 2=4,b 2=1,即椭圆方程为x 24+y 2=1. (2)证明 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 1+4k 2,设AB 的中点M 为(x 0,y 0),得x 0=-4km 1+4k 2=12, 即1+4k 2=-8km ,所以y 0=kx 0+m =12k -1+4k 28k =-18k. 所以AB 的中垂线方程为y +18k =-1k ⎝⎛⎭⎫x -12, 即y =-1k ⎝⎛⎭⎫x -38, 故AB 的中垂线恒过点N ⎝⎛⎭⎫38,0.题型二 定值问题例2 (2022·江西赣抚吉名校联考)已知抛物线E :y 2=2px (p >0)上的动点M 到直线x =-1的距离比到抛物线E 的焦点F 的距离大12. (1)求抛物线E 的标准方程;(2)设点Q 是直线x =-1(y ≠0)上的任意一点,过点P (1,0)的直线l 与抛物线E 交于A ,B 两点,记直线AQ ,BQ ,PQ 的斜率分别为k AQ ,k BQ ,k PQ ,证明:k AQ +k BQ k PQ为定值. (1)解 由题意可知抛物线E 的准线方程为x =-12, 所以-p 2=-12,即p =1, 故抛物线E 的标准方程为y 2=2x .(2)证明 设Q (-1,y 0),A (x 1,y 1),B (x 2,y 2),因为直线l 的斜率显然不为0,故可设直线l 的方程为x =ty +1.联立⎩⎪⎨⎪⎧x =ty +1,y 2=2x ,消去x ,得y 2-2ty -2=0.Δ=4t 2+8>0,所以y 1+y 2=2t ,y 1y 2=-2,k PQ =-y 02. 又k AQ +k BQ =y 1-y 0x 1+1+y 2-y 0x 2+1 =y 1-y 0x 2+1+y 2-y 0x 1+1x 1+1x 2+1=y 1-y 0ty 2+2+y 2-y 0ty 1+2ty 1+2ty 2+2=2ty 1y 2+2-ty 0y 1+y 2-4y 0t 2y 1y 2+2t y 1+y 2+4 =2t ·-2+2-ty 0·2t -4y 0t 2·-2+2t ·2t +4=-y 0t 2+2t 2+2=-y 0. 所以k AQ +k BQ k PQ =-y 0-y 02=2(定值). 教师备选(2022·邯郸模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆于A ,B 两点,交y 轴于点M ,若|F 1F 2|=2,△ABF 2的周长为8.(1)求椭圆C 的标准方程;(2)MA →=λF 1A —→,MB →=μF 1B —→,试分析λ+μ是否为定值,若是,求出这个定值,否则,说明理由.解 (1)因为△ABF 2的周长为8,所以4a =8,解得a =2,由|F 1F 2|=2,得2a 2-b 2=24-b 2=2,所以b 2=3,因此椭圆C 的标准方程为x 24+y 23=1.(2)由题意可得直线l 的斜率存在,设直线l 的方程为y =k (x +1),由⎩⎪⎨⎪⎧ y =k x +1,x 24+y 23=1, 整理得(3+4k 2)x 2+8k 2x +4k 2-12=0,显然Δ>0,设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧ x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.设M (0,k ),又F 1(-1,0),所以MA →=(x 1,y 1-k ),F 1A —→=(x 1+1,y 1),则λ=x 1x 1+1. 同理可得MB →=(x 2,y 2-k ),F 1B —→=(x 2+1,y 2),则μ=x 2x 2+1. 所以λ+μ=x 1x 1+1+x 2x 2+1=x 1x 2+1+x 2x 1+1x 1+1x 2+1=2x 1x 2+x 1+x 2x 1x 2+x 1+x 2+1=2×4k 2-123+4k 2-8k 23+4k 24k 2-123+4k 2-8k 23+4k 2+1=8k 2-24-8k 24k 2-12-8k 2+3+4k 2=-24-9=83, 所以λ+μ为定值83. 思维升华 圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.跟踪训练2 在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,AB 为椭圆的一条弦,直线y =kx (k >0)经过弦AB 的中点M ,与椭圆C 交于P ,Q 两点,设直线AB的斜率为k 1,点P 的坐标为⎝⎛⎭⎫1,32. (1)求椭圆C 的方程;(2)求证:k 1k 为定值.(1)解 由题意知⎩⎪⎨⎪⎧ 1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧ a =2,b =3,c =1,故椭圆C 的方程为x 24+y 23=1. (2)证明 设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),由于A ,B 为椭圆C 上的点, 所以x 214+y 213=1,x 224+y 223=1, 两式相减得x 1+x 2x 1-x 24=-y 1+y 2y 1-y 23, 所以k 1=y 1-y 2x 1-x 2=-3x 1+x 24y 1+y 2=-3x 04y 0. 又k =y 0x 0, 故k 1k =-34,为定值. 课时精练1.(2022·运城模拟)已知P (1,2)在抛物线C :y 2=2px 上.(1)求抛物线C 的方程;(2)A ,B 是抛物线C 上的两个动点,如果直线P A 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.(1)解 将P 点坐标代入抛物线方程y 2=2px ,得4=2p ,即p =2,所以抛物线C 的方程为y 2=4x .(2)证明 设AB :x =my +t ,将AB 的方程与y 2=4x 联立得y 2-4my -4t =0,Δ>0⇒16m 2+16t >0⇒m 2+t >0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4t ,k P A =y 1-2x 1-1=y 1-2y 214-1=4y 1+2, 同理k PB =4y 2+2,由题意知4y 1+2+4y 2+2=2, 即4(y 1+y 2+4)=2(y 1y 2+2y 1+2y 2+4),解得y 1y 2=4,故-4t =4,即t =-1,故直线AB :x =my -1恒过定点(-1,0).2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为23,且其左顶点到右焦点的距离为5. (1)求椭圆的方程;(2)设点M ,N 在椭圆上,以线段MN 为直径的圆过原点O ,试问是否存在定点P ,使得P 到直线MN 的距离为定值?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题设可知⎩⎪⎨⎪⎧c a =23,a +c =5,解得a =3,c =2,b 2=a 2-c 2=5,所以椭圆的方程为x 29+y 25=1. (2)设M (x 1,y 1),N (x 2,y 2),①若直线MN 与x 轴垂直,由对称性可知|x 1|=|y 1|,将点M (x 1,y 1)代入椭圆方程,解得|x 1|=37014, 原点到该直线的距离d =37014; ②若直线MN 不与x 轴垂直,设直线MN 的方程为y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 25=1,消去y 得(9k 2+5)x 2+18kmx +9m 2-45=0,由根与系数的关系得⎩⎪⎨⎪⎧ x 1x 2=9m 2-459k 2+5,x 1+x 2=-18km 9k 2+5,由题意知,OM →·ON →=0,即x 1x 2+(kx 1+m )(kx 2+m )=0, 得(k 2+1)9m 2-459k 2+5+km ⎝⎛⎭⎫-18km 9k 2+5+m 2=0, 整理得45k 2+45=14m 2,则原点到该直线的距离d =|m |k 2+1=4514=37014, 故存在定点P (0,0),使得P 到直线MN 的距离为定值.3.已知双曲线C 的渐近线方程为y =±3x ,右焦点F (c ,0)到渐近线的距离为 3.(1)求双曲线C 的方程;(2)过F 作斜率为k 的直线l 交双曲线于A ,B 两点,线段AB 的中垂线交x 轴于D ,求证:|AB ||FD |为定值.(1)解 设双曲线方程为3x 2-y 2=λ(λ>0),由题意知c =2,所以λ3+λ=4⇒λ=3, 所以双曲线C 的方程为x 2-y 23=1. (2)证明 设直线l 的方程为y =k (x -2)(k ≠0)代入x 2-y 23=1, 整理得(3-k 2)x 2+4k 2x -4k 2-3=0,Δ=36(k 2+1)>0,设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-4k 23-k 2,x 1x 2=-4k 2-33-k 2, 由弦长公式得|AB |=1+k 2·x 1+x 22-4x 1x 2=6k 2+1|3-k 2|, 设AB 的中点P (x 0,y 0),则x 0=x 1+x 22=-2k 23-k 2, 代入l 得y 0=-6k 3-k 2, AB 的垂直平分线方程为y =-1k ⎝⎛⎭⎫x +2k 23-k 2-6k 3-k 2,令y =0得x D =-8k 23-k 2, 即|FD |=⎪⎪⎪⎪⎪⎪-8k 23-k 2-2=61+k 2|3-k 2|, 所以|AB ||FD |=1为定值. 当k =0时,|AB |=2,|FD |=2,|AB ||FD |=1, 综上所述,|AB ||FD |为定值.4.(2022·河南九师联盟模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,长轴长为4.(1)求椭圆C 的方程;(2)设过点F 1不与x 轴重合的直线l 与椭圆C 相交于E ,D 两点,试问在x 轴上是否存在一个点M ,使得直线ME ,MD 的斜率之积恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.解 (1)因为焦距为2,长轴长为4,即2c =2,2a =4,解得c =1,a =2,所以b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)由(1)知F 1(-1,0),设点E (x 1,y 1),D (x 2,y 2),M (m ,0),因为直线l 不与x 轴重合,所以设直线l 的方程为x =ny -1,联立⎩⎪⎨⎪⎧x =ny -1,x 24+y 23=1, 得(3n 2+4)y 2-6ny -9=0,所以Δ=(-6n )2+36(3n 2+4)>0,所以y 1+y 2=6n 3n 2+4,y 1y 2=-93n 2+4, 又x 1x 2=(ny 1-1)(ny 2-1)=n 2y 1y 2-n (y 1+y 2)+1=-9n 23n 2+4-6n 23n 2+4+1 =-12n 2-43n 2+4, x 1+x 2=n (y 1+y 2)-2=6n 23n 2+4-2 =-83n 2+4. 直线ME ,MD 的斜率分别为k ME =y 1x 1-m,k MD =y 2x 2-m , 所以k ME ·k MD =y 1x 1-m ·y 2x 2-m=y 1y 2x 1-m x 2-m=y 1y 2x 1x 2-m x 1+x 2+m 2=-93n 2+4-12n 2-43n 2+4-m ⎝ ⎛⎭⎪⎫-83n 2+4+m 2 =-9-12n 2+4+8m +3m 2n 2+4m 2=-93m 2-12n 2+4m +12, 要使直线ME ,MD 的斜率之积恒为定值,3m 2-12=0,解得m =±2,当m =2时,存在点M (2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-936=-14, 当m =-2时,存在点M (-2,0),使得k ME ·k MD =-93m 2-12n 2+4m +12=-94, 综上,在x 轴上存在点M ,使得ME ,MD 的斜率之积恒为定值,当点M 的坐标为(2,0)时,直线ME ,MD 的斜率之积为定值-14, 当点M 的坐标为(-2,0)时,直线ME ,MD 的斜率之积为定值-94.。

旧教材适用2023高考数学一轮总复习第九章平面解析几何第6讲椭圆二课件

旧教材适用2023高考数学一轮总复习第九章平面解析几何第6讲椭圆二课件

3.(2022·河南平顶山模拟)已知椭圆 C:ax22+by22=1(a>b>0)与直线 y=x
+3 只有一个公共点,且椭圆的离心率为 55,则椭圆 C 的方程为( )
A.42x52+y52=1
B.x52+y42=1
C.x92+y52=1
D.2x52 +2y02 =1
答案 B
解析 将直线方程 y=x+3 代入 C 的方程并整理得(a2+b2)x2+6a2x+
2.直线 y=kx+1,当 k 变化时,此直线被椭圆x42+y2=1 截得的弦长的
最大值是( )
A.2 C.4
B.4 3 3 D.不能确定
答案 B
解析 直线恒过定点(0,1),且点(0,1)在椭圆上,可设另外一个交点为(x, y),则x42+y2=1,即 x2=4-4y2,则弦长为 x2+y-12= 4-4y2+y2-2y+1 = -3y2-2y+5,因为-1≤y≤1,所以当 y=-13时,弦长最大为433.
2
PART TWO
核心考向突破
考向一 直线与椭圆的位置关系 例 1 已知直线 l:y=2x+m,椭圆 C:x42+y22=1.试问当 m 取何值时, 直线 l 与椭圆 C:
(1)有两个不重合的公共点;
解 将直线 l 的方程与椭圆 C 的方程联立,
y=2x+m,

得方程组x42+y22=1, ②
将①代入②,整理得 9x2+8mx+2m2-4=0. ③ 方程③根的判别式 Δ=(8m)2-4×9×(2m2-4)=-8m2+144. (1)当 Δ>0,即-3 2<m<3 2时,方程③有两个不同的实数根,可知原方 程组有两组不同的实数解.这时直线 l 与椭圆 C 有两个不重合的公共点.

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9

高考数学一轮复习 第九章 平面解析几何9.1 直线的方程考试要求 1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.2.根据确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式).知识梳理 1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)范围:直线的倾斜角α的取值范围为0°≤α<180°. 2.直线的斜率(1)定义:把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α(α≠90°). (2)过两点的直线的斜率公式如果直线经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2),其斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含直线x =x 0 斜截式 y =kx +b不含垂直于x 轴的直线 两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2) 不含直线x =x 1 和直线y =y 1截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用常用结论直线的斜率k与倾斜角α之间的关系α0°0°<α<90°90°90°<α<180°k 0k>0不存在k<0牢记口诀:1.“斜率变化分两段,90°是分界线;遇到斜率要谨记,存在与否要讨论”.2.“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.应注意过原点的特殊情况是否满足题意.3.直线Ax+By+C=0(A2+B2≠0)的一个法向量v=(A,B),一个方向向量a=(-B,A).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)若一条直线的倾斜角为α,则此直线的斜率为tan α.(×)(3)斜率相等的两直线的倾斜角不一定相等.(×)(4)截距可以为负值.(√)教材改编题1.若过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4答案 A解析 由题意得m -4-2-m=1,解得m =1.2.倾斜角为135°,在y 轴上的截距为-1的直线方程是( ) A .x -y +1=0 B .x -y -1=0 C .x +y -1=0 D .x +y +1=0答案 D解析 直线的斜率为k =tan 135°=-1,所以直线方程为y =-x -1,即x +y +1=0. 3.过点P (2,3)且在两坐标轴上截距相等的直线方程为________________. 答案 3x -2y =0或x +y -5=0解析 当截距为0时,直线方程为3x -2y =0; 当截距不为0时, 设直线方程为x a +ya =1,则2a +3a =1,解得a =5. 所以直线方程为x +y -5=0.题型一 直线的倾斜角与斜率例1 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的变化范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D.⎣⎡⎦⎤π4,2π3答案 B解析 直线2x cos α-y -3=0的斜率k =2cos α. 由于α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32,因此k =2cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3]. 由于θ∈[0,π), 所以θ∈⎣⎡⎦⎤π4,π3,即倾斜角的变化范围是⎣⎡⎦⎤π4,π3.(2)过函数f (x )=13x 3-x 2的图象上一个动点作函数图象的切线,则切线倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,3π4 B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D.⎣⎡⎦⎤π2,3π4答案 B解析 设切线的倾斜角为α,则α∈[0,π), ∵f ′(x )=x 2-2x =(x -1)2-1≥-1, ∴切线的斜率k =tan α≥-1, 则α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 教师备选1.(2022·安阳模拟)已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ) A .k ≥12B .k ≤-2C .k ≥12或k ≤-2D .-2≤k ≤12答案 D解析 直线l :y =k (x -2)+1经过定点P (2,1),∵k P A =3-11-2=-2,k PB =-1-1-2-2=12, 又直线l :y =k (x -2)+1与线段AB 相交, ∴-2≤k ≤12.2.若直线l 的斜率为k ,倾斜角为α,且α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是________. 答案 [-3,0)∪⎣⎡⎭⎫33,1解析 当α∈⎣⎡⎭⎫π6,π4时,k =tan α∈⎣⎡⎭⎫33,1; 当α∈⎣⎡⎭⎫2π3,π时,k =tan α∈[-3,0). 综上得k ∈[-3,0)∪⎣⎡⎭⎫33,1.思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论. 跟踪训练1 (1)直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π答案 B解析 依题意,直线的斜率k =-1a 2+1∈[-1,0),因此其倾斜角的取值范围是⎣⎡⎭⎫3π4,π. (2)若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为______,______. 答案 13-3解析 如图,在正方形OABC 中,对角线OB 所在直线的斜率为2,建立如图所示的平面直角坐标系.设对角线OB 所在直线的倾斜角为θ,则tan θ=2,由正方形的性质可知,直线OA 的倾斜角为θ-45°,直线OC 的倾斜角为θ+45°,故k OA =tan(θ-45°)=tan θ-tan 45°1+tan θtan 45°=2-11+2=13, k OC =tan(θ+45°)=tan θ+tan 45°1-tan θtan 45°=2+11-2=-3. 题型二 求直线的方程例2 求满足下列条件的直线方程:(1)经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍; (2)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形. 解 (1)当直线不过原点时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,所以直线方程为x +2y +1=0; 当直线过原点时,设直线方程为y =kx , 则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. (2)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为 x -y +1=0或x +y -7=0.教师备选1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的边BC 上的高所在的直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0 D .x -y =0答案 B解析 因为B (3,1),C (1,3),所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A (-1,1),所以其所在的直线方程为x -y +2=0.2.已知点M 是直线l :2x -y -4=0与x 轴的交点,将直线l 绕点M 按逆时针方向旋转45°,得到的直线方程是( ) A .x +y -3=0 B .x -3y -2=0 C .3x -y +6=0 D .3x +y -6=0 答案 D解析 设直线l 的倾斜角为α,则tan α=k =2,直线l 绕点M 按逆时针方向旋转45°,所得直线的斜率k ′=tan ⎝⎛⎭⎫α+π4=2+11-2×1=-3, 又点M (2,0),所以y =-3(x -2),即3x +y -6=0. 思维升华 求直线方程的两种方法(1)直接法:由题意确定出直线方程的适当形式.(2)待定系数法:先由直线满足的条件设出直线方程,方程中含有待定的系数,再由题设条件求出待定系数.跟踪训练2 (1)已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0答案 C解析 由题知M (2,4),N (3,2),中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.(2)过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为______________. 答案 x +y -3=0或x +2y -4=0 解析 由题意可设直线方程为x a +yb =1.则⎩⎪⎨⎪⎧a +b =6,2a +1b=1,解得a =b =3或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0.题型三 直线方程的综合应用例3 已知直线l 过点M (2,1),且分别与x 轴的正半轴、y 轴的正半轴交于A ,B 两点,O 为原点,当△AOB 面积最小时,求直线l 的方程. 解 方法一 设直线l 的方程为y -1=k (x -2)(k <0), 则A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ), S △AOB =12(1-2k )·⎝⎛⎭⎫2-1k =12⎣⎡⎦⎤4+-4k +⎝⎛⎭⎫-1k ≥12×(4+4)=4, 当且仅当-4k =-1k ,即k =-12时,等号成立.故直线l 的方程为y -1=-12(x -2),即x +2y -4=0.方法二 设直线l :x a +yb =1,且a >0,b >0,因为直线l 过点M (2,1), 所以2a +1b =1,则1=2a +1b≥22ab,故ab ≥8, 故S △AOB 的最小值为12×ab =12×8=4,当且仅当2a =1b =12时取等号,此时a =4,b =2,故直线l 的方程为x 4+y2=1,即x +2y -4=0.延伸探究 1.在本例条件下,当|OA |+|OB |取最小值时,求直线l 的方程. 解 由本例方法二知,2a +1b=1,a >0,b >0,所以|OA |+|OB |=a +b =(a +b )·⎝⎛⎭⎫2a +1b =3+a b +2ba≥3+22,当且仅当a =2+2,b =1+2时等号成立,所以当|OA |+|OB |取最小值时,直线l 的方程为x +2y =2+ 2.2.本例中,当|MA |·|MB |取得最小值时,求直线l 的方程. 解 方法一 由本例方法一知A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0).所以|MA |·|MB |=1k 2+1·4+4k 2 =2×1+k 2|k |=2⎣⎡⎦⎤-k +1-k ≥4.当且仅当-k =-1k ,即k =-1时取等号.此时直线l 的方程为x +y -3=0.方法二 由本例方法二知A (a ,0),B (0,b ),a >0,b >0,2a +1b =1.所以|MA |·|MB |=|MA →|·|MB →| =-MA →·MB →=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2⎝⎛⎭⎫b a +a b ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0. 教师备选如图所示,为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪,但△EF A 内部为文物保护区,不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解 如图所示,以A 为坐标原点建立平面直角坐标系,则E (30,0),F (0,20),∴直线EF 的方程为x 30+y20=1.易知当矩形草坪的两邻边在BC ,CD 上,且一个顶点在线段EF 上时,可使草坪面积最大,在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,PR ⊥CD 于点R , 设矩形PQCR 的面积为S , 则S =|PQ |·|PR |=(100-m )(80-n ), 又m 30+n20=1(0≤m ≤30), ∴n =20-23m ,∴S =(100-m )⎝⎛⎭⎫80-20+23m =-23(m -5)2+18 0503(0≤m ≤30),∴当m =5时,S 有最大值,此时|EP ||PF |=5,∴当矩形草坪的两邻边在BC ,CD 上,一个顶点P 在线段EF 上,且|EP |=5|PF |时,草坪面积最大.思维升华 直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识来解决. 跟踪训练3 已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程. (1)证明 直线l 的方程可化为 k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1.∴无论k 取何值,直线l 总经过定点(-2,1). (2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k <-2,1+2k >1, 解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围是[0,+∞). (3)解 由题意可知k ≠0,再由l 的方程, 得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0, 解得k >0.∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·1+2k 2k=12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.课时精练1.已知直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程是( )A .x +y +1=0B .y =-12xC .x +2=0D .y -1=0答案 C解析 由于直线l 过点(-2,1),且倾斜角是π2,则直线l 的方程为x =-2,即x +2=0.2.(2022·清远模拟)倾斜角为120°且在y 轴上的截距为-2的直线方程为( ) A .y =-3x +2 B .y =-3x -2 C .y =3x +2 D .y =3x -2答案 B解析 斜率为tan 120°=-3,利用斜截式直接写出方程,即y =-3x -2. 3.直线l 经过点(1,-2),且在两坐标轴上的截距相等,则直线l 的方程为( ) A .x -y -1=0或x -2y =0 B .x +y +1=0或x +2y =0 C .x -y +1=0或2x -y =0 D .x +y +1=0或2x +y =0 答案 D解析 若直线l 过原点, 设直线l 的方程为y =kx , 则k =-2,此时直线l 的方程为y =-2x , 即2x +y =0; 若直线l 不过原点, 设直线l 的方程为x a +ya =1,则1a -2a =1,解得a =-1, 此时直线l 的方程为x +y +1=0.综上所述,直线l的方程为x+y+1=0或2x+y=0.4.若直线y=ax+c经过第一、二、三象限,则有()A.a>0,c>0 B.a>0,c<0C.a<0,c>0 D.a<0,c<0答案 A解析因为直线y=ax+c经过第一、二、三象限,所以直线的斜率a>0,在y轴上的截距c>0. 5.(2022·衡水模拟)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0°B.1°C.2°D.3°答案 C解析∵O,O3都为五角星的中心点,∴OO3平分第三颗小星的一个角,又五角星的内角为36°,可知∠BAO3=18°,过O3作x轴的平行线O3E,如图,则∠OO 3E =α≈16°,∴直线AB 的倾斜角为18°-16°=2°.6.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( ) A .-1<k <15B .k >1或k <12C .k >1或k <15D .k >12或k <-1答案 D解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k<3,解不等式可得k >12或k <-1.7.直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2]B .(-∞,-2]∪[2,+∞)C .[-2,0)∪(0,2]D .(-∞,+∞) 答案 C解析 令x =0,得y =b 2,令y =0,得x =-b , 所以所求三角形的面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,14b 2≤1, 所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].8.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴与y 轴上的截距之和的最小值为( )A .1B .2C .3D .4 答案 D解析 因为直线ax +by =ab (a >0,b >0), 当x =0时,y =a ,当y =0时,x =b ,所以该直线在x 轴与y 轴上的截距分别为b ,a , 又直线ax +by =ab (a >0,b >0)过点(1,1), 所以a +b =ab ,即1a +1b =1,所以a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b ≥2+2b a ·ab=4, 当且仅当a =b =2时等号成立.所以直线在x 轴与y 轴上的截距之和的最小值为4.9.过点M (-3,5)且在两坐标轴上的截距互为相反数的直线方程为________________. 答案 5x +3y =0或x -y +8=0解析 ①当直线过原点时,直线方程为y =-53x ,即5x +3y =0;②当直线不过原点时,设直线方程为x a +y-a =1,即x -y =a ,代入点(-3,5),得a =-8,即直线方程为x -y +8=0.综上,直线方程为5x +3y =0或x -y +8=0.10.直线l 过(-1,-1),(2,5)两点,点(1 011,b )在l 上,则b 的值为________. 答案 2 023解析 直线l 的方程为y --15--1=x --12--1,即y +16=x +13,即y =2x +1. 令x =1 011,得y =2 023, ∴b =2 023.11.设直线l 的方程为2x +(k -3)y -2k +6=0(k ≠3),若直线l 的斜率为-1,则k =________;若直线l 在x 轴、y 轴上的截距之和等于0,则k =______. 答案 5 1解析 因为直线l 的斜率存在,所以直线l 的方程可化为y =-2k -3x +2,由题意得-2k -3=-1,解得k =5.直线l 的方程可化为x k -3+y2=1,由题意得k -3+2=0,解得k =1.12.已知点M 是直线l :y =3x +3与x 轴的交点,将直线l 绕点M 旋转30°,则所得到的直线l ′的方程为________________________. 答案 x =-3或y =33(x +3) 解析 在y =3x +3中,令y =0,得x =-3,即M (-3,0).因为直线l 的斜率为3,所以其倾斜角为60°.若直线l 绕点M 逆时针旋转30°,则得到的直线l ′的倾斜角为90°,此时直线l ′的斜率不存在,故其方程为x =-3;若直线l 绕点M 顺时针旋转30°,则得到的直线l ′的倾斜角为30°,此时直线l ′的斜率为tan 30°=33,故其方程为y =33(x +3).13.直线(1-a 2)x +y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎭⎫π4,π2 B.⎣⎡⎭⎫0,3π4 C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,πD.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 答案 C解析 直线的斜率k =-(1-a 2)=a 2-1, ∵a 2≥0,∴k =a 2-1≥-1. 倾斜角和斜率的关系如图所示,∴该直线倾斜角的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 14.已知直线2x -my +1-3m =0,当m 变动时,直线恒过定点( ) A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 答案 D解析 直线方程可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0,y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3,∴直线恒过定点⎝⎛⎭⎫-12,-3.15.已知直线x sin α+y cos α+1=0(α∈R ),则下列命题正确的是( ) A .直线的倾斜角是π-αB .无论α如何变化,直线始终过原点C .直线的斜率一定存在D .当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积不小于1 答案 D解析 根据直线倾斜角的范围为[0,π),而π-α∈R ,所以A 不正确;当x =y =0时,x sin α+y cos α+1=1≠0,所以直线必不过原点,B 不正确;当α=π2时,直线斜率不存在,C 不正确;当直线和两坐标轴都相交时,它和坐标轴围成的三角形的面积为S =12⎪⎪⎪⎪1-sin α·⎪⎪⎪⎪1-cos α=1|sin 2α|≥1,所以D 正确. 16.若ab >0,且A (a ,0),B (0,b ),C (-2,-2)三点共线,则ab 的最小值为________. 答案 16解析 根据A (a ,0),B (0,b )确定直线的方程为x a +yb =1,又因为C (-2,-2)在该直线上, 故-2a +-2b=1, 所以-2(a +b )=ab . 又因为ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号,即ab 的最小值为16.。

2019高考数学一轮复习 第9章 解析几何 第6课时 椭圆(二)课件 理

2019高考数学一轮复习 第9章 解析几何 第6课时 椭圆(二)课件 理

= -3y2-2y+5,

y=-13时,弦长最大为43
3 .
方法二:直线所过的定点为(0,1)在椭圆上,可设另外一交
点为(2cosθ,sinθ),则弦长为
4cos2θ+(1-sinθ)2 = -3sin2θ-2sinθ+5 =
-3(sinθ+13)2+136≤4
3
3 .
当且仅当 sinθ=-13时取等号.选 B.
(2)已知椭圆 C:x22+y2=1,如图直线 l 与椭圆 C 有且仅有一 个公共点,作 F1M⊥l,F2N⊥l 分别交直线 l 于 M,N 两点,求四 边形 F1MNF2 面积 S 的最大值.
【解析】 将直线 l 的方程 y=kx+m 代入椭圆 C 的方程x22+
y2=1 中,得(2k2+1)x2+4kmx+2m2-2=0,
第6课时 椭 圆(二)
…2018 考纲下载… 1.能够把研究直线与椭圆位置关系的问题转化为研究方程 解的问题,会根据韦达定理及判别式解决问题. 2.通过对椭圆的学习,进一步体会数形结合的思想. 请注意 作为高考热点的直线与圆锥曲线的位置关系主要体现在直 线与椭圆中,所以我们必须要对直线与椭圆的位置关系熟练掌 握,并适度强化.

x2 7

y2 3
=1与x+
3 y+4=0联立,得16y2+24
3 y+27=
0,Δ=(24 3)2-4×16×27=0.
方法二:设椭圆方程为xa22+by22=1(a>b>0),
由bx+2x2+3ay2+y24-=a02b,2=0, 得(a2+3b2)y2+8 3b2y+16b2-a2b2=0.
4.椭圆的焦点为 F1,F2,过 F1 的最短弦 PQ 的长为 10,△ PF2Q 的周长为 36,则此椭圆的离心率为( )

高考数学一轮复习第九章平面解析几何9.6椭圆习题理

高考数学一轮复习第九章平面解析几何9.6椭圆习题理

§9.6 椭 圆1.椭圆的定义(1)定义:平面内与两个定点F 1,F 2的距离的和等于常数2a (2a ______|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.※(2)另一种定义方式(见人教A 版教材选修2-1 P47例6、P50):平面内动点M 到定点F 的距离和它到定直线l 的距离之比等于常数e (0<e <1)的轨迹叫做椭圆.定点F 叫做椭圆的一个焦点,定直线l 叫做椭圆的一条准线,常数e 叫做椭圆的__________.焦点在x 轴上 焦点在y 轴上(1)图形(2)标准 方程y 2a 2+x2b 2=1 (a >b >0) (3)范围 -a ≤x ≤a , -b ≤y ≤b-a ≤y ≤a , -b ≤x ≤b(4)中心原点O (0,0)(5)顶点A 1(-a ,0),A 2(a ,0)B 1(0,-b ), B 2(0,b )(6)对称轴 x 轴,y 轴(7)焦点F 1(0,-c ),F 2(0,c )(8)焦距 2c =2a 2-b 2(9)离心率※(10)准线x =±a 2cy =±a 2c自查自纠1.(1)> 焦点 焦距 (2)离心率2.(2)x 2a 2+y 2b2=1(a >b >0)(5)A 1(0,-a ),A 2(0,a ),B 1(-b ,0),B 2(b ,0) (7)F 1(-c ,0),F 2(c ,0) (9)e =c a(0<e <1)(2015·广东)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解:由25-m 2=4,得m 2=9,又m >0,∴m =3.故选B . “-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:要使方程x 25-m +y2m +3=1表示椭圆,只须满足⎩⎪⎨⎪⎧5-m >0,m +3>0,5-m ≠m +3,解得-3<m <5且m ≠1,因此,“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.故选B .(2013·全国课标Ⅱ)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )A.36B.13C.12D.33解:设||F 1F 2=2c ,则||PF 2=233c ,∴||PF 1=433c .∴2a =||PF 1+||PF 2=23c ,故e =ca =33.故选D . 已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是____________.解:由椭圆C 的右焦点为F (1,0)知c =1,且焦点在x 轴上,又e =c a =12,∴a =2,a2=4,b 2=a 2-c 2=3,椭圆C 的方程为x 24+y 23=1.故填x 24+y 23=1.已知椭圆x 2m +y 24=1的焦距是2,则该椭圆的长轴长为____________.解:当焦点在x 轴上时,有m -4=1,得m =5,此时长轴长为25;当焦点在y 轴上时,长轴长为4.故填25或4.类型一 椭圆的定义及其标准方程求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-3,0),(3,0),椭圆上一点P 到两焦点的距离之和等于10;(2)过点P (-3,2),且与椭圆x 29+y 24=1有相同的焦点;(3)已知点P 在以坐标轴为对称轴的椭圆上,且点P 到两焦点的距离分别为5,3,过点P 且与长轴垂直的直线恰过椭圆的一个焦点.解:(1)∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∵2a =10,2c =6,即a =5,c =3, ∴b 2=a 2-c 2=52-32=16.∴所求椭圆的标准方程为x 225+y 216=1.(2)∵所求的椭圆与椭圆x 29+y 24=1的焦点相同,∴其焦点在x 轴上,且c 2=5.设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),∵所求椭圆过点P (-3,2),∴有9a 2+4b2=1.又a 2-b 2=c 2=5,∴联立上述两式,解得⎩⎪⎨⎪⎧a 2=15,b 2=10.∴所求椭圆的标准方程为x 215+y 210=1. (3)由于焦点的位置不确定,可设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a>b >0),由已知条件得⎩⎪⎨⎪⎧2a =5+3,(2c )2=52-32, 解得a =4,c =2,∴b 2=12.故椭圆方程为x 216+y 212=1或y 216+x 212=1. 【点拨】(1)求椭圆的方程多采用定义法和待定系数法,利用椭圆的定义定形状时,一定要注意常数2a >|F 1F 2|这一条件.(2)求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a ,b 的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx 2+ny 2=1 (m >0,n >0,m ≠n )的形式.(1)过两点P 1(2,2),P 2(-3,-1)作一个椭圆,使它的中心在原点,焦点在x 轴上,求椭圆的方程,椭圆的长半轴、短半轴的长度以及离心率.解:根据题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),将两已知点坐标代入得⎩⎪⎨⎪⎧4a 2+4b 2=1,9a 2+1b 2=1,解得⎩⎪⎨⎪⎧a 2=323,b 2=325.故椭圆方程为332x 2+532y 2=1,长半轴长a =323=436,短半轴长b =325=4105. ∵c 2=a 2-b 2=323-325=6415,∴离心率e =ca=c 2a 2=105.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆的标准方程为____________.解法一:椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4. 由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.解法二:∵所求椭圆与椭圆y 225+x 29=1的焦点相同, ∴其焦点在y 轴上,且c 2=25-9=16.设它的标准方程为y 2a 2+x 2b2=1(a >b >0),∵c 2=16,且c 2=a 2-b 2,∴a 2-b 2=16.① 又点(3,-5)在所求椭圆上,∴(-5)2a 2+(3)2b 2=1,即5a 2+3b2=1.② 由①②得⎩⎪⎨⎪⎧a 2=20,b 2=4,∴所求椭圆的标准方程为y 220+x 24=1.故填y 220+x 24=1.类型二 椭圆的离心率设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝⎛⎦⎥⎤0,22B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1解法一:由题意可设P ⎝ ⎛⎭⎪⎫a 2c ,y ,∵PF 1的中垂线过点F 2,∴|F 1F 2|=|F 2P |,即2c =⎝ ⎛⎭⎪⎫a 2c -c 2+y 2,整理得y 2=3c 2+2a 2-a 4c 2. ∵y 2≥0,∴3c 2+2a 2-a 4c 2≥0,即3e 2-1e 2+2≥0,解得e ≥33.∴e 的取值范围是⎣⎢⎡⎭⎪⎫33,1. 解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c-c ,整理得13≤e 2<1,33≤e <1. ∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫33,1.故选D . 【点拨】(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.(4)求椭圆的离心率通常要构造关于a ,c 的齐次式,再转化为关于e 的方程或不等式.(2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是____________.解:设左焦点为F 1,由F (c ,0)关于直线y =bcx 的对称点Q 在椭圆上,得|OQ |=|OF |,又|OF 1|=|OF |,∴F 1Q ⊥QF .不妨设|QF 1|=ck ,则|QF |=bk ,|F 1F |=ak ,因此2c =ak .又2a=ck +bk ,∴c a =a b +c ,即a 2=c 2+bc ,得b =c ,a =2c ,∴e =c a =22.故填22.类型三 椭圆的焦点三角形已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆离心率的范围;(2)求证△F 1PF 2的面积只与椭圆的短轴长有关.解:设椭圆方程为x 2a 2+y 2b2=1(a >b >0),P 点坐标为(x 0,y 0).(1)||PF 1=a +ex 0,||PF 2=a -ex 0. 在△F 1PF 2中,cos ∠F 1PF 2=||PF 12+||PF 22-||F 1F 222||PF 1·||PF 2=(a +ex 0)2+(a -ex 0)2-4c 22(a +ex 0)(a -ex 0)=cos60°=12,解得x 20=4c 2-a 23e2. ∵x 0∈(-a ,a ),∴x 20∈[0,a 2),0≤4c 2-a 23c 2a 2<a 2, 有0≤4c 2-a 2<3c 2,解得12≤e <1.∴椭圆离心率e ∈⎣⎢⎡⎭⎪⎫12,1. (2)证明:将x 20=4c 2-a 23e 2代入b 2x 20+a 2y 20=a 2b 2,求得y 20=b 43c 2,∴||y 0=b 23c . ∴S △F 1PF 2=12||y 0||F 1F 2=12·b 23c ·2c =33b 2.得证.【点拨】椭圆的焦点三角形是描述椭圆的焦距、焦半径之间的相互制约关系的一个载体.由于其位置、边的特殊性决定了它易于同椭圆的定义、长轴长、离心率等几何量发生联系,内容丰富多彩.(2014·安徽)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率.解:(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1,∵△ABF 2的周长为16,∴由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8, 故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k ,由椭圆定义可得 |AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得 |AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k .于是有|AF 2|=3k =|AF 1|,|BF 2|=5k ,因此|BF 2|2=|AF 2|2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a ,∴椭圆E 的离心率e =c a =22. 类型四 椭圆的弦长(2015·陕西)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,原点O 到经过两点(c ,0),(0,b )的直线的距离为12c .(1)求椭圆E 的离心率;(2)如图,AB 是圆M :(x +2)2+(y -1)2=52的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.解:(1)过点(c ,0),(0,b )的直线方程为bx +cy -bc =0,则原点O 到该直线的距离d =bc b 2+c 2=bc a =c2, 得a =2b =2a 2-c 2,解得离心率e =c a =32.(2)由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB |=10.易知,AB 与x 轴不垂直,设其直线方程为y =k (x +2)+1,代入①得(1+4k 2)x 2+8k (2k +1)x +4(2k +1)2-4b 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k (2k +1)1+4k 2,x 1x 2=4(2k +1)2-4b21+4k2. 由x 1+x 2=-4,得-8k (2k +1)1+4k 2=-4,解得k =12. 从而x 1x 2=8-2b 2. 于是|AB |=1+⎝ ⎛⎭⎪⎫122|x 1-x 2|=52(x 1+x 2)2-4x 1x 2=10(b 2-2).由|AB |=10,得10(b 2-2)=10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.【点拨】(1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略对判别式的判断.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,椭圆的离心率为23.如果|AB |=154,则椭圆C 的方程为____________.解:由题意知离心率e =c a =23,c =23a ,由b 2=a 2-c 2,得b =53a ,∴椭圆C 的方程为x 2a2+9y25a2=1 .① 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =3(x -c ),即y =3⎝ ⎛⎭⎪⎫x -23a ,与①联立得32x 2-36ax +7a 2=0,(4x -a )·(8x -7a )=0,解得x 1=a 4,x 2=7a 8.由|AB |=1+3|x 1-x 2|=2⎪⎪⎪⎪⎪⎪a 4-78a =54a =154,解得a =3,∴b =53a = 5.∴椭圆C 的方程为x29+y25=1.故填x29+y25=1.类型五 椭圆中的最值问题(1)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解:由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6 ,∴|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.∴|PA |+|PF |的最大值为6+2,最小值为6- 2.(2)求A (0,2)到椭圆x 24+y 2=1上的动点的距离的最大值和最小值.解:设椭圆上的动点B (x ,y ),则|AB |=x 2+(y -2)2=-3y 2-4y +8=-3⎝ ⎛⎭⎪⎫y +232+283,∵点B 是椭圆上的点,∴-1≤y ≤1.∴|AB |的最大值为2213,最小值为1.(3)在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解:设所求点坐标为A (32cos θ,22sin θ),θ∈R ,由点到直线的距离公式得d =|62cos θ-62sin θ+15|22+(-3)2=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2).【点拨】椭圆中距离的最值问题一般有3种解法:①利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );②根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上,如(2)中的点A );③用椭圆的参数方程设动点的坐标,转化为三角问题求解.(1)(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2B.46+ 2 C .7+ 2D .6 2解法一:设椭圆上任意一点为Q (x ,y ),则圆心(0,6)到椭圆的距离d =x 2+(y -6)2=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50≤52,P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ),则|MQ |=10cos 2θ+(sin θ-6)2=-9sin 2θ-12sin θ+46=-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,∴|PQ |max =52+2=6 2.故选D .(2)(2015·安徽合肥质检)如图,焦点在x 轴上的椭圆x 24+y 2b 2=1的离心率e =12,F ,A分别是椭圆的一个焦点和顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为____________.解:设P 点坐标为(x 0,y 0).由题意知a =2,∵e =c a =12,∴c =1,∴b 2=a 2-c 2=3.∴椭圆方程为x 24+y 23=1.∴-2≤x 0≤2,-3≤y 0≤ 3.∵F (-1,0),A (2,0), PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),∴PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2.即当x 0=-2时,PF →·PA →取得最大值4.故填4.1.在运用椭圆的定义时,要注意“|F 1F 2|<2a ”这个条件,若|F 1F 2|=2a ,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F 1F 2|>2a ,则轨迹不存在.2.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n=1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.3.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出关于a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.4.充分利用图形的几何性质可以减少计算量,椭圆中可以用来减少计算量的几何性质主要体现在椭圆的定义中.5.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.6.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一.7.椭圆中几个常用的结论:(1)焦半径:椭圆上的点P (x 0,y 0)与左(下)焦点F 1与右(上)焦点F 2之间的线段叫做椭圆的焦半径,分别记作r 1=||PF 1,r 2=||PF 2.①x 2a 2+y 2b 2=1(a >b >0),r 1=a +ex 0,r 2=a -ex 0; ②y 2a 2+x 2b2=1(a >b >0),r 1=a +ey 0,r 2=a -ey 0; ③焦半径中以长轴端点的焦半径最大和最小(近日点与远日点).(2)焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;②S =b 2tan θ2=c ||y 0,当||y 0=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .(3)焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b2a.(4)AB 为椭圆x 2a 2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则①弦长l =1+k 2||x 1-x 2=1+1k2|y 1-y 2|;②直线AB 的斜率k AB =-b 2x 0a 2y 0.以上常用结论在教材的例题与习题中都有体现.1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5解:由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.故选A .2.方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是( ) A .(0,+∞) B .(0,2) C .(1,+∞)D .(0,1)解:将方程x 2+ky 2=2变形为x 22+y 22k=1,根据椭圆的定义,要使焦点在y 轴,只须2k>2,解得0<k <1.故选D .3.(2014·全国)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1D.x 212+y 24=1 解:由椭圆的定义知△AF 1B 的周长为4a =43,a = 3.由e =c a=c3=33,得c =1,∴b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选A .4.(2015·豫西五校联考)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为5,则b 的值是( )A .1B. 2C.32D. 3解:由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,∴|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知,过椭圆焦点的弦中,通径最短,则2b2a=3,∴b 2=3,即b = 3.故选D .5.(2013·四川)从椭圆x 2a 2+y 2b2=1()a >b >0上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( )A.24B.12C.22D.32解:由题意知A ()a ,0,B ()0,b ,AB →=()-a ,b ,P ⎝ ⎛⎭⎪⎫-c ,b 2a ,OP →=⎝ ⎛⎭⎪⎫-c ,b 2a ,∵AB∥OP ,∴AB →∥OP →,因此有()-a ·b 2a =b ·()-c ,解得b =c .∴a 2-b 2=a 2-c 2=c 2,得e =22.故选C .6.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若||AB =10,||BF =8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解:由余弦定理||AF 2=||BF 2+||AB 2-2||BF ·||AB cos ∠ABF =82+102-2×8×10×45=36,||AF =6,∵||AF 2+||BF 2=||AB 2,∴△AFB 为直角三角形.设椭圆的右焦点为F ′,连接AF ′,BF ′,由对称性知四边形AFBF ′为平行四边形. 又∵∠AFB =90°,∴四边形AFBF ′为矩形. ∴⎩⎨⎧2c =||FF ′=||AB =10,2a =||AF +||AF ′=||AF +||BF =14, 得⎩⎪⎨⎪⎧c =5,a =7.∴e =c a =57.故选B .7.(2015·乌鲁木齐调研)已知F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是__________.解:设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2, ∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.故填⎣⎢⎡⎦⎥⎤33,22.8.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=____________.解:设MN 的中点为P ,椭圆C 的左、右焦点分别为F 1,F 2,连接PF 1,PF 2,则PF 1,PF 2分别为△ANM 与△BNM 的中位线,有|PF 1|=12|AN |,|PF 2|=12|BN |,又∵点P 在椭圆上,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2·2a =12.故填12.9.已知椭圆中心在原点,长轴在坐标轴上,离心率为53,短轴长为4,求椭圆的方程. 解:由题意得c a =53,2b =4, 又a 2=b 2+c 2,则有a 2=9,b 2=4, 于是椭圆方程为x 29+y 24=1或x 24+y 29=1.10.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解:由题意得||AB +||AF 2+||BF 2=||AF 1+||BF 1+||AF 2+||BF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=4a =8,得a =2.又e =c a =12,∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1.11.(2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解:(1)由题意知|BF 2|2=b 2+c 2=a 2=2,∵点C ⎝ ⎛⎭⎪⎫43,13在椭圆上, ∴⎝ ⎛⎭⎪⎫432a2+⎝ ⎛⎭⎪⎫132b2=1,解得b 2=1.∴椭圆的方程为x 22+y 2=1.(2)易知BF 2→=(c ,-b ).∵点B (0,b ),F 2(c ,0)在直线AB 上, ∴直线AB 的方程为x c +y b=1. 设A (x 1,y 1),联立⎩⎪⎨⎪⎧x c +yb =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c 2,∴点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c2-a 2)a 2+c 2. 又AC ⊥x 轴,∴由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a2-c 2)a 2+c 2. ∴F 1C →=⎝ ⎛⎭⎪⎫3a 2c +c3a 2+c 2,b 3a 2+c 2.又∵F 1C ⊥AB , ∴F 1C →·BF 2→=c 2(3a 2+c 2)a 2+c 2-b 4a 2+c 2=0,即c 2(3a 2+c 2)-(a 2-c 2)2=0,化简得5c 2=a 2,e 2=15,e =55.(2015·全国Ⅱ)已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.解:(1)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入9x 2+y 2=m 2,得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b =9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k,∴k OM ·k =-9,即直线OM 的斜率与l 的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形.∵直线l 过点⎝ ⎛⎭⎪⎫m3,m ,∴l 不过原点且与椭圆C 有两个交点的充要条件是k >0,k ≠3. 由(1)得直线OM 的方程为y =-9kx .设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2,得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入(1)中l 的方程得b =m (3-k )3,因此x M =k (k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M ,于是±km 3k 2+9=2×k (k -3)m 3(k 2+9), 解得k 1=4-7,k 2=4+7.∵k >0,k ≠3,∴当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.。

高考总复习一轮数学精品课件 第九章 平面解析几何 第五节 椭圆

高考总复习一轮数学精品课件 第九章 平面解析几何 第五节 椭圆
数学表达式:P={M||MF1|+|MF2|=2a,2a>|F1F2|}
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做
椭圆.这两个定点叫做椭圆的 焦点 ,两焦点间的距离叫做椭圆
的 焦距 ,焦距的一半称为 半焦距
.
微思考在椭圆的定义中,若2a=|F1F2|或2a<|F1F2|,动点M的轨迹是什么?
垂直于长轴的焦点弦最短,弦长为 2

2
.
常用结论
1.若点P在椭圆上,点F为椭圆的一个焦点,则
(1)b≤|OP|≤a;
(2)a-c≤|PF|≤a+c.
2.焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角
形.r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆
2

A.x2+25=1
2
2


B.x2+25=1 或25+y2=1
2 2
C.25+y =1
D.以上都不对
2
(2)过点(√3,-√5),且与椭圆
25
2
+ =1 有相同焦点的椭圆的标准方程为
9
)
.
答案 (1)A
2
2
(2)20 + 4 =1
解析 (1)设过两点 P
3
,-4
5
和Q
4
- 5 ,3
的椭圆的标准方程为
第九章
第五节 椭圆




01
强基础 增分策略
02
增素能 精准突破
1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实

新人教A版版高考数学一轮复习第九章平面解析几何椭圆教案理解析版

新人教A版版高考数学一轮复习第九章平面解析几何椭圆教案理解析版

基础知识整合1.椭圆的概念在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做错误!椭圆.这两定点叫做椭圆的错误!焦点,两焦点间的距离叫做错误!焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若错误!a>c,则集合P表示椭圆;(2)若错误!a=c,则集合P表示线段;(3)若错误!a<c,则集合P为空集.2.椭圆的标准方程和几何性质续表椭圆的常用性质(1)设椭圆错误!+错误!=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,P点在短轴端点处;当x=±a时,|OP|有最大值a,P点在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a为斜边,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)过椭圆的焦点且垂直于长轴的弦之长为错误!.(5)椭圆离心率e=错误!.1.已知椭圆错误!+错误!=1,长轴在y轴上,若焦距为4,则m等于()A.4B.5C.7 D.8答案D解析椭圆焦点在y轴上,∴a2=m—2,b2=10—m.又c=2,∴m—2—(10—m)=c2=4.∴m=8.2.(2018·广西模拟)若椭圆C:错误!+错误!=1(a>b>0)的短轴长等于焦距,则椭圆的离心率为()A.错误!B.错误!C.错误!D.错误!答案C解析因为椭圆的短轴长等于焦距,所以b=c,所以a2=b2+c2=2c2,所以e=错误!=错误!,故选C.3.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于错误!,则椭圆C的方程是()A.错误!+错误!=1B.错误!+错误!=1C.错误!+错误!=1D.错误!+错误!=1答案D解析依题意,设椭圆方程为错误!+错误!=1(a>b>0),所以错误!解得a2=9,b2=8.故椭圆C 的方程为错误!+错误!=1.4.(2019·西安模拟)已知点P(x1,y1)是椭圆错误!+错误!=1上的一点,F1,F2是其左、右焦点,当∠F1PF2最大时,△PF1F2的面积是()A.错误!B.12C.16(2+错误!)D.16(2—错误!)答案B解析∵椭圆的方程为错误!+错误!=1,∴a=5,b=4,c=错误!=3,∴F1(—3,0),F2(3,0).根据椭圆的性质可知当点P与短轴端点重合时,∠F1PF2最大,此时△PF1F2的面积S=错误!×2×3×4=12,故选B.5.椭圆3x2+ky2=3的一个焦点是(0,错误!),则k=________.答案1解析方程3x2+ky2=3可化为x2+错误!=1.a2=错误!>1=b2,c2=a2—b2=错误!—1=2,解得k=1.6.设椭圆C:错误!+错误!=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F 2,∠PF1F2=30°,则C的离心率为________.答案错误!解析设|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=错误!x.又|PF1|+|PF 2|=2a,|F1F2|=2c.∴2a=3x,2c=错误!x,∴C的离心率为e=错误!=错误!.核心考向突破考向一椭圆定义的应用例1(1)(2018·湖北八校联考)设F1,F2为椭圆错误!+错误!=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则错误!的值为()A.错误!B.错误!C.错误!D.错误!解析由题意知a=3,b=错误!,c=2.设线段PF1的中点为M,则有OM∥PF2,∵OM⊥F1F2,∴PF2⊥F1F2,∴|PF2|=错误!=错误!.又∵|PF1|+|PF2|=2a=6,∴|PF1|=2a—|PF2|=错误!,∴错误!=错误!×错误!=错误!.故选B.(2)设F1,F2分别是椭圆E:错误!+错误!=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E 于A,B两点,|AF1|=3|F1B|,且|AB|=4,△ABF2的周长为16.则|AF2|=________.答案5解析由|AF1|=3|F1B|,|AB|=4,得|AF1|=3.∵△ABF2的周长为16,∴4a=16,∴a=4.则|AF1|+|AF2|=2a=8,∴|AF2|=8—|AF1|=8—3=5.触类旁通椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF1|·|PF2|,通过整体代入可求其面积等.即时训练1.(2019·甘肃联考)设A,B是椭圆C:错误!+错误!=1的两个焦点,点P是椭圆C与圆M:x2+y2=10的一个交点,则||PA|—|PB||=()A.2错误!B.4错误!C.4错误!D.6错误!答案C解析由题意知,A,B恰好在圆M上且AB为圆M的直径,∴|PA|+|PB|=2a=4错误!,|PA|2+|PB|2=(2c)2=40,∴(|PA|+|PB|)2=|PA|2+|PB|2+2|PA||PB|,解得2|PA||PB|=8,∴(|PA|—|PB|)2=|PA|2+|PB|2—2|PA||PB|=32,则||PA|—|PB||=4错误!,故选C.2.已知椭圆C:错误!+错误!=1,点M与椭圆C的焦点不重合.若M关于椭圆C的焦点的对称点分别为A,B,线段MN的中点在椭圆C上,则|AN|+|BN|=________.解析取MN的中点为G,点G在椭圆C上.设点M关于椭圆C的焦点F1的对称点为A,点M关于椭圆C的焦点F2的对称点为B,则有|GF1|=错误!|AN|,|GF2|=错误!|BN|,所以|AN|+|BN|=2(|GF 1|+|GF2|)=4a=12.考向二椭圆的标准方程例2(1)(2019·杭州模拟)已知椭圆C:错误!+错误!=1(a>b>0)的左、右焦点为F1,F2,离心率为错误!,过F2的直线l交C于A,B两点.若△AF1B的周长为4错误!,则C的方程为()A.错误!+错误!=1B.错误!+y2=1C.错误!+错误!=1D.错误!+错误!=1答案A解析由题意及椭圆的定义知4a=4错误!,则a=错误!,又错误!=错误!=错误!,∴c=1,∴b2=2,∴C的方程为错误!+错误!=1.选A.(2)已知A错误!,B是圆:错误!2+y2=4(F为圆心)上一动点,线段AB的垂直平分线交BF于点P,则动点P的轨迹方程为________.答案x2+错误!y2=1解析如图,由题意知|PA|=|PB|,|PF|+|BP|=2.所以|PA|+|PF|=2且|PA|+|PF|>|AF|,即动点P的轨迹是以A,F为焦点的椭圆,a=1,c=错误!,b2=错误!.所以动点P的轨迹方程为x2+错误!y2=1.触类旁通求椭圆方程的常用方法(1)定义法,定义法的要点是根据题目所给的条件确定动点的轨迹满足椭圆的定义.2待定系数法,待定系数法的要点是根据题目所给的条件确定椭圆中的两个系数a,b.当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx2+ny2=1m>0,n>0,m≠n,再用待定系数法求出m,n的值即可.即时训练3.(2019·青岛模拟)已知F1(—1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交C于A,B两点,且|AB|=3,则C的方程为()A.错误!+y2=1B.错误!+错误!=1C.错误!+错误!=1D.错误!+错误!=1答案C解析如图,|AF2|=错误!|AB|=错误!,|F1F2|=2,由椭圆定义,得|AF1|=2a—错误!. 1在Rt△AF1F2中,|AF1|2=|AF2|2+|F1F2|2=错误!2+22.2由12得a=2,∴b2=a2—c2=3.∴椭圆C的方程为错误!+错误!=1,应选C.4.设F1,F2为椭圆C:错误!+错误!=1(a>b>0)的左、右焦点,经过F1的直线交椭圆C于A,B两点,若△F2AB是面积为4错误!的等边三角形,则椭圆C的方程为________.答案错误!+错误!=1解析l经过F1垂直于x轴,得yA=错误!,在Rt△AF1F2中,∠AF2F1=30°,得错误!=错误!×2c,错误!×2c×错误!=4错误!,a2=b2+c2,解得a2=9,b2=6,c2=3.所求的椭圆方程为错误!+错误!=1.考向三椭圆的几何性质例3(1)(2018·全国卷Ⅰ)已知椭圆C:错误!+错误!=1的一个焦点为(2,0),则C的离心率为()A.错误!B.错误!C.错误!D.错误!答案C解析根据题意,可知c=2,因为b2=4,所以a2=b2+c2=8,即a=2错误!,所以椭圆C的离心率为e=错误!=错误!.故选C.率e的取值范围是________.答案错误!解析∵c2—b2+ac<0,∴c2—(a2—c2)+ac<0,即2c2—a2+ac<0,∴2错误!—1+错误! <0,即2e2+e—1<0,解得—1<e<错误!.又∵0<e<1,∴0<e<错误!.∴椭圆的离心率e的取值范围是错误!.触类旁通椭圆离心率的求解方法求椭圆的离心率,常见的有三种方法:一是通过已知条件列方程组,解出a,c的值;二是由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.即时训练5.(2018·全国卷Ⅱ)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF 2,且∠PF2F1=60°,则C的离心率为()A.1—错误!B.2—错误!C.错误!D.错误!—1答案D解析在△F1PF2中,∠F1PF2=90°,∠PF2F1=60°,设|PF2|=m,则2c=|F1F2|=2m,|PF 1|=错误!m,又由椭圆定义可知2a=|PF1|+|PF2|=(错误!+1)m,则离心率e=错误!=错误!=错误!=错误!—1.故选D.6.(2019·江苏模拟)已知椭圆错误!+错误!=1(a>b>0),A为左顶点,B为上顶点,F为右焦点且AB⊥BF,则这个椭圆的离心率等于________.答案错误!解析由题意得A(—a,0),B(0,b),F(c,0),∵AB⊥BF,∴错误!·错误!=0,∴(a,b)·(c,—b)=ac—b2=ac—a2+c2=0,∴e—1+e2=0,解得e=错误!.考向四直线与椭圆的位置关系角度错误!弦的中点问题例4(2018·全国卷Ⅲ)已知斜率为k的直线l与椭圆C:错误!+错误!=1交于A,B两点.线段AB 的中点为M(1,m)(m>0).(1)证明:k<—错误!;(2)设F为C的右焦点,P为C上一点,且F错误!+F错误!+F错误!=0.证明:|错误!|,|错误!|,|错误! |成等差数列,并求该数列的公差.解(1)证明:设A(x1,y1),B(x2,y2),则错误!+错误!=1,错误!+错误!=1.两式相减,并由错误!=k得错误!+错误!·k=0.由题设知错误!=1,错误!=m,于是k=—错误!.1由题设得m< 错误!=错误!,且m>0,即0<m<错误!,故k<—错误!.(2)由题意得F(1,0).设P(x3,y3),则由(1)及题设得(x3—1,y3)+(x1—1,y1)+(x2—1,y2)=(0,0),x3=3—(x1+x2)=1,y3=—(y1+y2)=—2m<0.又点P在C上,所以m=错误!,从而P错误!,|F错误!|=错误!.于是|F错误!|=错误!=错误!=2—错误!.同理|F错误!|=2—错误!.所以|F错误!|+|F错误!|=4—错误!(x1+x2)=3.故2|F错误!|=|F错误!|+|F错误!|,即|错误!|,|错误!|,|错误!|成等差数列.设该数列的公差为d,则2|d|=||错误!|—|错误!||=错误!|x1—x2|=错误!错误!.2将m=错误!代入1得k=—1.所以l的方程为y=—x+错误!,代入C的方程,并整理得7x2—14x+错误!=0.故x1+x2=2,x1x2=错误!,代入2解得|d|=错误!.所以该数列的公差为错误!或—错误!.角度错误!弦长的问题例5(2019·陕西咸阳模拟)在平面直角坐标系xOy中,已知椭圆C:错误!+错误!=1(a>b>0)过点P(2,1),且离心率e=错误!.(1)求椭圆C的方程;(2)直线l的斜率为错误!,直线l与椭圆C交于A,B两点.求△PAB面积的最大值.解(1)∵e2=错误!=错误!=错误!,∴a2=4b2.又椭圆C:错误!+错误!=1(a>b>0)过点P(2,1),∴错误!+错误!=1,∴a2=8,b2=2.故所求椭圆方程为错误!+错误!=1.(2)设l的方程为y=错误!x+m,点A(x1,y1),B(x2,y2),联立错误!整理,得x2+2mx +2m2—4=0.∵Δ=4m2—8m2+16>0,解得|m|<2.∴x1+x2=—2m,x1x2=2m2—4.则|AB|=错误!× 错误!=错误!.点P到直线l的距离d=错误!=错误!.∴S△PAB=错误!d|AB|=错误!×错误!×错误!=错误!≤错误!=2.当且仅当m2=2,即m=±错误!时取得最大值.触类旁通1解决直线与椭圆的位置关系的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系,解决相关问题.(3)直线与椭圆相交时常见问题的处理方法涉及问题处理方法弦长根与系数的关系、弦长公式(直线与椭圆有两交点)中点弦或弦点差法(结果要检验Δ>0)的中点即时训练7.(2019·广西联考)已知椭圆C:错误!+错误!=1(a>b>1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为错误!,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A,B两点,线段AB的中点为P.(1)求椭圆C的标准方程;(2)过点P垂直于AB的直线与x轴交于点D错误!,求k的值.解(1)由题易得,过椭圆短轴的一个端点与两个焦点的圆的半径为错误!.设椭圆的右焦点的坐标为(c,0),依题意知错误!又因为b>1,解得a=2,b=错误!,c=1,所以椭圆C的标准方程为错误!+错误!=1.(2)由题意,过椭圆C的右焦点的直线l的方程为y=k(x—1),将其代入错误!+错误!=1,得(3+4k2)x2—8k2x+4k2—12=0.设A(x1,y1),B(x2,y2),则x1+x2=错误!,x1x2=错误!,所以y1+y2=k(x1+x2)—2k=错误!.因为P为线段AB的中点,所以点P的坐标为错误!.又因为直线PD的斜率为—错误!,所以直线PD的方程为y—错误!=—错误!错误!.令y=0,得x=错误!,所以点D的坐标为错误!,则错误!=错误!,解得k=±1.8.(2019·云南昆明模拟)已知中心在原点O,焦点在x轴上的椭圆E过点C(0,1),离心率为错误!.(1)求椭圆E的方程;(2)直线l过椭圆E的左焦点F,且与椭圆E交于A,B两点,若△OAB的面积为错误!,求直线l的方程.解(1)设椭圆E的方程为错误!+错误!=1(a>b>0),由已知得错误!解得a2=2,b2=1,所以椭圆E的方程为错误!+y2=1.(2)由已知,直线l过左焦点F(—1,0).当直线l与x轴垂直时,A错误!,B错误!,此时|AB|=错误!,则S△OAB=错误!×错误!×1=错误!,不满足条件.当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2).由错误!得(1+2k2)x2+4k2x+2k2—2=0,所以x1+x2=—错误!,x1x2=错误!.因为S△OAB=错误!|OF|·|y1—y2|=错误!|y1—y2|,由已知S△OAB=错误!得|y1—y2|=错误!.因为y1+y2=k(x1+1)+k(x2+1)=k(x1+x2)+2k=k· 错误!+2k=错误!,y1y2=k(x1+1)·k(x2+1)=k2(x1x2+x1+x2+1)=错误!,所以|y1—y2|=错误!=错误!=错误!,所以k4+k2—2=0,解得k=±1,所以直线l的方程为x—y+1=0或x+y+1=0.1.已知点F1,F2是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,那么|错误!+错误!|的最小值是()A.0 B.1C.2D.2错误!答案C解析解法一:设P(x0,y0),则错误!=(—1—x0,—y0),错误!=(1—x0,—y0),所以错误!+错误!=(—2x0,—2y0),所以|错误!+错误!|=错误!=2错误!=2错误!.因为点P在椭圆上,所以0≤y 错误!≤1,所以当y错误!=1时,|错误!+错误!|取最小值2.解法二:由错误!+错误!=错误!+错误!+错误!+错误!=2错误!求解.故选C.2.已知F是椭圆错误!+错误!=1的左焦点,P是此椭圆上的动点,A(1,1)是一定点,求|PA|+|PF|的最大值和最小值.解由题意知a=3,b=错误!,c=2,F(—2,0).设椭圆右焦点为F′,则|PF|+|PF′|=6,所以|PA|+|PF|=|PA|—|PF′|+6.当P,A,F′三点共线时,|PA|—|PF′|取到最大值|AF′|=错误!,或者最小值—|AF′|=—错误!.所以|PA|+|PF|的最大值为6+错误!,最小值为6—错误!.3.在椭圆错误!+错误!=1上求一点,使它到直线2x—3y+15=0的距离最短.解设所求点坐标为A(3错误!cosθ,2错误!sinθ),θ∈R,由点到直线的距离公式得=错误!,当θ=2kπ+错误!,k∈Z时,d取到最小值错误!,此时A点坐标为(—3,2).答题启示椭圆中距离的最值问题一般有3种解法:(1)利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e);(2)根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);(3)用椭圆的参数方程设动点的坐标,转化为三角问题求解.对点训练1.设P,Q分别为圆x2+(y—6)2=2和椭圆错误!+y2=1上的点,则P,Q两点间的最大距离是()A.5错误!B.错误!+错误!C.7+错误!D.6错误!答案D解析解法一:设椭圆上任意一点为Q(x,y),则圆心(0,6)到点Q的距离d=错误!=错误!=错误!≤5错误!,P,Q两点间的最大距离d′=dmax+错误!=6错误!.解法二:易知圆心坐标为M(0,6),|PQ|的最大值为|MQ|max+错误!,设Q(错误!cosθ,sinθ),则|MQ|=错误!=错误!当sinθ=—错误!时,|MQ|max=5错误!,所以|PQ|max=5错误!+错误!=6错误!.故选D.2.如图,焦点在x轴上的椭圆错误!+错误!=1的离心率e=错误!,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则错误!·错误!的最大值为________.答案4解析设P点坐标为(x0,y0).由题意知a=2,因为e=错误!=错误!,所以c=1,所以b2=a2—c2=3.所以椭圆方程为错误!+错误!=1.所以—2≤x0≤2,—错误!≤y0≤错误!.因为F(—1,0),A(2,0),错误!=(—1—x0,—y0),错误!=(2—x0,—y0),所以错误!·错误!=x错误!—x0—2+y错误!=错误!x错误!—x0+1=错误!(x0—2)2.即当x0=—2时,错误!·错误!取得最大值4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[小题速练]
1.直线 y=2x-1 与椭圆x92+y42=1 的位置关系是(
)
A.相交 B.相切 C.相离 D.不确定
y=2x-1 [解析] x92+y42=1 得 4x2+9(2x-1)2=36,即 40x2-36x- 27=0,Δ=362+4×40×27>0,故直线与椭圆相交,选 A.
[答案] A
[思路引导]
利用椭圆的性质 (1) 画出草图 → 写出A的方程
→ 求出点M的坐标 → 得S△AMN
[跟踪演练] 已知对 k∈R,直线 y-kx-1=0 与椭圆x52+ym2=1 恒有公共 点,求实数 m 的取值范围.
பைடு நூலகம்
[解] ∵k∈R,y-kx-1=0,即 y=kx+1 恒过定点(0,1),
若与椭圆x52+ym2=1,恒有公共点,则(0,1)在椭圆内或椭圆上, ∴m≥1.且 m≠5.
考点二 弦长问题——热考点 (2016·全国卷Ⅱ)已知椭圆 E:xt2+y32=1 的焦点在 x 轴上,A 是 E 的左顶点,斜率为 k(k>0)的直线交 E 于 A,M 两点, 点 N 在 E 上,MA⊥NA. (1)当 t=4,|AM|=|AN|时,求△AMN 的面积; (2)当 2|AM|=|AN|时,求 k 的取值范围.

0

x1

x2

83 5

x1x2

8 5







|AB|

1+12[x1+x22-4x1x2]=85.
[答案]
8 5
考点突破 提能力
研一研 练一练 考点通关
考点一 直线与椭圆的位置关系——常考点 已知直线 l:y=2x+m,椭圆 C:x42+y22=1.试问当 m
取何值时,直线 l 与椭圆 C: (1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.
2.直线与椭圆位置关系的判断:
y=kx+m 联立ax22+by22=1, 得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0, 设一元二次方程的判别式为 Δ,Δ>0⇔有 2 个 交点⇔相交. Δ=0⇔ 有一个交点 ⇔相切. Δ<0⇔ 无交点 ⇔相离
3.弦长公式及中点弦问题: 设 AB 为椭圆的一条弦,A(x1,y1),B(x2,y2),弦中点 M(x0, y0) 则|AB|= 1+k2|x1-x2|= 1+k12|y1-y2|, 当 AB 过椭圆焦点时可利用|AB|=2a+e(x1+x2)求解.涉及弦 的中点问题,还常用点差法(将点 A,B 坐标代入椭圆方程作差) 从而可得到 kAB=ba22xy00.
(3)当 Δ<0,即 m<-3 2或 m>3 2时,方程③没有实数根, 可知原方程组没有实数解.这时直线 l 与椭圆 C 没有公共点.
直线与椭圆的位置关系有两类题型:一是判断位置关系;二 是根据位置关系确定参数的取值范围.这两类问题,在解决方法 上是相似的,通常有 2 种方法;一是联立方程,借助一元二次方 程的判别式 Δ 来判断,二是借助几何性质来判断,如下面的跟踪 训练.
(1)点 P(x0,y0)在椭圆内⇔ (2)点 P(x0,y0)在椭圆上⇔ (3)点 P(x0,y0)在椭圆外⇔
ax202+by022<1 ;
ax202+by022=1 ;
ax202+by022>1
.
若已知点在椭圆上,则把点的坐标代入椭圆方程,可构造关 于一些量的等式;若已知点在椭圆内,则把点的坐标代入椭圆方 程,可构造关于一些量的不等式,进而可解决相关的取值范围或 最值问题.
[答案] D
3.设 A1、A2 是椭圆x42+y22=1 的左、右顶点,P 在椭圆上, 若 kPA1=2,则 kPA2 的值为________.
[解析]
设 P(x0,y0),A1(-2,0),A2(2,0),∴kkPPAA12==xx00yy+-00 22=2
两式相乘得 2kPA2=x02y-02 4 又点 P(x0,y0)在x42+y22=1 上,∴x20+2y20=4 代入上式得 kPA2
(1)当 Δ>0,即-3 2<m<3 2时,方程③有两个不同的实数根,
可知原方程组有两组不同的实数解.这时直线 l 与椭圆 C 有两个
不重合的公共点.
(2)当 Δ=0,即 m=±3 2时,方程③有两个相同的实数根, 可知原方程组有两组相同的实数解.这时直线 l 与椭圆 C 有两个 互相重合的公共点,即直线 l 与椭圆 C 有且只有一个公共点.
2.已知以 F1(-2,0),F2(2,0)为焦点的椭圆与直线 x+ 3y+4 =0,有且仅有一个交点,则椭圆的长轴长为( )
A.3 2 B.2 6 C.2 7 D.4 2
[解析] 设椭圆方程为ax22+by22=1,a2-b2=4,将 x=- 3y -4 代入 b2x2+a2y2=a2b2 得(a2+3b2)y2-8 3b2y+16b2-a2b2=0, 由 Δ=0 得(a2+3b2)(16-a2)=48b2,将 a2=b2+4 代入得 b2=4 或 b2=-3(舍),∴a2=8,故长轴长为 2a=4 2,选 D.
[思路引导]
联立直线与 椭圆方程

消去y得关于x 的二次方程

利用Δ判断
[解] 将直线 l 的方程与椭圆 C 的方程联立,得方程组
y=2x+m,① x42+y22=1,②
将①代入②,整理得 9x2+8mx+2m2-4=0.③
方程③根的判别式 Δ=(8m)2-4×9×(2m2-4)=-8m2+144.


平面解析几何

第六节
椭圆(二)
高考概览 1.能够把直线与椭圆位置关系问题转化为研究方程的解的问 题,会根据韦达定理及判别式解决问题;2.进一步体会数形结合的 思想.
吃透教材 夯双基
填一填 记一记 厚积薄发
[知识梳理] 1.已知点 P(x0,y0)与椭圆ax22+by22=1(a>b>0)的位置关系
=-14. [答案] -14
4.已知斜率为 1 的直线过椭圆x42+y2=1 的右焦点交椭圆于 A、B 两点,则弦 AB 的长为________.
[解析] x42+y2=1 的右焦点为 F( 3,0),故直线方程为 y=x
- 3,设 A(x1,y1),B(x2,y2),yx=2+x4-y2-34=0 得 5x2-8 3x+8
相关文档
最新文档