2018年广东省汕尾市海丰县中考数学模拟试卷含答案(5月份)
初中数学广东省汕尾市中考模拟数学考试卷及答案word版

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:﹣2的倒数是()A.2 B.C.﹣ D.﹣0.2试题2:下列电视台的台标,是中心对称图形的是()A. B.C. D.试题3:若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C. x+3>y+3 D.﹣3x>﹣3y试题4:在我国南海某海域探明可燃冰储量约有194亿立方米,数字19400000000用科学记数法表示正确的是()A.1.94×1010 B. 0.194×1010 C. 19.4×109 D. 1.94×109试题5:下列各式计算正确的是()A.(a+b)2=a2+b2 B.a•a2=a3 C. a8÷a2=a4 D. a2+a3=a5试题6:如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE试题7:在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是()A. B.C. D.试题8:汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.试题9:如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我 B.中 C.国 D.梦试题10:已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限试题11:4的平方根是.试题12:已知a+b=4,a﹣b=3,则a2﹣b2= .试题13:已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.试题14:小明在射击训练中,五次命中的环数分别为5、7、6、6、6,则小明命中环数的众数为,平均数为.试题15:写出一个在三视图中俯视图与主视图完全相同的几何体.试题16:如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A= .试题17:计算:(+π)0﹣2|1﹣sin30°|+()﹣1.试题18:已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).试题19:如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.试题20:如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.试题21:一个口袋中有3个大小相同的小球,球面上分别写有数字1、2、3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.试题22:已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.试题23:某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?试题24:如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD•BA;(3)当以点O、D 、E、C 为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.C.试题2答案:A解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选;A.试题3答案:D解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A正确;B、根据不等式的性质2,可得>,故B正确;C、根据不等式的性质1,可得x+3>y+3,故C正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D错误;故选D.试题4答案:A.试题5答案:B试题6答案:D.试题7答案:B.试题8答案:C.D.试题10答案:A.试题11答案:±2.试题12答案:12.试题13答案:平行.试题14答案:6,6.试题15答案:球或正方体.试题16答案:55°.试题17答案:解:原式=1﹣2×+2=1﹣1+2=2.试题18答案:解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.试题20答案:(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.试题21答案:解:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.试题22答案:解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.试题23答案:解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作x天,根据题意得:0.4x+×0.25≤8,解得:x≥10,答:至少应安排甲队工作10天.试题24答案:证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.∴EB=EC,即点E为边BC的中点;(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B∴△ABC∽△CDB,∴,∴BC2=BD•BA;(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°∴Rt△ABC为等腰直角三角形.试题25答案:解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);②点M在x轴上方时,根据三角形的等面积法,可知M点到x轴的距离等于点C到x轴的距离3.当y=4时,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,∴M点坐标为(1+,3)或(1﹣,3).综上所述,所求M点坐标为(2,﹣3)或(1+,3)或(1﹣,3);(3)结论:存在.如图所示,在抛物线上有两个点P满足题意:①若BC∥AP1,此时梯形为ABCP1.由点C关于抛物线对称轴的对称点为B,可知BC∥x轴,则P1与D点重合,∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四边形ABCP1为梯形;②若AB∥CP2,此时梯形为ABCP2.∵A点坐标为(4,0),B点坐标为(2,﹣3),∴直线AB的解析式为y=x﹣6,∴可设直线CP2的解析式为y=x+n,将C点坐标(0,﹣3)代入,得b=﹣3,∴直线CP2的解析式为y=x﹣3.∵点P2在抛物线y=x2﹣x﹣3上,∴x2﹣x﹣3=x﹣3,化简得:x2﹣6x=0,解得x1=0(舍去),x2=6,∴点P2横坐标为6,代入直线CP2解析式求得纵坐标为6,∴P2(6,6).∵AB∥CP2,AB≠CP2,∴四边形ABCP2为梯形.综上所述,在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(﹣2,0)或(6,6).。
海丰中考数学试卷

1. 下列各数中,有理数是()A. √9B. √16C. √25D. √-42. 已知a,b是实数,且a + b = 0,那么a,b互为()A. 同号根式B. 异号根式C. 同号数D. 异号数3. 在等腰三角形ABC中,AB = AC,∠BAC = 60°,则∠B =()A. 30°B. 45°C. 60°D. 75°4. 已知函数f(x) = 2x - 3,那么f(-1)的值是()A. -1B. 0C. 1D. 25. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 相似三角形的面积比等于相似比的平方C. 对顶角相等D. 直角三角形的两条直角边相等6. 已知一元二次方程x^2 - 4x + 3 = 0,那么它的两个根是()A. x1 = 1,x2 = 3B. x1 = 2,x2 = 2C. x1 = 3,x2 = 1D. x1 = 1,x2 = 17. 在平面直角坐标系中,点A(2, 3),点B(-1, 4),则线段AB的中点坐标是()A. (1, 3.5)B. (1, 4)C. (2, 3.5)D. (2, 4)8. 下列各组数中,成等差数列的是()A. 2, 4, 6, 8, 10B. 1, 3, 5, 7, 9C. 3, 5, 7, 9, 11D. 2, 5, 8, 11, 149. 已知函数f(x) = x^2 + 2x + 1,那么f(1)的值是()A. 1B. 2C. 3D. 410. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°11. 若m + n = 0,则m,n互为()12. 等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长是()13. 已知函数f(x) = 3x - 2,那么f(2)的值是()14. 下列各数中,无理数是()A. √4B. √9C. √16D. √-115. 在平面直角坐标系中,点P(3, 4),点Q(-2, 1),则线段PQ的长度是()16. 已知数列1, 3, 5, 7, ...,则第10项是()17. 已知函数f(x) = x^2 - 2x + 1,那么f(0)的值是()18. 在△ABC中,若∠A = 30°,∠B = 45°,则∠C的度数是()三、解答题(每题10分,共40分)19. 解一元二次方程x^2 - 5x + 6 = 0。
2018年广东省汕尾市中考数学试卷(试卷+答案+解析)

2018年广东省汕尾市中考数学试卷一、选择题(本大题10小题.每小题3分.共30分)在每小题列出的四个选项中.只有一个是正确的.请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣、2中.最小的数是( )A.0 B.C.﹣D.22.(3分)据有关部门统计.2018年“五一小长假”期间.广东各大景点共接待游客约人次.将数用科学记数法表示为( ) A.×107B.×107C.×108D.×1083.(3分)如图.由5个相同正方体组合而成的几何体.它的主视图是( )A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是( )A.4 B.5 C.6 D.75.(3分)下列所述图形中.是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是( )A.x≤4B.x≥4C.x≤2D.x≥27.(3分)在△ABC中.点D、E分别为边AB、AC的中点.则△ADE与△ABC的面积之比为( )A.B.C.D.8.(3分)如图.AB∥CD.则∠DEC=100°.∠C=40°.则∠B的大小是( )A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根.则实数m的取值范围是( )A.m<B.m≤C.m>D.m≥10.(3分)如图.点P是菱形ABCD边上的一动点.它从点A出发沿在A→B→C→D路径匀速运动到点D.设△PAD的面积为点的运动时间为x.则y关于x的函数图象大致为( )A.B.C.D.二、填空题(共6小题.每小题3分.满分18分)11.(3分)同圆中.已知所对的圆心角是100°.则所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5.则x= .14.(3分)已知+|b﹣1|=0.则a+1= .15.(3分)如图.矩形ABCD中.BC==2.以AD为直径的半圆O与BC相切于点E.连接BD.则阴影部分的面积为.(结果保留π)16.(3分)如图.已知等边△OA1B1.顶点A1在双曲线y=(x>0)上.点B1的坐标为.过B1作B1A2∥OA1交双曲线于点A2.过A2作A2B2∥A1B1交x轴于点B2.得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3.过A3作A3B3∥A2B2交x轴于点B3.得到第三个等边△B2A3B3;以此类推.….则点B6的坐标为.三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简.再求值:•.其中a=.19.(6分)如图.BD是菱形ABCD的对角线.∠CBD=75°.(1)请用尺规作图法.作AB的垂直平分线EF.垂足为E.交AD于F;(不要求写作法.保留作图痕迹)(2)在(1)条件下.连接BF.求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片21.(7分)某企业工会开展“一周工作量完成情况”调查活动.随机调查了部分员工一周的工作量剩余情况.并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人.请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人22.(7分)如图.矩形ABCD中.AB>AD.把矩形沿对角线AC所在直线折叠.使点B落在点E处.AE交CD于点F.连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图.已知顶点为C(0.﹣3)的抛物线y=ax2+b(a≠0)与x轴交于两点.直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M.使得∠MCB=15°若存在.求出点M的坐标;若不存在.请说明理由.24.(9分)如图.四边形ABCD中.AB=AD=CD.以AB为直径的⊙O经过点C.连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2.证明:DA与⊙O相切;(3)在(2)条件下.连接BD交⊙O于点F.连接EF.若BC=1.求EF的长.25.(9分)已知Rt△OAB.∠OAB=90°.∠ABO=30°.斜边OB=4.将Rt△OAB绕点O顺时针旋转60°.如图1.连接BC.(1)填空:∠OBC= °;(2)如图1.连接AC.作OP⊥AC.垂足为P.求OP的长度;(3)如图2.点同时从点O出发.在△OCB边上运动.M沿O→C→B路径匀速运动.N沿O→B→C路径匀速运动.当两点相遇时运动停止.已知点M的运动速度为单位/秒.点N的运动速度为1单位/秒.设运动时间为x秒.△OMN的面积为y.求当x为何值时y 取得最大值最大值为多少2018年广东省汕尾市中考数学试卷一、选择题(本大题10小题.每小题3分.共30分)在每小题列出的四个选项中.只有一个是正确的.请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣、2中.最小的数是( )A.0 B.C.﹣D.2【考点】2A:实数大小比较.【分析】正实数都大于0.负实数都小于0.正实数大于一切负实数.两个负实数绝对值大的反而小.据此判断即可.【解答】解:根据实数比较大小的方法.可得﹣<0<<2.所以最小的数是﹣.故选:C.2.(3分)据有关部门统计.2018年“五一小长假”期间.广东各大景点共接待游客约人次.将数用科学记数法表示为( ) A.×107B.×107C.×108D.×108【考点】1I:科学记数法—表示较大的数.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示.本题得以解决.【解答】解:=×107.故选:A.3.(3分)如图.由5个相同正方体组合而成的几何体.它的主视图是( )A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知.此几何体的主视图是B中的图形.故选:B.4.(3分)数据1、5、7、4、8的中位数是( )A.4 B.5 C.6 D.7【考点】W4:中位数.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8.则这组数据的中位数为5故选:B.5.(3分)下列所述图形中.是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.也是中心对称图形.故此选项错误;B、是轴对称图形.也是中心对称图形.故此选项错误;C、不是轴对称图形.是中心对称图形.故此选项错误;D、是轴对称图形.不是中心对称图形.故此选项正确.故选:D.6.(3分)不等式3x﹣1≥x+3的解集是( )A.x≤4B.x≥4C.x≤2D.x≥2【考点】C6:解一元一次不等式.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项.得:3x﹣x≥3+1.合并同类项.得:2x≥4.系数化为1.得:x≥2.故选:D.7.(3分)在△ABC中.点D、E分别为边AB、AC的中点.则△ADE与△ABC的面积之比为( )A.B.C.D.【考点】KX:三角形中位线定理;S9:相似三角形的判定与性质.【分析】由点D、E分别为边AB、AC的中点.可得出DE为△ABC的中位线.进而可得出DE∥BC及△ADE∽△ABC.再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点.∴DE为△ABC的中位线.∴DE∥BC.∴△ADE∽△ABC.∴=()2=.故选:C.8.(3分)如图.AB∥CD.则∠DEC=100°.∠C=40°.则∠B的大小是( )A.30°B.40°C.50°D.60°【考点】JA:平行线的性质.【分析】依据三角形内角和定理.可得∠D=40°.再根据平行线的性质.即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°.∠C=40°.∴∠D=40°.又∵AB∥CD.∴∠B=∠D=40°.故选:B.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根.则实数m的取值范围是( )A.m<B.m≤C.m>D.m≥【考点】AA:根的判别式.【分析】根据一元二次方程的根的判别式.建立关于m的不等式.求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根.∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0.∴m<.故选:A.10.(3分)如图.点P是菱形ABCD边上的一动点.它从点A出发沿在A→B→C→D路径匀速运动到点D.设△PAD的面积为点的运动时间为x.则y关于x的函数图象大致为( )A.B.C.D.【考点】E7:动点问题的函数图象.【分析】设菱形的高为h.即是一个定值.再分点P在AB上.在BC上和在CD上三种情况.利用三角形的面积公式列式求出相应的函数关系式.然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时.如图1.设菱形的高为h.y=AP•h.∵AP随x的增大而增大.h不变.∴y随x的增大而增大.故选项C不正确;②当P在边BC上时.如图2.y=AD•h.AD和h都不变.∴在这个过程中.y不变.故选项A不正确;③当P在边CD上时.如图3.y=PD•h.∵PD随x的增大而减小.h不变.∴y随x的增大而减小.∵P点从点A出发沿在A→B→C→D路径匀速运动到点D.∴P在三条线段上运动的时间相同.故选项D不正确;故选:B.二、填空题(共6小题.每小题3分.满分18分)11.(3分)同圆中.已知所对的圆心角是100°.则所对的圆周角是50°.【考点】M5:圆周角定理.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°.则弧AB所对的圆周角为50°.故答案为50°.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2.【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.13.(3分)一个正数的平方根分别是x+1和x﹣5.则x= 2 .【考点】21:平方根.【分析】根据正数的两个平方根互为相反数列出关于x的方程.解之可得.【解答】解:根据题意知x+1+x﹣5=0.解得:x=2.故答案为:2.14.(3分)已知+|b﹣1|=0.则a+1= 2 .【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】直接利用非负数的性质结合绝对值的性质得出的值进而得出答案.【解答】解:∵+|b﹣1|=0.∴b﹣1=﹣b=0.解得:b==1.故a+1=2.故答案为:2.15.(3分)如图.矩形ABCD中.BC==2.以AD为直径的半圆O与BC相切于点E.连接BD.则阴影部分的面积为π.(结果保留π)【考点】LB:矩形的性质;MC:切线的性质;MO:扇形面积的计算.【分析】连接OE.如图.利用切线的性质得OD=⊥BC.易得四边形OECD为正方形.先利用扇形面积公式.利用S正方形OECD﹣S扇形EOD 计算由弧DE、线段EC、CD所围成的面积.然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE.如图.∵以AD为直径的半圆O与BC相切于点E.∴OD=⊥BC.易得四边形OECD为正方形.∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π.∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.16.(3分)如图.已知等边△OA1B1.顶点A1在双曲线y=(x>0)上.点B1的坐标为.过B1作B1A2∥OA1交双曲线于点A2.过A2作A2B2∥A1B1交x轴于点B2.得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3.过A3作A3B3∥A2B2交x轴于点B3.得到第三个等边△B2A3B3;以此类推.….则点B6的坐标为.【考点】G6:反比例函数图象上点的坐标特征;KK:等边三角形的性质.【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标.得出规律.进而求出点B6的坐标.【解答】解:如图.作A2C⊥x轴于点C.设B1C=a.则A2C=a.OC=OB1+B1C=2+(2+.∵点A2在双曲线y=(x>0)上.∴(2+a)•a=.解得a=﹣1.或a=﹣﹣1(舍去).∴OB2=OB1+2B1C=2+2﹣2=2.∴点B2的坐标为;作A3D⊥x轴于点D.设B2D=b.则A3D=b.OD=OB2+B2D=2+(2+.∵点A3在双曲线y=(x>0)上.∴(2+b)•b=.解得b=﹣+.或b=﹣﹣(舍去).∴OB3=OB2+2B2D=2﹣2+2=2.∴点B3的坐标为;同理可得点B4的坐标为即;….∴点B n的坐标为.∴点B6的坐标为.故答案为.三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.18.(6分)先化简.再求值:•.其中a=.【考点】6D:分式的化简求值.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.19.(6分)如图.BD是菱形ABCD的对角线.∠CBD=75°.(1)请用尺规作图法.作AB的垂直平分线EF.垂足为E.交AD于F;(不要求写作法.保留作图痕迹)(2)在(1)条件下.连接BF.求∠DBF的度数.【考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【分析】(1)分别以A、B为圆心.大于AB长为半径画弧.过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示.直线EF即为所求;(2)∵四边形ABCD是菱形.∴∠ABD=∠DBC=∠ABC=75°.DC∥AB.∠A=∠C.∴∠ABC=150°.∠ABC+∠C=180°.∴∠C=∠A=30°.∵EF垂直平分线段AB.∴AF=FB.∴∠A=∠FBA=30°.∴∠DBF=∠ABD﹣∠FBE=45°.20.(7分)某公司购买了一批A、B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片【考点】B7:分式方程的应用.【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.21.(7分)某企业工会开展“一周工作量完成情况”调查活动.随机调查了部分员工一周的工作量剩余情况.并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人.请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数.据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人.故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人.补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.22.(7分)如图.矩形ABCD中.AB>AD.把矩形沿对角线AC所在直线折叠.使点B落在点E处.AE交CD于点F.连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问题).【分析】(1)根据矩形的性质可得出AD=BC、AB=CD.结合折叠的性质可得出AD=CE、AE=CD.进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF.利用等边对等角可得出EF=DF.由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形.∴AD==CD.由折叠的性质可得:BC==AE.∴AD==CD.在△ADE和△CED中..∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED.∴∠DEA=∠EDC.即∠DEF=∠EDF.∴EF=DF.∴△DEF是等腰三角形.23.(9分)如图.已知顶点为C(0.﹣3)的抛物线y=ax2+b(a≠0)与x轴交于两点.直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M.使得∠MCB=15°若存在.求出点M的坐标;若不存在.请说明理由.【考点】HF:二次函数综合题.【分析】(1)把C(0.﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标.再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0.﹣3)代入y=x+m.可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3.所以点B的坐标为.将(0.﹣3)、代入y=ax2+b中.可得:.解得:.所以二次函数的解析式为:y=x2﹣3;(3)存在.分以下两种情况:①若M在B上方.设MC交x轴于点D.则∠ODC=45°+15°=60°.∴OD=OC•tan30°=.设DC为y=kx﹣3.代入(.0).可得:k=.联立两个方程可得:.解得:.所以M1;②若M在B下方.设MC交x轴于点E.则∠OEC=45°﹣15°=30°.∴OE=OC•tan60°=3.设EC为y=kx﹣3.代入可得:k=.联立两个方程可得:.解得:.所以M2(.﹣2).综上所述M的坐标为或(.﹣2).24.(9分)如图.四边形ABCD中.AB=AD=CD.以AB为直径的⊙O经过点C.连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2.证明:DA与⊙O相切;(3)在(2)条件下.连接BD交⊙O于点F.连接EF.若BC=1.求EF的长.【考点】MR:圆的综合题.【分析】(1)连接OC.证△OAD≌△OCD得∠ADO=∠CDO.由AD=CD知DE⊥AC.再由AB为直径知BC⊥AC.从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==.证OE为中位线知OE=a、AE=CE=AC=a.进一步求得DE==2a.再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①.再证△AED∽△OAD得OD•DE=AD2②.由①②得DF•BD=OD•DE.即=.结合∠EDF=∠BDO知△EDF∽△BDO.据此可得=.结合(2)可得相关线段的长.代入计算可得.【解答】解:(1)连接OC.在△OAD和△OCD中.∵.∴△OAD≌△OCD(SSS).∴∠ADO=∠CDO.又AD=CD.∴DE⊥AC.∵AB为⊙O的直径.∴∠ACB=90°.∴∠ACB=90°.即BC⊥AC.∴OD∥BC;(2)∵tan∠ABC==2.∴设BC=a、则AC=2a.∴AD=AB==.∵OE∥BC.且AO=BO.∴OE=BC==CE=AC=a.在△AED中.DE==2a.在△AOD中.AO2+AD2=()2+(a)2==(OE+DE)2=(a+2a)2=a2.∴AO2+AD2=OD2.∴∠OAD=90°.则DA与⊙O相切;(3)连接AF.∵AB是⊙O的直径.∴∠AFD=∠BAD=90°.∵∠ADF=∠BDA.∴△AFD∽△BAD.∴=.即DF•BD=AD2①.又∵∠AED=∠OAD=90°.∠ADE=∠ODA.∴△AED∽△OAD.∴=.即OD•DE=AD2②.由①②可得DF•BD=OD•DE.即=.又∵∠EDF=∠BDO.∴△EDF∽△BDO.∵BC=1.∴AB=AD=、OD=、ED=2、BD=、OB=.∴=.即=.解得:EF=.25.(9分)已知Rt△OAB.∠OAB=90°.∠ABO=30°.斜边OB=4.将Rt△OAB绕点O顺时针旋转60°.如图1.连接BC.(1)填空:∠OBC= 60 °;(2)如图1.连接AC.作OP⊥AC.垂足为P.求OP的长度;(3)如图2.点同时从点O出发.在△OCB边上运动.M沿O→C→B路径匀速运动.N沿O→B→C路径匀速运动.当两点相遇时运动停止.已知点M的运动速度为单位/秒.点N的运动速度为1单位/秒.设运动时间为x秒.△OMN的面积为y.求当x为何值时y取得最大值最大值为多少【考点】RB:几何变换综合题.【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积.利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时.M在OC上运动.N在OB上运动.此时过点N作NE⊥OC且交OC于点E.②当<x≤4时.M在BC上运动.N在OB上运动.③当4<x≤时.M、N都在BC上运动.作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC.∠BOC=60°.∴△OBC是等边三角形.∴∠OBC=60°.故答案为60.(2)如图1中.∵OB=4.∠ABO=30°.∴OA=OB==OA=2.∴S△AOC=•OA•AB=×2×2=2.∵△BOC是等边三角形.∴∠OBC=60°.∠ABC=∠ABO+∠OBC=90°.∴AC==2.∴OP===.(3)①当0<x≤时.M在OC上运动.N在OB上运动.此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x.∴S△OMN=•OM•NE=××x.∴y=x2.∴x=时.y有最大值.最大值=.②当<x≤4时.M在BC上运动.N在OB上运动.作MH⊥OB于H.则BM=8﹣当x=时.y取最大值.y<.③当4<x≤时.M、N都在BC上运动.作OG⊥BC于G.MN=12﹣当x=4时.y有最大值.最大值=2.综上所述.y有最大值.最大值为.。
广东省汕尾市数学中考模拟试卷(5月)

广东省汕尾市数学中考模拟试卷(5月)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·房山期中) 3的相反数是()A .B . 3C .D .2. (2分)地球上的水的总储量约为 1.39×1018m3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m3 ,因此我们要节约用水。
请将0.0107×1018m3用科学记数法表示是()A . 1.07×1016m3B . 0.107×1017m3C . 10.7×1015m3D . 1.07×1017m33. (2分) (2018八上·黔南期末) 下面四个交通标志图中为轴对称图形的是()A .B .C .D .4. (2分)(2019·河池) 某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A . 53,53B . 53,56C . 56,53D . 56,565. (2分)(2017·深圳模拟) 已知直线a∥b ,将一副三角板按如图所示放置在两条平行线之间,则∠1的度数是A . 45°B . 60°C . 75°D . 80°6. (2分) (2017九上·拱墅期中) 小方发现电线杆的影子落在土坡的坡面和地面上,量得米,米,与地面成角,且此时测得米杆的影长为米,则电线杆的高度为().A . 米B . 米C . 米D . 米7. (2分) (2019八上·平川期中) 下列四点中,在函数y=3x+2的图象上的点是()A . (-1,1)B . (-2,-4)C . (2,0)D . (0,-1.5)8. (2分)已知等腰三角形底边长为10cm,腰长为13cm,则腰上的高为()A . 12cmB . cmC . cmD . cm二、填空题 (共10题;共11分)9. (1分) (2019七下·兴化月考) 计算: =________。
海丰县中考一模数学试卷

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且a+b+c=0,则a的取值范围是()。
A. a>0B. a<0C. a≥0D. a≤02. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠B的度数是()。
A. 40°B. 50°C. 60°D. 70°3. 已知函数y=2x+1的图象上任意一点P的坐标为(x,y),则点P到y轴的距离是()。
A. xB. yC. 1D. 24. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是()。
A. 75°B. 105°C. 120°5. 若方程2x+3=5的解为x=1,则方程2(x+3)+3=5的解为()。
A. x=2B. x=3C. x=4D. x=56. 下列各组数中,有最小公倍数的是()。
A. 12和18B. 8和15C. 9和25D. 6和277. 在直角坐标系中,点A(-2,3)关于y轴的对称点B的坐标是()。
A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)8. 下列函数中,是反比例函数的是()。
A. y=x^2B. y=2x+1C. y=3/xD. y=2x^2-19. 已知正方形的边长为4cm,则其对角线的长度是()。
A. 4cmC. 8cmD. 10cm10. 下列图形中,属于轴对称图形的是()。
A. 圆B. 等腰三角形C. 平行四边形D. 梯形二、填空题(本大题共5小题,每小题5分,共25分。
)11. 若a=-2,b=3,则a^2+b^2的值为______。
12. 在等腰三角形ABC中,若AB=AC,则∠BAC的度数为______。
13. 已知函数y=3x-2的图象与x轴交点的坐标是______。
汕尾市中考数学二模考试试卷

汕尾市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九下·广东模拟) 一条微博在一周内转发了318000次,将318000用科学记数法可以表示为()A . 3.18×105B . 31.8×105C . 318×104D . 3.18×1042. (2分)(2017·和平模拟) 25的算术平方根是()A . 5B . ±5C . ±D .3. (2分)一个数的平方根与立方根相等,则这个数是()A . 0B . 1C . —1D . 0或—1或14. (2分)在实数π、、、s in30°,无理数的个数为()A . 1B . 2C . 3D . 45. (2分) (2012八下·建平竞赛) 下列说法,正确的是()A . 在△ABC中,,则有B . 0.125的立方根是±0.5C . 无限小数是无理数,无理数也是无限小数D . 一个无理数和一个有理数之积为无理数6. (2分)下列说法正确的是A . 相等的圆心角所对的弧相等B . 无限小数是无理数C . 阴天会下雨是必然事件D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k7. (2分)(2019·安徽模拟) 若关于x的一元二次方程x2-2kx-k=0有两个相等的实数根,则k的值是()A .B .C . 或D . 或8. (2分)(2019·安徽模拟) 已知四边形ABCD的对角线AC、BD相交于点O ,下列条件中,不能判定四边形ABCD是平行四边形的是()A . ,B . ,C . ,D . ,9. (2分)(2019·安徽模拟) 如图,已知△ABC , AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C ,∠BAC的平分线分别交DE、BC于点F、G ,那么的值为()A .B .C .D .10. (2分)(2019·安徽模拟) 甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h ,结果与甲车同时到达B地.甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法:①a=4.5;②甲的速度是60km/h;③乙出发80min追上甲;④乙刚到达货站时,甲距B地180km .其中符合题意是()A .B .C .D .二、填空题 (共4题;共5分)11. (1分) (2019八上·响水期末) 分式、的最简公分母是________.12. (2分)(2019·靖远模拟) 如图,点A是反比例函数的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是________.13. (1分)(2019·安徽模拟) 如图,点C在⊙O上,将圆心角∠AOB绕点O按逆时针方向旋转到∠A′OB′,旋转角为α(0°<α<180°),若∠AOB=30°,∠BCA′=20°,且⊙O的半径为6,则的弧长为________.(结果保留π).14. (1分)(2019·安徽模拟) 如图,在等边△ABC中,AB=4cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合).若点B关于直线MN的对称点B'恰好落在等边△ABC的边上,则BN的长为________cm.三、解答题 (共9题;共65分)15. (5分) (2020七上·通榆期末) 定义一种新运算:a@b=b-ab,如:1@2=22-1×2=2,(1)求-3@ ;(2)若x@3=-3,求x值。
广东省汕尾市数学中考一模试卷
广东省汕尾市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九下·江都月考) 下列各数中,-3的倒数是()A . 3B .C .D . -32. (2分)下列几何体中,正视图、左视图、俯视图完全相同的是()A . 圆柱B . 圆锥C . 棱锥D . 球3. (2分)下列各式中,计算不正确的是()A . ()2=3B . =﹣3C . (a5)2=a10D . 2a2•(﹣3a3)=﹣6a54. (2分)从1~12这十二个自然数中任取一个,取到的数恰好是4的倍数的概率是()A .B .C .D .5. (2分)(2019·宁洱模拟) 下列说法中错误的是()A . 要了解某种灯管的使用寿命,一般采用抽样调查B . 一组数据的方差越小,这组数据的稳定性越差C . 数据1、2、3、4的中位数是2.5D . 数据3,4,5,6,6的众数是66. (2分) (2019九上·宜昌期中) 为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为提高到若每年的年增长率相同,则年增长率为A .B .C .D .7. (2分) (2017八上·郑州期中) 下列说法正确的是()A . 点在第一象限B . 纵坐标为0的点在y轴上C . 已知一点到x轴的距离为2,到y轴的距离为5,则这个点的坐标为(5,2)D . 横坐标是负数,纵坐标是正数的点在第二象限8. (2分) (2016九上·滁州期中) 某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A . 该村人均耕地面积随总人口的增多而增多B . 当该村总人口为50人时,人均耕地面积为1公顷C . 若该村人均耕地面积为2公顷,则总人口有100人D . 该村人均耕地面积y与总人口x成正比例9. (2分) (2018九上·南山期末) 如图,菱形ABCD的周长为16,ABC=120°,则AC的长为()A . 4B . 4C . 2D . 210. (2分) (2017九下·江都期中) 如图1,△ABC是一块等边三角形场地,点D,E分别是AC,BC边上靠近C点的三等分点.现有一个机器人(点P)从A点出发沿AB边运动,观察员选择了一个固定的位置记录机器人的运动情况.设AP=x,观察员与机器人之间的距离为y,若表示y与x的函数关系的图象大致如图2所示,则观察员所处的位置可能是图1的()A . 点BB . 点CC . 点DD . 点E二、填空题 (共8题;共8分)11. (1分)(2018·姜堰模拟) 0.056用科学记数法表示为________.12. (1分)(2017·潮南模拟) 因式分解:a2b﹣ab+ b=________.13. (1分)若一组数据1,2,x,4的众数是1,则这组数据的方差为________.14. (1分)在一个透明的布袋中,红色、黑色、白色的玻璃球共有80个,它们除颜色外其他完全相同,小李通过多次摸球试验后,发现其中摸到红色球、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是________ 个.15. (1分)(2017·合川模拟) 从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为________.16. (1分) (2015九上·应城期末) 如图,一次函数y1=k1+b与反比例函数y2= 的图象相交于A(﹣1,2)、B(2,﹣1)两点,则y2<y1时,x的取值范围是________.17. (1分)(2017·南京) 如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=________°.18. (1分) (2019八上·姜堰期末) 如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为________.三、解答题 (共8题;共49分)19. (5分) (2017八下·城关期末) 计算(1)× ﹣4× ×(1﹣)0(2) |﹣5|+(π﹣3.1)0﹣()﹣1+ .20. (8分)(2020·云南模拟) 省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m=________%,这次共抽取________名学生进行调查;并补全条形图________;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?21. (5分) (2017八下·鹤壁期中) 甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.22. (10分)(2014·南通) 如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG= ,求GD的长.23. (2分)(2019·淮安模拟) 如图所示,城市在A城市正东方向,现计划在A,C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东方向上,在线段AC上距A城市120km 的B处测得P在北偏东方向上,已知森林保护区是以点为圆心,100km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:)24. (15分) (2016九上·余杭期中) 某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:x30323436y40363228(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?25. (2分)如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.求证:(1)△ADA′≌△CDE;(2)直线CE是线段AA′的垂直平分线.26. (2分) (2018九下·滨湖模拟) 如图,二次函数y=ax2+2ax-3a的图像与x轴交于A、B两点(点A 在点B的右边),与y轴交于点C.(1)请直接写出A、B两点的坐标:A________, B________;(2)若以AB为直径的圆恰好经过这个二次函数图像的顶点.①求这个二次函数的表达式;②若P为二次函数图像位于第二象限部分上的一点,过点P作PQ平行于y轴,交直线BC于点Q.连接OQ、AQ,是否存在一个点P,使tan∠OQA=?如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13、答案:略14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共49分)19-1、19-2、20-1、20-2、20-3、21-1、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、。
汕尾市中考数学模拟试卷(5月份)
汕尾市中考数学模拟试卷(5月份)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·岳阳模拟) -3的绝对值是()A . -3B . -C . 3D .2. (2分)(2011·遵义) 某种生物细胞的直径约为0.00056m,将0.00056用科学记数法表示为()A . 0.56×10﹣3B . 5.6×10﹣4C . 5.6×10﹣5D . 56×10﹣53. (2分)(2017·宁波模拟) 由4个正方体搭成的几何体按如图放置,若要求画出它的三视图,则在所画的俯视图中正方形共有()A . 1个B . 2个C . 3个D . 4个4. (2分)当a=﹣1时,代数式(a+1)2+a(a+3)的值等于()A . -4B . 4C . -2D . 25. (2分)不等式组的所有整数解的和是()A . 2B . 3C . 56. (2分) (2017九上·合肥开学考) 如果反比例函数y= 的图象经过点(﹣1,﹣2),则k的值是()A . 4B . 0C . ﹣3D . ﹣47. (2分) (2019七下·安陆期末) 如图,若△DEF是由平移后得到的,已知点之间的距离为1,则()A . 1B . 2C . 3D . 不确定8. (2分)(2013·河池) 如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3 cm,则弦AB的长为()A . 9cmB . 3 cmC . cmD . cm9. (2分)填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()B . 52C . 66D . 7410. (2分)如图,正方形ABCD边长为2,点P是线段CD边上的动点(与点C,D不重合),∠PBQ=45°,过点A作AE∥BP,交BQ于点E,则下列结论正确的是()A . BP•BE=2B . BP•BE=4C . =D . =二、填空题 (共6题;共6分)11. (1分)(2018·天河模拟) 在函数中,自变量的取值范围是________.12. (1分) (2018九下·湛江月考) 数据3、3、4、5、5的方差是________.13. (1分) (2020九下·开鲁月考) 已知关于 x 的分式方程的解是非负数,则 m 的取值范围是________.14. (1分) (2019八上·信阳期末) 如图,∠AOE=∠BOE=22.5°,EF∥OB,EC⊥OB于C,若EC=1,则OF=________.15. (1分)(2017·冠县模拟) 一个圆锥形漏斗,某同学用三角波测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为________.16. (1分) (2016九上·罗庄期中) 某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x﹣1.5x2 ,该型号飞机着陆后滑行________m才能停下来.三、解答题 (共9题;共88分)17. (5分)(2020·拱墅模拟) 先化简,再求值:,其中x=﹣ .18. (5分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.19. (13分) (2018九上·荆州期末) 随着科技的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为________;(2)将条形统计图补充完整;(3)该校共有2500名学生,请估计该校最喜欢用“微信”进行沟通的学生数有________名;(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.20. (10分)(2020·北京模拟) 在平面直角坐标系中,直线与反比例函数在第一象限内的图象交于点.(1)求m、b的值;(2)点B在反比例函数的图象上,且点B的横坐标为1.若在直线l上存在一点P(点P不与点A重合),使得,结合图象直接写出点P的横坐标的取值范围.21. (10分)(2017·兴化模拟) 为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?22. (10分)(2017·房山模拟) 已知:如图,点A,B,C三点在⊙O上,AE平分∠BAC,交⊙O于点E,交BC于点D,过点E作直线l∥BC,连结BE.(1)求证:直线l是⊙O的切线;(2)如果DE=a,AE=b,写出求BE的长的思路.23. (10分) (2019九上·平遥月考) 在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系。
广东省汕尾市中考数学模拟考试试卷
广东省汕尾市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A . 1B . 2C . 3D . 42. (2分)(2017·瑶海模拟) 如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A .B .C .D .3. (2分)如图,在△ABC中,若DE∥BC,=, DE=4cm,则BC的长为()A . 8cmD . 10cm4. (2分)如图1,AD是△ABC的角平分线,将△ABC折叠使点A落在点D处,折痕为EF,则四边形AEDF一定是().A . 矩形B . 菱形C . 正方形D . 梯形5. (2分)已知A(x1,y1)和B(x2, , y2)是反比例函数y=的上的两个点,若x2>x1>0,则()A . y2>y1>0B . y1>y2>0C . 0>y1>y2D . 0>y2>y16. (2分) (2019九上·惠州期末) 四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A . 1:3:2:4B . 7:5:10:8C . 13:1:5:17D . 1:2:3:47. (2分)(2018·贵港) 如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A . 24°B . 28°8. (2分) (2016九上·大悟期中) 已知二次函数的图象如图所示,则这个二次函数的表达式为()A . y=x2﹣2x+3B . y=x2﹣2x﹣3C . y=x2+2x﹣3D . y=x2+2x+39. (2分) (2018九下·滨湖模拟) 如图,在矩形纸片ABCD中,AB=3,BC=2,沿对角线AC剪开(如图①);固定△ADC,把△ABC沿AD方向平移(如图②),当两个三角形重叠部分的面积最大时,移动的距离AA′等于()A . 1B . 1.5C . 2D . 0.8或1.210. (2分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF 交AC于点H,则的值为()A .B . 1C .D .二、填空题 (共4题;共4分)11. (1分)(2019·上海模拟) 在△ABC中,∠A = 30°,AB = m , CD是边AB上的中线,将△ACD沿CD 所在直线翻折,得到△ECD ,若△ECD与△ABC重合部分的面积等于△ABC面积的,则△ABC的面积为________(用m的代数式表示).12. (1分) (2020九上·德城期末) 小明有两双不同的运动鞋,上学时,小明从中任意拿出两只,恰好能配成一双的概率是________.13. (1分)(2017·龙岗模拟) 如图,两个反比例函数y1= (其中k1>0)和y2= 在第一象限内的图象依次是C1和C2 ,点P在C1上,矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为________.14. (1分)(2015·义乌) 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为________.三、解答题 (共9题;共73分)15. (5分) (2019九下·东台月考) 计算:16. (10分) (2018九上·丰台期末) 如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.17. (10分)(2017·阜阳模拟) 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;①把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;②以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2 .18. (6分)(2018·扬州模拟) 4张奖券中有2张是有奖的,甲、乙先后各抽一张.(1)甲中奖的概率是________;(2)试用树状图或列表法求甲、乙都中奖的概率.19. (10分)(2016·呼伦贝尔) 如图,抛物线y=﹣x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE 交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.20. (2分)(2017·微山模拟) 如图,点E为矩形ABCD的边BC的中点,以DE为直径的⊙O交AD于H点,过点H作HF⊥AE于点F.(1)求证:HF是⊙O的切线;(2)若DH=3,AF=2,求⊙O的半径.21. (10分)已知二次函数y=﹣x2+2x+3,(1)求抛物线顶点M的坐标;(2)设抛物线与x轴交于A,B两点,与y轴交于C点,求A,B,C的坐标(点A在点B的左侧),并画出函数图象的大致示意图;(3)根据图象,求不等式x2﹣2x﹣3>0的解集;(4)写出当﹣2≤x≤2时,二次函数y的取值范围.22. (10分)已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(4,2)五个点,抛物线y=a(x-1)2+k (a>0)经过其中的三个点.(1)求证:C、E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上;(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?(3)求a和k的值.23. (10分)如图菱形ABCD中,∠ADC=60°,M、N分别为线段AB,BC上两点,且BM=CN,且AN,CM所在直线相交于E.(1)证明△BCM≌△CAN;(2)∠AEM=________°;(3)求证DE平分∠AEC;(4)试猜想AE,CE,DE之间的数量关系并证明.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共73分)15-1、16-1、16-2、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、23-2、23-3、23-4、。
汕尾市中考模拟数学考试试卷(一)
汕尾市中考模拟数学考试试卷(一)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若﹣3+()=0,则()中的数应该是()A . 3B . -3C . -D .2. (2分)如图所示的圆锥,它的主视图和俯视图分别是()A . 等边三角形、圆B . 等边三角形、等腰三角形C . 等腰三角形、圆D . 圆、等腰三角形3. (2分) (2018八下·邯郸开学考) 的值是()。
A .B .C . 1D .4. (2分) (2019七下·桂林期末) 如图,AB∥CD,∠EAF=3∠BAF,∠ECF=3∠DCF,则∠E与∠F的数量关系是()A . ∠E+∠F=180°B . ∠E=3∠FC . ∠E-∠F=90°D . ∠E=4∠F5. (2分)在下列四组点中,可以在同一个正比例函数图象上的一组点是()A . (2,﹣3),(﹣4,6)B . (﹣2,3),(4,6)C . (﹣2,﹣3),(4,﹣6)D . (2,3),(﹣4,6)6. (2分) (2019八下·马山期末) 某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:5678时间小时人数10102010则这50名学生这一周在校的平均体育锻炼时间是A . 6.2小时B . 6.5小时C . 6.6小时D . 7小时7. (2分)下列各组中两个图形不一定相似的是()A . 有一个角是35°的两个等腰三角形B . 两个等腰直角三角形C . 有一个角是120°的两个等腰三角形D . 两个等边三角形8. (2分)在Rt△ABC中,∠C=90°,若AB=2AC,则sinA 的值是()A .B .C .D .9. (2分)如图,将矩形ABCD绕点A顺时针旋转90o后,得到矩形AB’C’D’,若CD=8,AD=6,连接CC’,那么CC’的长是()A . 20B .C .D . 10010. (2分)(2017·临泽模拟) 抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()A . b2﹣4ac<0B . abc<0C .D . a﹣b+c<0二、填空题 (共4题;共4分)11. (1分)(2018·湘西) 分解因式:a2﹣9=________.12. (1分)(2015·宁波) 如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C 处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是________ m(结果保留根号)13. (1分) (2018九下·吉林模拟) 如图,在矩形ABCD中,AB:BC=3:5.以点B为圆心,BC长为半径作圆弧,与边AD交于点E,则的值为________.14. (1分)(2017·都匀模拟) 如图,点A为反比例函数y= 图象上一点,过A做AB⊥x轴于点B,连接OA则△ABO的面积为4,k=________.三、解答题 (共11题;共105分)15. (5分) (2017九上·遂宁期末) 计算: .16. (5分)(2017·罗平模拟) 先化简代数式:(﹣1)÷ ,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.17. (5分)如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积18. (20分)东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整.(2)求出该班学生人数.(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.19. (5分) (2019八上·湛江期中) 已知:如图(没图),A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF20. (5分) (2019九上·昌图期末) 如图,路灯点距地面6m,身高的学生小明从路灯的底部点O处,沿射线OH走到距路灯底部9m的点B处,此时小明的身影为BN,接着小明走到点N处,此时的身影为求学生小明的身影长度变长了多少米小明如图中BD、AC所示21. (10分) (2016七下·仁寿期中) 某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?22. (10分)(2017·贺州) 在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于6,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.23. (15分)(2019·婺城模拟) 定义:若一个三角形一条边上的高长为这条边长的一半,则称该三角形为这条边上的“半高”三角形,这条高称为这条边上的“半高”,如图,△ABC是BC边上的“半高”三角形.点P在边AB上,PQ∥BC交AC于点Q,PM⊥BC于点M,QN⊥BC于点N,连接MQ.(1)请证明△APQ为PQ边上的“半高”三角形.(2)请探究BM,PM,CN之间的等量关系,并说明理由;(3)若△ABC的面积等于16,求MQ的最小值24. (10分) (2019九上·克东期末) 如图,中,,把绕着点逆时针旋转,得到,点在上.(1)若,求得度数;(2)若,,求中边上的高.25. (15分) (2019九上·江岸月考) 在直角三角形中,,,在边上取一点,使得,点、分别是线段、的中点,连接和,作,交于点,如图1所示.(1)请判断四边形是什么特殊的四边形,并证明你的结论;(2)将绕点顺时针旋转到,交线段于点,交于点,如图2所示,请证明:;(3)在第(2)条件下,若点是中点,且,,如图3,求的长度.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共11题;共105分)15-1、16-1、17-1、18-1、18-2、18-3、18-4、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东省汕尾市海丰县中考数学模拟试卷(5月份)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1083.(3分)如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°4.(3分)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2 B.x>1 C.1≤x<2 D.1<x≤25.(3分)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.146.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.正六边形D.圆7.(3分)已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC 交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm8.(3分)下列运算正确的是()A.(a3)2=a5B.a2•a3=a5 C.a6÷a2=a3D.3a2﹣2a2=19.(3分)如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.70°B.45°C.35°D.30°10.(3分)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.2二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:mn2﹣2mn+m=.12.(4分)一个正多边形的一个外角为30°,则它的内角和为.13.(4分)若2x﹣3y﹣1=0,则5﹣4x+6y的值为.14.(4分)某校共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是足球,则可估计该校学生中最喜欢的课外体育运动项目为足球的学生有人.15.(4分)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是.16.(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:2sin60°+|3﹣|﹣()﹣1+(π﹣2018)018.(6分)先化简,再求值:﹣÷,其中x=﹣319.(6分)为进一步促进义务教育均衡发展,某县加大了基础教育经费的投入,已知2015年该县投入基础教育经费5000万元,2017年投入基础教育经费7200万元.求该县这两年投入基础教育经费的年平均增长率.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,已知在△ABC中,∠A=90°.(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.21.(7分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB.(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.22.(7分)端午节吃粽子是中华民族的传统习惯.农历五月初五早晨,小王的妈妈用不透明袋子装着一些粽子(粽子除食材不同外,其他一切相同),其中糯米粽两个,还有一些薯粉粽,现小王从中任意拿出一个是糯米粽的概率为.(1)求袋子中薯粉粽的个数;(2)小王第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小王两次拿到的都是薯粉粽的概率.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知反比例函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD ∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求该反比例函数的解析式;(2)求△OCD的周长;(3)若BE=AC,求CE的长.24.(9分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.25.(9分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′.①求出P′的坐标;②判断P′是否在该抛物线上.2018年广东省汕尾市海丰县中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.(3分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.3.(3分)如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线a∥b,∠1=100°,∴∠2=180°﹣∠1=70°.故选:B.4.(3分)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2 B.x>1 C.1≤x<2 D.1<x≤2【分析】根据数轴表示出解集即可.【解答】解:根据题意得:不等式组的解集为1<x≤2.故选:D.5.(3分)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.14【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:10个数,处于中间位置的是13和13,因而中位数是:(13+13)÷2=13.故选:B.6.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.平行四边形C.正六边形D.圆【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意;.故选:A.7.(3分)已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC 交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm【分析】由菱形ABCD中,OE∥DC,可得OE是△BCD的中位线,又由AD=6cm,根据菱形的性质,可得CD=6cm,再利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是菱形,∴CD=AD=6cm,OB=OD,∵OE∥DC,∴BE:CE=BO:DO,∴BE=CE,即OE是△BCD的中位线,∴OE=CD=3cm.故选:C.8.(3分)下列运算正确的是()A.(a3)2=a5B.a2•a3=a5 C.a6÷a2=a3D.3a2﹣2a2=1【分析】根据同底数幂的乘法、除法法则、幂乘方的运算法则,合并同类项法则一一判断即可.【解答】解:A、错误.(a3)2=a6.B、正确.a2•a3=a5.C、错误.a6÷a2=a4.D、错误.3a2﹣2a2=a2,故选:B.9.(3分)如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.70°B.45°C.35°D.30°【分析】先根据垂径定理得出=,再由圆周角定理即可得出结论.【解答】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选:C.10.(3分)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.2【分析】根据抛物线开口向上a>0,抛物线开口向下a<0,然后利用抛物线的对称轴或与y轴的交点进行判断,从而得解.【解答】解:由图可知,第1、2两个图形的对称轴为y轴,所以x=﹣=0,解得b=0,与b<0相矛盾;第3个图,抛物线开口向上,a>0,经过坐标原点,a2﹣1=0,解得a1=1,a2=﹣1(舍去),对称轴x=﹣=﹣>0,所以b<0,符合题意,故a=1,第4个图,抛物线开口向下,a<0,经过坐标原点,a2﹣1=0,解得a1=1(舍去),a2=﹣1,对称轴x=﹣=﹣>0,所以b>0,不符合题意,综上所述,a的值等于1.故选:C.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:mn2﹣2mn+m=m(n﹣1)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(n2﹣2n+1)=m(n﹣1)2,故答案为:m(n﹣1)212.(4分)一个正多边形的一个外角为30°,则它的内角和为1800°.【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.13.(4分)若2x﹣3y﹣1=0,则5﹣4x+6y的值为3.【分析】首先利用已知得出2x﹣3y=1,再将原式变形进而求出答案.【解答】解:∵2x﹣3y﹣1=0,∴2x﹣3y=1,∴5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.故答案为:3.14.(4分)某校共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是足球,则可估计该校学生中最喜欢的课外体育运动项目为足球的学生有680人.【分析】用样本中最喜欢的项目是足球的人数所占比例乘以全校总人数即可得.【解答】解:估计该校学生中最喜欢的课外体育运动项目为足球的学生有1600×=680人,故答案为:680.15.(4分)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是27π.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.【解答】解:设扇形的半径为r.则=6π,解得r=9,∴扇形的面积==27π.故答案为:27π.16.(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE 为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,则S=EC•AD=4.△AEC故答案为:4.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:2sin60°+|3﹣|﹣()﹣1+(π﹣2018)0【分析】原式利用特殊角的三角函数值,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可求出值.【解答】解:原式=2×+3﹣﹣2+1=2.18.(6分)先化简,再求值:﹣÷,其中x=﹣3【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=﹣•=﹣=,当x=﹣3时,原式==﹣1.19.(6分)为进一步促进义务教育均衡发展,某县加大了基础教育经费的投入,已知2015年该县投入基础教育经费5000万元,2017年投入基础教育经费7200万元.求该县这两年投入基础教育经费的年平均增长率.【分析】设该县这两年投入基础教育经费的年平均增长率为x,根据2015年及2017年该县投入基础教育经费数额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该县这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该县这两年投入基础教育经费的年平均增长率为20%.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,已知在△ABC中,∠A=90°.(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.【分析】(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.【解答】解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=ABtan∠ABP=3×=,∴S=3π.⊙P21.(7分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB.(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.【分析】(1)根据菱形的判定定理,一组邻边相等的平行四边形是菱形,由△ABC 与△CDE都是等边三角形,可得出角之间的等量关系,从而证明四边形EFCD是菱形;(2)连接DF,与CE相交于点G,由(1)知DF就是菱形EFCD的一条对角线,根据菱形的性质及30°特殊角的值可计算出结果.【解答】(1)证明:∵△ABC与△CDE都是等边三角形,∴ED=CD.∴∠A=∠DCE=∠BCA=∠DEC=60°.∴AB∥CD,DE∥CF.又∵EF∥AB,∴EF∥CD,∴四边形EFCD是菱形.(2)解:连接DF,与CE相交于点G,由CD=4,可知CG=2,∴DG=,∴DF=4.22.(7分)端午节吃粽子是中华民族的传统习惯.农历五月初五早晨,小王的妈妈用不透明袋子装着一些粽子(粽子除食材不同外,其他一切相同),其中糯米粽两个,还有一些薯粉粽,现小王从中任意拿出一个是糯米粽的概率为.(1)求袋子中薯粉粽的个数;(2)小王第一次任意拿出一个粽子(不放回),第二次再拿出一个粽子,请你用树形图或列表法,求小王两次拿到的都是薯粉粽的概率.【分析】(1)设袋子中有x个薯粉粽,根据概率公式列出方程求解可得;(2)列举出所有情况,看两次拿到的都是薯粉粽子的情况占总情况的多少即可.【解答】解:(1)设袋子中有x个薯粉粽,根据题意,得:=,解得:x=2,经检验,x=2是原分式方程的解.∴袋子中有薯粉粽2个;(2)设糯米粽子分别为1,2;薯粉粽子分别为3,4.共有12种情况,两次拿到的都是薯粉粽子的有2种,所以概率是.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知反比例函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD ∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求该反比例函数的解析式;(2)求△OCD的周长;(3)若BE=AC,求CE的长.【分析】(1)根据待定系数法,可得函数解析式;(2)根据已知条件得出C的坐标,根据图象上的点满足函数解析式,可得D点坐标,即可求得CD,根据勾股定理求得OC、OD,可得答案;(2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.【解答】解;(1)∵反比例函数y=(x>0)的图象经过点A、点A的坐标为(1,2),∴k=2.∴反比例函数的解析式为y=;(2)∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∴OC=,∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴CD=2﹣1=1,OD=,∴△OCD的周长=OC+OD+CD=++1.(3)∵BE=AC,∴BE=.∵BE⊥CD,∴点B的横坐标是,纵坐标是.∴CE=﹣1=.24.(9分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【解答】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.25.(9分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′.①求出P′的坐标;②判断P′是否在该抛物线上.【分析】(1)由抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,则代入求得a,b,c,进而得解析式与顶点D的坐标;=•PE•y P,所以S可(2)由P在AD上,则可求AD解析式表示P点.由S△APE表示,进而由函数最值性质易得S最值.(3)①根据(2)结论得到点P坐标,则E与C重合.画示意图,P'过作P'M⊥y轴,设边长通过解直角三角形可求各边长度,进而得P'坐标.②判断P′是否在该抛物线上,将x P'坐标代入解析式,判断是否为y P'即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过A、B、C三点,代入y=ax2+bx+c得,解得:,∴y=﹣x2﹣2x+3,∵﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线顶点坐标D为(﹣1,4);(2)∵A(﹣3,0),D(﹣1,4),∴设AD为解析式为y=kx+b,代入得,解得,∴直线AD解析式:y=2x+6,∵P在直线AD上,∴P(x,2x+6),=•PE•y p∴S△APEy P=•(﹣x)•(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),当x=﹣=﹣时,S 取最大值;(3)①设P′F与y轴交于点N,过P′作P′M⊥y轴于点M,∵△PEF沿EF翻折得△P′EF,且P(﹣,3),∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E=,∵PF∥y轴,∴∠PFE=∠FEN,∵∠PFE=∠P′FE,∴∠FEN=∠P′FE,∴EN=FN,设EN=m,则FN=m,P′N=3﹣m.在Rt△P′EN中,∵(3﹣m)2+()2=m2,∴m=.∵S=•P′N•P′E=•EN•P′M,△P′EN∴P′M=.在Rt△EMP′中,∵EM==,∴OM=EO﹣EM=,∴P′(,).②当x=时,y=﹣()2﹣2×+3=≠,∴点P′不在该抛物线上.。