开关电源电子元器件组成图解
开关电源工作原理详细分析---PC电源

开关电源工作原理详细分析---PC电源个人PC电源称之为开关电源(Switching Mode Power Supplies,简称SMPS),下面将会为您解读PC开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。
下图3和4描述的是开关电源的PWM反馈机制。
图3描述的是没有PFC(Power Factor Correction,功率因素校正) 电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。
图3:没有PFC电路的电源图4:有PFC电路的电源通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220 V转换器,而且也没有电压倍压电路。
下文我们的重点将会是主动式PFC电源的讲解。
为了能够更好的理解电源的工作原理,以上我们提供的是非常基本的图解,图中并未包含其他额外的电路,比如说短路保护、待机电路以及PG信号发生器等等。
当然了,如果您还想了解一下更加详尽的图解,请看图5。
如果看不懂也没关系,因为这张图本来就是为那些专业电源设计人员看的。
图5:典型的低端ATX电源设计图你可能会问,图5设计图中为什么没有电压整流电路?事实上,PWM电路已经肩负起了电压整流的工作。
输入电压在经过开关管之前将会再次校正,而且进入变压器的电压已经成为方形波。
所以,变压器输出的波形也是方形波,而不是正弦波。
由于此时波形已经是方形波,所以电压可以轻而易举的被变压器转换为DC直流电压。
也就是说,当电压被变压器重新校正之后,输出电压已经变成了DC直流电压。
这就是为什么很多时候开关电源经常会被称之为DC-DC转换器。
馈送PWM控制电路的回路负责所有需要的调节功能。
如果输出电压错误时,PWM控制电路就会改变工作周期的控制信号以适应变压器,最终将输出电压校正过来。
这种情况经常会发生在PC功耗升高的时,此时输出电压趋于下降,或者PC功耗下降的时,此时输出电压趋于上升。
详细解析开关电源电路:工作原理,电路组成,电路图

详细解析开关电源电路:工作原理,电路组成,电路图
随着我国电子电力科技技术不断的发展,不管是在家用或者是其他地方所使用的电源开关,都得到了较大的突破性的实质发展。
目前,就以开关电源来说,几乎被广泛的应用于所有的电子电器设备,是如今当下电子信息产业中最不可缺少的一种电源方式。
开关电源工作原理对于热爱电源物理的人来所,其实还是很好理解开关电源工作原理的,在线性电源中,功率晶体管在工作,而线性电源中导致闭合或者是断开的则是PWM 开关电源,在闭合、断开两种的状态之下,加上功率晶体管的电压是比较小的,就会成产很大的电流,关闭开关电源的时候,则是反过来的,电压大,而电流就会特别的小,而控制开关电源工作原理的控制器,就是为了能够更好的保持稳定性,从而给人们的生活环境带来安全。
开关电源工作原理及工作条件
除了以上讲述的开关电源工作原理之外,而开关电源工作原理在运行的时候,开关电源也是一定的工作条件的,比如开关,在工作的时候,不是线性状态,而是在电子电器工作之下呈现开关状态;另外,直流,开关电源在工作时候,是直流,不是交流;最后一个开关电源的高频,在电子电器工作状态之下,是高频,而不是接近于工作的低频状态哦!在开关电源工作原理中,这些工作条件是一定的。
开关电源工作原理及主要特点
每一样产品的诞生,都有它独自存在的主要特点,就连开关电源也是一样的。
那么除了以上不同的开关电源工作原理之外,开关电源主要的特点是什么呢?首先从外观上看,重量较轻、体积较小,因为没有采用工频变压器,所以开关电源的重量、体积只有线性电源的百分之二十到百分之三十左右;另外还有一个非常重要的特点,从开关电源工作原理上看,。
ATX开关电源的原理

上图工作原理简述:220V交流电经过第一、二级EMI滤波后变成较纯净的50Hz交流电,经全桥整流和滤波后输出300V 的直流电压。
300V直流电压同时加到主开关管、主开关变压器、待机电源开关管、待机电源开关变压器。
由于此时主开关管没有开关信号,处于截止状态,因此主电源开关变压器上没有电压输出,上图中的-12V至+3.3V,5组电压均没电压输出。
但我们同时注意到,300V直流电加到待机电源开关管和待机电源开关变压器后,由于待机电源开关管被设计成自激式振荡方式,待机电源开关管立即开始工作,在待机电源开关变压器的次级上输出二组交流电压,经整流滤波后,输出+5VSB和+22V电压,+22V电压是专门为主控IC供电的。
+5VSB加到主板上作为待机电压。
当用户按动机箱的Power启动按键后,(绿)色线处于低电平,主控IC内部的振荡电路立即启动,产生脉冲信号,经推动管放大后,脉冲信号经推动变压器加到主开关管的基极,使主开关管工作在高频开关状态。
主开关变压器输出各组电压,经整流和滤波后得到各组直流电压,输出到主板。
但此时主板上的CPU仍未启动,必须等+5V的电压从零上升到95%后,IC检测到+5V上升到4.75V时,IC发出P.G信号,使CPU启动,电脑正常工作。
当用户关机时,绿色线处于高电平,IC内部立即停止振荡,主开关管因没有脉冲信号而停止工作。
-12至+3.3的各组电压降至为零。
电源处于待机状态。
输出电压的稳定则是依赖对脉冲宽度的改变来实现,这就叫做脉宽调制PWM。
由高压直流到低压多路直流的这一过程也可称DC-DC变换,是开关电源的核心技术。
采用开关变换的显著优点是大大提高了电能的转换效率,典型的PC电源效率为70—75%,而相应的线性稳压电源的效率仅有50%左右。
保护电路的工作原理:在正常使用过程中,当IC检测到负载处于:短路、过流、过压、欠压、过载等状态时,IC内部发出信号,使内部的振荡停止,主开关管因没有脉冲信而停止工作。
开关电源工作原理及电路图

开关电源工作原理及电路图随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低其待机功耗,提高供电效率成为一个急待解决的问题。
传统的线性稳压电源虽然电路结构简单、工作可靠,但它存在着效率低(只有40%-50%)、体积大、铜铁消耗量大,工作温度高及调整范围小等缺点。
为了提高效率,人们研制出了开关式稳压电源,它的效率可达85%以上,稳压范围宽,除此之外,还具有稳压精度高、不使用电源变压器等特点,是一种较理想的稳压电源。
正因为如此,开关式稳压电源已广泛应用于各种电子设备中,本文对各类开关电源的工作原理作一阐述。
一、开关式稳压电源的基本工作原理开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。
因此下面就主要介绍调宽式开关稳压电源。
调宽式开关稳压电源的基本原理可参见下图。
对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。
直流平均电压U。
可由公式计算,即Uo=Um×T1/T式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。
从上式可以看出,当Um与T不变时,直流平均电压Uo将与脉冲宽度T1成正比。
这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。
二、开关式稳压电源的原理电路1、基本电路图二开关电源基本电路框图开关式稳压电源的基本电路框图如图二所示。
交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
简单的开关电源电路图

(电路图讲解:简单的开关电源电路图)
市电经D1整流及C1滤波后得到约300V的直流电压加在变压器的①脚(L1的上端),同时此电压经R1给V1加上偏置后后使其微微导通,有电流流过L1,同时反馈线圈L2的上端(变压器的③脚)形成正电压,此电压经C4、R3反馈给V1,使其更导通,乃至饱和,最后随反馈电流的减小,V1迅速退出饱和并截止,如此循环形成振荡,在次级线圈L3上感应出所需的输出电压。
L2是反馈线圈,同时也与D4、D3、C3一起组成稳压电路。
当线圈L3经D6整流后在C5上的电压升高后,同时也表现为L2经D4整流后在C3负极上的电压更低,当低至约为稳压管D3(9V)的稳压值时D3导通,使V1有基极短路到地,关断V1,最终使输出电压降低。
电路中R4、D5、V2组成过流保护电路。
当某些原因引起V1的工作电流大太时,R4上产生的电压互感器经D5加至V2基极,V2导通,V1基极电压下降,使V1电流减小。
D3的稳压值理论为9V+~,在实际应用时,若要改变输出电压,只要更换不同稳压值的D3即可,稳压值越小,输出电压越低,反之则越高。
开关电源工作原理图解

开关电源工作原理图解开关电源是一种将输入电压转换为稳定输出电压的电源装置,它通过开关管的导通和截止来控制输入电压的变化,从而实现对输出电压的稳定调节。
接下来,我们将通过图解的方式,详细解析开关电源的工作原理。
首先,我们来看一下开关电源的基本结构。
开关电源主要由输入滤波电路、整流电路、功率器件、控制电路和输出滤波电路等组成。
其中,输入滤波电路用于对输入电压进行滤波和去除杂波,整流电路将交流电转换为直流电,功率器件用于控制电压的变化,控制电路则是控制开关管的导通和截止,输出滤波电路则是对输出电压进行滤波和去除杂波。
接下来,我们来看一下开关电源的工作原理。
当输入电压加到输入滤波电路中时,首先经过滤波电路的处理,去除掉输入电压中的杂波,然后进入整流电路,将交流电转换为直流电。
接着,直流电经过功率器件的控制,通过开关管的导通和截止来控制电压的变化,最终实现对输出电压的稳定调节。
同时,控制电路起到了控制开关管的导通和截止的作用,确保输出电压的稳定性。
最后,经过输出滤波电路的处理,去除输出电压中的杂波,得到稳定的输出电压。
在开关电源的工作过程中,功率器件起着至关重要的作用。
它可以是晶体管、场效应管、双向可控硅等,根据不同的工作原理和特性,选择不同的功率器件来实现对输出电压的稳定调节。
控制电路中的控制器则是开关电源的大脑,它通过对输入电压、输出电压和电流等参数的监测和控制,来实现对开关管的精确控制,确保输出电压的稳定性和可靠性。
总的来说,开关电源通过对输入电压的控制和调节,实现了对输出电压的稳定调节,具有体积小、效率高、稳定性好的特点,被广泛应用于各种电子设备中。
通过本文的图解,相信大家对开关电源的工作原理有了更深入的了解,希望对大家有所帮助。
ACDC开关电源IGBT应用原理与主电路图

AC-DC开关电源IGBT应用原理与主电路图AC-DC开关电源IGBT应用原理与主电路图作者:微叶科技时间:2015-07-14 16:48随着高速IGBT得推出,工作频率可达50kHz以上,IGBT有用于SMPS(Switch Mode Power Supplies,市电输入得开关电源)得趋势。
AC-DC开关电源得电路拓扑一般就是指储能元件(开关变压器或者储能电感)与功率开关元件(IGBT、VMOS 等)得配置方式。
1、单端正激电路单端正激式(Forward) SMPS拓扑得电路简图如图1所示。
其中,单端就是指主开关为单管电路,正激指得就是主开关变压器初次级绕组得相位关系。
图1 正激式拓扑电路系统简图粗虚线框中得电路就是功率开关电路,T就是主开关变压器;Q1就是功率寸姜,D21就是次级整流二极管;D22就是续流二被管;L21就是储能电感,兼有扼流滤波作用;N1就是主绕组(初级);N4就是复位绕组;N2就是次级绕组;带箭头得虚线表明了瞬时电流得方向与路径。
所谓正激,即主开关变压器初、次级线圈得绕向就是一样得,电气相位相同。
这样做得好处就是,Q1开通时,N2从初级绕组获得能量,向L21、C2l与负载RL提供能量;Q1关断时,L21内存储得能量向负载RL释放,D22为电感内能量得释放提供通路。
同时,D2作为复位绕组N4得负载,在Q1关断期间消耗变压器磁心中存储得能量,使磁心复位。
复位电路也可以像4、25那样实现,在初级绕组上并联DRC(二极管、电阻、电容,Dll 、R11、C11)。
由于负载在Q1开通与关断期间都有能量(电流供应),因此正激式拓扑得输出纹波相对较小。
功率开关管Q1承受得最大直流电压约为主电路电压得1倍,电源输入为220V市电规格得条件下,Q1得电压规格至少为800V。
如果采用了APFC 电路,则Q1得电压规格至少为1000V。
·EMI与PFC 电路在SMPS中很常见。
EMI电路主要就是为了减小开关电源对电网得污染,PFC(功率因数校正)电路主要就是为了提高开关电源得功率因数。
开关电源电路图

开关电源电路图一、主电路从交流电网输入、直流输出的全过程,包括:1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。
2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。
3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
二、控制电路一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
三、检测电路除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。
四、辅助电源提供所有单一电路的不同要求电源。
开关控制稳压原理开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。
可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。
图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。
电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。
在AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。
由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。
改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源电子元器件组成图解常见的计算机用电源的功能是将输入的交流市电(AC110V/220V),经过隔离型交换式降压电路转换出各硬件所需的各种低压直流电:3.3V、5V、12V、-12V及提供计算机关闭时待命用的5V Standby(5VSB)。
所以电源内部同时具备了耐高压、大功率的组件以及处理低电压及控制信号的小功率组件。
电源转换流程为交流输入→EMI滤波电路→整流电路→功率因子修正电路(主动或是被动PFC)→功率级一次侧(高压侧)开关电路转换成脉流→主要变压器→功率级二次侧(低压侧)整流电路→电压调整电路(例如磁性放大电路或是DC-DC转换电路)→滤波(平滑输出涟波,由电感及电容组成)电路→电源管理电路监控输出。
以下从交流输入端EMI滤波电路常见的组件开始介绍。
交流电输入插座此为交流电从外部输入电源的第一道关卡,为了阻隔来自电力在线干扰,以及避免电源运作所产生的交换噪声经电力线往外散布干扰其它用电装置,都会于交流输入端安装一至二阶的EMI(电磁干扰)Filter(滤波器),其功能就是一个低通滤波器,将交流电中所含高频的噪声旁路或是导向接地线,只让60Hz左右的波型通过。
上面照片中,中央为一体式EMI滤波器电源插座,滤波电路整个包于铁壳中,能更有效避免噪声外泄;右方的则是以小片电路板制作EMI滤波电路,通常使用于无足够深度安装一体式EMI滤波器的电源供应器,少了铁皮外壳多少会有噪声泄漏情形;而左边的插座上只加上Cx与Cy电容(稍后会介绍),使用这类设计的电源,其EMI滤波电路通常需要做在主电路板上,若是主电路板上的EMI电路区空空如也,就代表该区组件被省略掉了。
目前使用12公分风扇的电源供应器内部空间都不太能塞下一体式EMI滤波器,所以大多采用照片左右两边的做法。
X电容(Cx,又称为跨接线路滤波电容)这是EMI滤波电路组成中,用来跨接火线(L)与中性线(N)间的电容,用途是消除来自电力线的低通常态噪声。
外观如照片所示为方型,上方会打上X或X2字样。
Y电容(Cy,又称为线路旁通电容器)Y电容为跨接于浮接地(FG)和火线(L)/中性线(N)之间,用来消除高通常态及共态噪声。
Y电容的外观如照片呈圆饼状而计算机用电源中的FG点与金属外壳、地线(E)及输出端0V/GND 共接,所以未连接接地线时,会经由两颗串联的Cy电容分压出输入电源一半的电位差(Vin/2),人体碰触到后就有可能产生感电现象。
共态扼流圈(交连电感)共模态扼流圈在滤波电路中为串联在火线(L)与中性线(N)上,用来消除电力在线低通共态以及射频噪声。
有些电源的输入端线路,会有缠绕在磁芯上的设计,也可以当作是简单的共态扼流圈。
其外观有环形与类似变压器的方形,部分可以见到外露的线圈。
所谓共态噪声,代表是L/N线对于地线E间的噪声,而常态噪声,则是L与N线之间的噪声,EMI滤波器功能主要是消除及阻挡这两类噪声。
在EMI滤波电路之后的是瞬时保护电路及整流电路,常见的组件如下。
■保险丝保险丝就是当其流过其上的电流值超出额定限度时,会以熔断的方式来保护连接于后端电路,一般使用于电源供应器中的保险丝为快熔型,比较好的会使用防爆式保险丝,其与一般保险丝最大的差别是外管为米色陶瓷管,内填充防火材质避免熔断时产生火花。
其安装于电路板上的方式有如图片上方的固定式(两端直接套上导线座并焊于电路板上)以及图片中央的可拆卸式(使用金属夹片固定)。
下方的方形组件是温度保险丝,这类保险丝固定于大功率水泥电阻或是功率组件的散热片上,主要是用于超温保护,避免组件过热而损坏或发生火灾,这类保险丝也有与电流保险丝结合的版本,对电流及温度进行双重保护。
负温度系数电阻(NTC)因为电源接通电源瞬间,其内的高压端电解电容属于无电状态,充电瞬间将产生过大电流突波以及线路压降,可能使桥式整流器等组件超出其额定电流而烧坏。
NTC使用时串联于L或N线路上,启动时其内部阻抗值可以限制充电瞬间的电流值,而负温度系数的定义是其电阻会随其温度上升而降低,所以随着电流流过本体使温度逐渐升高后,其阻值会随着降低,避免造成不必要功率消耗。
其外观大多为黑色及墨绿色的圆饼状元件但其缺点是电源处于热机状态下启动时,其保护效果会打上折扣,且即使阻抗可随温度降低,仍会消耗些许功率,所以目前高效率电源大多采用更进阶的瞬时保护电路。
金氧变阻器(MOV)变阻器跨接于保险丝后端的火线与地线间,其动作原理为当其两端电压差低于其额定电压值时,本体呈现高阻抗;当电压差超出其额定值,本体电阻会急速下降,L-N间呈现近似短路状态,前端的保险丝因短路而升高的电流将会使其熔断,以保护后端电路,有时本体承受功率过大时,亦以自毁方式来警告使用者该装置已经出现问题。
通常用于电源供应器交流输入端,当输入交流发生过电压时能及时让保险丝熔断,避免使内部组件损坏。
其颜色与外观与Cy电容很接近,不过可以从组件上面的字样及型号来分别其不同。
桥式整流器内部由四颗二极管交互连接所构成的桥式整流器,其功用是将输入交流进行全波整流后,供后端交换电路使用。
其外观与大小会随着组件额定电压及电流的不同而有所差异,部分电源供应器会将其固定于散热片上,协助其散热,以利稳定的长时间运作。
经过整流后,便进入功率级一次侧的交换电路,这里的组件决定了电源供应器的各路最大输出能力,是电源供应器相当重要的一部份。
开关晶体管在交换电路中作为无接点快速电子开关,依控制信号导通及截止,决定电流是否流过,于主动功率因子修正电路以及功率级一次侧电路扮演重要角色。
照片中上方为电源内常见的N MOSFET(N型金氧半导体场效晶体管),下方则是NPN BJT(NPN型双接面晶体管)随着开关组件的电路组成方式,可构成双晶顺向式、半桥式、全桥式、推挽式等等不同的功率级拓墣,在讲求高效率的电源供应器内,也有使用开关晶体构成同步整流电路以及DC-DC降压电路的应用。
变压器为何称为隔离型交换式降压电源,就是因为使用变压器作为高低电压分隔,并利用磁能进行能量交换,不仅可以避免高低压电路故障时的漏电危险,也能简单产生多种电压输出。
因其运作频率较高,变压器体积较一般交流变压器要来得小。
因为变压器为功率传递路径之一,目前大输出电源有使用多变压器的设计,避免单一变压器发生饱和现象而限制功率的输出。
照片中上方较小的变压器为辅助电源电路以及信号传递用的脉冲变压器,下方较大者为主要功率变压器以及环形的二次侧调整用变压器。
以变压器作为隔离分界,二次侧的输出电压已经比一次侧要低上许多,不过还需要经过整流、调整以及滤波平滑等电路,才会变成计算机零件所需的各电压直流电。
二极管电源供应器内部,随着各部电路要求及输出大小而使用不同种类以及规格,除了一般的硅二极管外,还有萧特基障壁二极管(SBD)、快速回复二极管(FRD)、齐纳二极管(ZD)等种类。
图片中为二极管常见的封装形式FRD主要用于主动功率因子修正以及功率级一次侧电路;SBD用于功率级二次侧,将变压器输出进行整流;ZD则是作为电压参考用。
电感器电感器随着磁芯结构、感抗值、电路上安装位置的不同,可以作为交换电路中的储能组件、磁性放大电路的电压调整组件以及二次侧整流后输出滤波使用,于电源供应器中广泛使用。
图片中电感形状有环形及圆柱型,随着感值及电流承受力而有不同的圈数以及漆包线粗细。
电容器如电感器般,电容器同样也作为储能组件以及涟波平滑使用。
为了承受整流后的高压直流,高耐压电解电容用于电源供应器一次侧电路;为了降低输出下电解电容连续充放电时造成的损失,二次侧电路则大量使用高耐温长寿低阻抗电解电容。
图片中下方较大者为用于一次侧的高耐压电解电容,上方较低耐压则使用于二次侧及外围控制电路因电容内有化学物质(电解液)的关系,工作温度对电解电容的寿命有相当影响,所以长时间下运作,除了维持电源供应器的良好散热外,其使用的电解电容厂牌及系列也决定电源供应器稳定运作的可靠度及寿命。
电阻器电阻器用于限制电路上流过的电流,并于电源供应器关闭后释放电容器内所储存的电荷,避免产生电击事故。
图片中左方为大功率水泥电阻,可承受较大功率超额,右方则为一般常见的电阻,其上的色码标示出其阻值及误差。
上述组件构成的电路若是没有搭配控制电路的话,是无法发挥其功能的,而各路输出也需要随时监视管理,当发生任何异常时就要立即切断输出,以保护计算机零组件的安全。
各种控制IC电源供应器内的控制IC,依其安装位置及用途来分,有作为PFC 电路用、功率级一次侧PWM电路用、PFC/PWM整合控制用、辅助电源电路用整合组件、电源监控管理IC等等。
PFC电路用:作为主动功率因子修正电路控制,使电源供应器可维持一定的功率因子,并减少高次谐波产生。
功率级一次侧PWM电路用:作为功率级一次侧开关晶体驱动用PWM(脉宽调变)信号产生,随着电源输出状态对其任务周期(Duty Cycle)的控制。
一般常见的有UC3842/3843系列等PWM控制IC。
PFC/PWM整合控制用:将上述两种控制器结合于单一IC中,可使电路更为简化,组件数目减少,缩小体积外也降低故障率。
例如常见的CM680X系列,就是PFC/PWM整合控制IC。
辅助电源电路用整合组件:因为电源关闭后,辅助电源电路仍需持续输出,所以必须自成一独立系统,因其输出瓦数不需太高,所以使用业界小功率整合组件作为其核心,例如PI的TOPSwitch系列。
电源监控管理IC:进行各路输出的UVP(低电压保护)、OVP(过电压保护)、OCP(过电流保护)、SCP(短路保护)、OTP(过温度保护)监视及保护,当超出其设定值后,便会关闭并锁定控制电路,停止电源供应器输出,待故障排除后才可重新启动。
除了上述组件外,其它还有厂商视需要自行加上的IC,例如风扇控制IC等等。
光耦合器光耦合器主要是用于高压电路与低压电路的信号传递,并维持其电路隔离,避免发生故障时高低压电路间产生异常电流流动,使低压组件损坏。
其原理就是使用发光二极管与光敏晶体管,利用光来进行信号传递,且因为两者并无电路上的连结,所以可以维持两端电路的隔离。
电源供应器内部组件大致上介绍到此,下次将直接以电源供应器实际照片,来说明各部份的电路。