《离散数学》试题及答案
《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。
答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。
答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。
答案:2e4. 一个连通图至少有________个顶点。
答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。
答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。
()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。
()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。
()答案:错误4. 树是一种无向图。
()答案:正确5. 哈夫曼编码是一种贪心算法。
()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。
离散数学期末考试试题及答案

离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。
12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1, 2, 3, 4}中,子集{1, 2}的补集是()。
A. {3, 4}B. {1, 3, 4}C. {2, 3, 4}D. {1, 2, 3, 4}答案:A2. 命题“若x > 0,则x² > 0”的逆否命题是()。
A. 若x² ≤ 0,则x ≤ 0B. 若x² > 0,则x > 0C. 若x ≤ 0,则x² ≤ 0D. 若x² ≤ 0,则x < 0答案:C3. 函数f(x) = x² + 2x + 1的值域是()。
A. {x | x ≥ 0}B. {x | x ≥ 1}C. {x | x ≥ 2}D. {x | x ≥ -1}答案:B4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 有向树D. 无向树答案:B5. 以下哪个图是二分图()。
A. 完全图B. 非完全图C. 任意两个顶点都相连的图D. 任意两个顶点都不相连的图答案:C6. 以下哪个是哈密顿回路()。
A. 经过每个顶点恰好一次的回路B. 经过每个顶点至少一次的回路C. 经过每个顶点恰好两次的回路D. 经过每个顶点至少两次的回路答案:A7. 以下哪个是欧拉回路()。
A. 经过每条边恰好一次的回路B. 经过每条边至少一次的回路C. 经过每条边恰好两次的回路D. 经过每条边至少两次的回路答案:A8. 以下哪个是二进制数()。
A. 1010B. 1020C. 1102D. 1120答案:A9. 以下哪个是格雷码()。
A. 0101B. 1010C. 1100D. 1110答案:B10. 以下哪个是素数()。
A. 4B. 6C. 7D. 8答案:C二、填空题(每题2分,共20分)11. 集合{1, 2, 3}与{2, 3, 4}的交集是______。
答案:{2, 3}12. 命题“若x > 0,则x² > 0”的逆命题是:若x² > 0,则______。
《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。
答:某,y,某,z5、判断下列语句是不是命题。
若是,给出命题的真值。
((1)北京是中华人民共和国的首都。
(2)陕西师大是一座工厂。
),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。
(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。
(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散考试试题及答案

离散考试试题及答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念不是布尔代数的基本运算?A. 与B. 或C. 非D. 模答案:D2. 集合论中,下列哪个符号表示“属于”关系?A. ∈B. ∉C. ⊆D. ⊂答案:A3. 命题逻辑中,下列哪个符号表示“蕴含”关系?A. ∧B. ∨C. →D. ↔答案:C4. 关系R在集合A上是自反的,意味着什么?A. 对于所有a∈A,(a, a)∈RB. 对于所有a∈A,(a, a)∉RC. 对于所有a∈A,(a, b)∈RD. 对于所有a∈A,(a, b)∉R答案:A二、填空题(每题5分,共20分)1. 一个集合的基数是集合中元素的________。
答案:数量2. 在有向图中,如果存在一条从顶点u到顶点v的路径,则称顶点v 是顶点u的________。
答案:可达的3. 一个图是连通的,当且仅当图中任意两个顶点都是________。
答案:连通的4. 在命题逻辑中,一个命题的否定是________。
答案:它的对立命题三、简答题(每题10分,共30分)1. 请解释什么是图的哈密顿回路。
答案:哈密顿回路是一个图中的闭合回路,它恰好访问图中的每个顶点一次。
2. 描述一下什么是二元关系,并给出一个例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是数字集合上的一个二元关系。
3. 什么是图的生成树?答案:图的生成树是图的一个子图,它包含图中的所有顶点,并且是一棵树,即它是连通的且没有环。
四、计算题(每题15分,共30分)1. 给定一个集合A={1,2,3,4,5},计算它的幂集。
答案:幂集P(A)={∅, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5},{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, {1,2,3,4,5}, A}。
离散数学复习题及答案

离散数学复习题及答案1. 命题逻辑中,若命题P和Q都是真命题,那么命题“P或Q”的真值是什么?答案:真2. 在集合论中,空集的表示符号是什么?答案:∅3. 什么是二元关系?答案:二元关系是指从集合A到集合B的笛卡尔积A×B的一个子集。
4. 什么是图的邻接矩阵?答案:图的邻接矩阵是一个方阵,其行和列分别代表图中的顶点,矩阵中的元素表示顶点之间的边的存在与否。
5. 什么是有向图?答案:有向图是一种图,其中的边有方向,即从一个顶点指向另一个顶点。
6. 什么是无环图?答案:无环图是一种不包含任何环的图。
7. 什么是完全图?答案:完全图是一种图,其中每一对不同的顶点之间都恰好有一条边相连。
8. 什么是二分图?答案:二分图是一种图,其顶点可以被分成两个不相交的集合,使得每条边的两个端点分别属于这两个集合。
9. 什么是图的连通性?答案:图的连通性是指图中任意两个顶点之间是否存在路径。
10. 什么是图的强连通性?答案:图的强连通性是指图中每个顶点都可以通过有向路径到达其他任何顶点。
11. 什么是图的欧拉路径?答案:图的欧拉路径是一条经过图中每条边恰好一次的路径。
12. 什么是图的哈密顿路径?答案:图的哈密顿路径是一条经过图中每个顶点恰好一次的路径。
13. 什么是归纳推理?答案:归纳推理是一种从特殊到一般的推理方法,即从个别事实或实例中推导出一般性结论。
14. 什么是演绎推理?答案:演绎推理是一种从一般到特殊的推理方法,即从一般性前提出发,通过逻辑推导出特殊性结论。
15. 什么是归纳证明?答案:归纳证明是一种数学证明方法,通常用于证明与自然数有关的命题,其基本思想是证明对于所有自然数都成立的命题。
16. 什么是递归?答案:递归是一种在函数定义中调用自身的方法,用于解决可以分解为相似子问题的问题。
17. 什么是分治算法?答案:分治算法是一种算法设计范式,它将一个复杂的问题分解成若干个相同或相似的子问题,递归地解决子问题,然后将子问题的解合并以解决原问题。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
答:2不是偶数且-3不是负数。
12、永真式的否定是()(1) 永真式(2) 永假式(3) 可满足式(4) (1)--(3)均有可能答:(2)13、公式(⌝P∧Q)∨(⌝P∧⌝Q)化简为(),公式 Q→(P∨(P∧Q))可化简为()。
答:⌝P ,Q→P14、谓词公式∀x(P(x)∨∃yR(y))→Q(x)中量词∀x的辖域是()。
答:P(x)∨∃yR(y)15、令R(x):x是实数,Q(x):x是有理数。
则命题“并非每个实数都是有理数”的符号化表示为()。
答:⌝∀x(R(x)→Q(x))(集合论部分)16、设A={a,{a}},下列命题错误的是()。
(1) {a}∈P(A) (2) {a}⊆P(A) (3) {{a}}∈P(A) (4) {{a}}⊆P(A)答:(2)17、在0()Φ之间写上正确的符号。
(1) = (2) ⊆(3) ∈(4) ∉答:(4)18、若集合S的基数|S|=5,则S的幂集的基数|P(S)|=()。
答:3219、设P={x|(x+1)2≤4且x∈R},Q={x|5≤x2+16且x∈R},则下列命题哪个正确()(1) Q⊂P (2) Q⊆P (3) P⊂Q (4) P=Q答:(3)20、下列各集合中,哪几个分别相等( )。
(1) A1={a,b} (2) A2={b,a} (3) A3={a,b,a} (4) A4={a,b,c}(5) A5={x|(x-a)(x-b)(x-c)=0} (6) A6={x|x2-(a+b)x+ab=0}答:A1=A2=A3=A6, A4=A521、若A-B=Ф,则下列哪个结论不可能正确?( )(1) A=Ф (2) B=Ф(3) A⊂B (4) B⊂A答:(4)22、判断下列命题哪个为真?( )(1) A-B=B-A => A=B (2) 空集是任何集合的真子集(3) 空集只是非空集合的子集 (4) 若A的一个元素属于B,则A=B答:(1)23、判断下列命题哪几个为正确?( )(1) {Ф}∈{Ф,{{Ф}}} (2) {Ф}⊆{Ф,{{Ф}}} (3) Ф∈{{Ф}}(4) Ф⊆{Ф} (5) {a,b}∈{a,b,{a},{b}}答:(2),(4)24、判断下列命题哪几个正确?( )(1) 所有空集都不相等 (2) {Ф}≠Ф (4) 若A为非空集,则A⊂A成立。
答:(2)25、设A∩B=A∩C,A∩B=A∩C,则B( )C。
答:=(等于)26、判断下列命题哪几个正确?( )(1) 若A∪B=A∪C,则B=C (2) {a,b}={b,a}(3) P(A∩B)≠P(A)∩P(B) (P(S)表示S的幂集)(4) 若A为非空集,则A≠A∪A成立。
答:(2)27、A,B,C是三个集合,则下列哪几个推理正确:(1) A⊆B,B⊆C=> A⊆C (2) A⊆B,B⊆C=> A∈B (3) A∈B,B∈C=> A∈C答:(1)(二元关系部分)28、设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={〈x,y〉|x=y2},求(1)R (2) R-1 。
答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}29、举出集合A上的既是等价关系又是偏序关系的一个例子。
( )答:A上的恒等关系30、集合A上的等价关系的三个性质是什么?( )答:自反性、对称性和传递性31、集合A上的偏序关系的三个性质是什么?( )答:自反性、反对称性和传递性32、设S={1,2,3,4},A上的关系R={〈1,2〉,〈2,1〉,〈2,3〉,〈3,4〉} 求(1)R R (2) R -1 。
答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R -1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}33、设A={1,2,3,4,5,6},R是A 上的整除关系,求R= {( )}。
答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}34、设A={1,2,3,4,5,6},B={1,2,3},从A到B 的关系R={〈x,y 〉|x=2y },求(1)R (2) R -1 。
答:(1)R={<1,1>,<4,2>,<6,3>} (2) R 1-={<1,1>,<2,4>,(36>}35、设A={1,2,3,4,5,6},B={1,2,3},从A到B 的关系R={〈x,y 〉|x=y 2},求R 和R -1的关系矩阵。
答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000010000000001 36、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y ∈A},则R 的性质为( )。
(1) 自反的 (2) 对称的 (3) 传递的,对称的 (4) 传递的答:(2)(代数结构部分)37、设A={2,4,6},A 上的二元运算*定义为:a*b=max{a,b},则在独异点<A,*>中,单位元是( ),零元是( )。
答:2,638、设A={3,6,9},A 上的二元运算*定义为:a*b=min{a,b},则在独异点<A,*>中,单位元是( ),零元是( );答:9,3(半群与群部分)39、设〈G,*〉是一个群,则(1) 若a,b,x∈G,a*x=b,则x=( );(2) 若a,b,x∈G,a*x=a*b,则x=( )。
-1 b (2) b答:(1) a*40、设a是12阶群的生成元,则a2是( )阶元素,a3是( )阶元素。
答: 6,441、代数系统<G,*>是一个群,则G的等幂元是( )。
答:单位元42、设a是10阶群的生成元,则a4是( )阶元素,a3是( )阶元素。
答:5,1043、群<G,*>的等幂元是( ),有( )个。
答:单位元,144、素数阶群一定是( )群, 它的生成元是( )。
答:循环群,任一非单位元45、设〈G,*〉是一个群,a,b,c∈G,则(1) 若c*a=b,则c=( );(2) 若c*a=b*a,则c=( )。
*a (2) b答:(1) b1-46、<H,,*>是<G,,*>的子群的充分必要条件是( )。
答:<H,,*>是群或∀ a,b ∈G, a*b∈H,a-1∈H 或∀ a,b ∈G,a*b-1∈H47、群<A,*>的等幂元有( )个,是( ),零元有( )个。
答:1,单位元,048、在一个群〈G,*〉中,若G中的元素a的阶是k,则a-1的阶是( )。
答:k49、在自然数集N上,下列哪种运算是可结合的?()(1) a*b=a-b (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|a-b| 答:(2)50、任意一个具有2个或以上元的半群,它()。
(1) 不可能是群(2) 不一定是群(3) 一定是群(4) 是交换群答:(1)51、6阶有限群的任何子群一定不是()。
(1) 2阶(2) 3 阶 (3) 4 阶(4) 6 阶答:(3)(格与布尔代数部分)52、下列哪个偏序集构成有界格()(1) (N,≤)(2) (Z,≥)(3) ({2,3,4,6,12},|(整除关系))(4) (P(A),⊆)答:(4)53、有限布尔代数的元素的个数一定等于()。
(1) 偶数(2) 奇数 (3) 4的倍数(4) 2的正整数次幂答:(4)(图论部分)54、设G是一个哈密尔顿图,则G一定是( )。