声学基础文档

合集下载

第1章声学基础

第1章声学基础
性参数(弹性模量、质量密度)列出微分方程; b. 解微分方程,并由介质边界条件和初始条件确定波
动函数; c. 由波动函数确定声波的各个参数:声波的频率构成、
波长、振幅、声速等。
五、声速c
2.声速c
决定声速的因素是什么?频率f?波长λ ? 由波动函数力学解法,可得:
c? E
?
G c?
?
c? B
?
(纵波 ) (横波 ) ( 气体纵波
p=P0
sin??
(t
?
x) ? c
?
??
P0
sin?2?f
(t
?
x) ? c
?
?
3.有效声压 pe
人耳不能感觉声压的瞬时起伏,只能感受声压的有效值, 即声压对时间的均方值。
? pe ?
1 T p 2dt ? P0
T0
2
说明:声学所谈声压一般是指有效声压。
六、声压(*)
4.人耳对声压的感受范围 听阈声压: 2×10-5Pa 痛阈声压: 20Pa
人耳所能感受到的最小声强为: 10-12 W/m2.
九、声功率
单位时间穿过某一平面或曲面总声能量。 ?
dS ?
?
I
?
dS ? I
穿过微小面积单元的声 功率: ??
dW ? I ?dS ? I ?dS cos ?
穿过任意曲面声功率: ??
W ? ?I ?dS ? ?I cos? ?dS
九、声功率
穿过波振面的声功率可直接用面积乘以声强。
3.振动与力学参数的关系:
?= k m

f= 1
2?
k m
?
t(? t)
?
二、波动

声学基础

声学基础
媒质则是传播声波的条件,两者缺一不可。 • 置于弹性媒质中的振动体,由于它的振动,使得
振动体周围的媒质质点也随之作受迫振动。媒质 质点的振动在媒质中的传播,就称为声波。
媒质质点的运动和波的运动
• 在声波的波动过程中存在着两种既有联系、又有 区别的运动: 媒质质点的运动和波的运动。-麦浪 媒质中的质点仅在其平衡位置附近做往复运动, 它们并没有随着“波”的运动传播出去。 波则是能量传递的一种形式。波传播的是物质 的运动,而不是物质本身。因此,波动是物质运 动的一种形式。
化规律与活塞(声源)相同,但存在一定相位差。
• 换句话说,该点的振动方式在滞后x/c之后才与活
塞的振动方式完全相同。
• 同样地,t一旦确定,则位移仅仅是位置x
的函数。
• 这表示,对于某一确定的时刻而言,不同 质点振动的位移随空间位置也是按正弦的 规律变化的。
• 波长定义为,在一周期T 的时间内声波传播的距离,
p P P0
• 因此,声压定义为由于声扰动而产生的逾量 压强(简称逾压)p。
•在声波传播的过程中,声压p是随空间位置(x,y,z)与时
声场中某点某一时p刻的p瞬(x时, y声, z压, t值) ,称为瞬时声压。
而在一定时间间隔内的最大瞬时声压,称为峰值声压。 如果声压随时间的变化服从简谐规律,则峰值声压也就是
• 自然界中发声体发出的声音从频率角度分 两类: 纯音和复合音
• 纯音: 单一频率成分的音 • 复合音:两种以上频率构成的音,可以分
解为许多纯音之和 • 超低音:习惯上称频率低于60Hz的声音 • 低音: 频率为60-200Hz的声音 • 中音: 频率为200-1KHz的声音 • 中高音:频率为1-5KHz的声音 • 高音: 频率高于5KHz的声音

声学基础知识(整理)(完整资料).doc

声学基础知识(整理)(完整资料).doc

【最新整理,下载后即可编辑】噪声产生原因空气动力噪声由气体振动而产生。

气体的压力产生突变,会产生涡流扰动,从而引起噪声。

如空气压缩机、电风扇的噪声。

机械噪声由固体振动产生。

金属板、齿轮、轴承等,在设备运行时受到撞击、摩擦及各种突变机械力的作用,会产生振动,再通过空气传播,形成噪声。

液体流动噪声液体流动过程中,由于液体内部的摩擦、液体与管壁的摩擦、或者流体的冲击,会引起流体和管壁的振动,并引起噪声。

电磁噪声各种电器设备,由于交变电磁力的作用,引起铁芯和绕组线圈的振动,引起的噪声通常叫做交流声。

燃烧噪声燃料燃烧时,向周围的空气介质传递了热量,使它的温度和压力产生变化,形成湍流和振动,产生噪声。

声波和声速声波质点或物体在弹性媒质中振动,产生机械波向四周传播,就形成声波(声波是纵波)。

可听声波的频率为20~20000Hz,高于20KHz 的属超声波,低于20Hz 的属次声波。

点声源附近的声波为球面波,离声源足够远处的声波视为平面波,特殊情况(线声源)可形成柱面波。

声频( f )声速( c )和波长( λ )λ= c / f声速与媒质材料和环境有关:空气中,c =331.6+0.6t 或t c +=27305.20 (m /s)在水中声速约为1500 m /s t —摄氏温度传播方向上单位长度的波长数,等于波长的倒数,即1/λ。

有时也规定2π/λ为波数,用符号K 表示。

质点速度质点因声音通过而引起的相对于整个媒质的振动速度。

声波传播不是把质点传走而是把它的振动能量传走。

声场有声波存在的区域称为声场。

声场大致可以分为自由场、扩散场(混响场)、半扩散场(半自由场)。

自由场在均匀各向同性的媒质中,边界影响可忽略不计的声场称为自由场。

在自由场中任何一点,只有直达声,没有反射声。

消声室是人为的自由场,是由吸声材料和吸声结构做成的密闭空间,静谧无风的高空或旷野可近似为自由场。

扩散场声能量均匀分布,并在各个传播方向作无规则传播的声场,称为扩散场,或混响场。

声学基础

声学基础

噪声测试讲义第一章声学基础知识第一节声音的产生与传播一、声音的产生首先我们看几个例子:敲鼓时听到了鼓声,同时能摸到鼓面的振动;人能讲话是由于喉咙声带的振动;汽笛声、喷气飞机的轰鸣声,是因为排气时气体振动而产生的。

通过观察实践人们发现一切发声的物体都在振动,振动停止发声也停止。

因此,人们得出声音是由于物体的振动产生的结论。

二、声源及噪声源发声的物体叫声源,包括一切固体、液体和气体。

产生噪声的发声体叫噪声源。

三、声音的传播声音的传播需要借助物体的,传声的物体也叫介质,因此,声音靠介质传播,没有介质声音是无法传播的,真空不能传声,在真空中我们听不到声音。

声音的传播形式(以大气为例)是以疏密相间的波的形式向远处传播的,因此也叫声波。

当声振动在空气中传播时空气质点并不被带走,它只是在原来位置附近来回振动,所以声音的传播是指振动的传递。

四、声速声音的传播是需要一定时间的,传播的快慢我们用声速来表示。

声速定义:每秒声音传播的距离,单位:M/s。

在空气中声速是340 m/s,水中声速为 1450m/s ,而在铜中则为 5000m/s。

可见,声音在液体和固体中的传播速度一般要比在空气中快得多,另外,声速还和温度有关。

第二节人是怎样听到声音的一、人耳的构造人耳是由外耳、中耳和内耳三部分组成,各部分具有不同的作用共同来完成人的听觉。

耳朵三部分组成结构见彩图。

外耳,包括耳壳和外耳道,它只起着收集声音的作用。

中耳,包括鼓膜、鼓室、咽鼓管等部分。

由耳壳经过外耳道可通到鼓膜,这里便进人中耳了。

鼓膜俗称耳膜,呈椭圆形,只有它才是接受声音信号的,它能随着外界空气的振动而振动,再把这振动传给后面的器官。

鼓室位于鼓膜的后面,是一个不规则的气腔。

有一个管道使鼓室和口腔相通,这个管道叫咽鼓管。

咽鼓管的作用是让空气从口腔进人中耳的鼓室,使鼓膜内外两侧的空气压力相等,这样鼓膜才能自由振动。

鼓室里最重要的器官是听小骨。

听小骨由锤骨、砧骨和镫骨组成,锤骨直接与鼓膜相依附,砧骨居中,镫骨在最里面,它们的构造和分布就象一具极尽天工的杠杆,杠杆的前头连着鼓膜,后头连着内耳。

第一声学基础-

第一声学基础-
2020/2/20
第四节 人耳的听觉特性
一、掩蔽效应 二、双耳效应(方位感) 三、哈斯效应
2020/2/20
一、掩蔽效应
• 一个声音的听阈因另一声音的存在而提高 的现象,称为掩蔽效应
• 假设听清声音A的阈值为40dB,若同时又 听见声音B,这时由于B的影响使A的阈值 提高到52dB,即比原来高12dB。这个例子 中,B称为掩蔽声,A称为被掩蔽声。被掩 蔽声听阈提高的分贝数称为掩蔽量,即 12dB为掩蔽量,52dB称为掩蔽阈
• 常采用按对数方式分级的办法作为表示声 音大小的常用单位,这就是声压级、声强 级和声功率级
2020/2/20

级系数lg 参 测考 量值 值
2020/2/20
级:对数概念,无量纲单位,为表示方便,以dB为 单位
系数:用于扩大计算值的表示范围,对于力、长度 单位,取值为20 ,对于能量概念,取值为10
声波的产生
一、声波的产生与传播
点 声 源 的 传 播
2020/2/20
声音的传递
2020/2/20
二、频率、声速和波长
• 振动体每秒振动的次数称为频率,用符号f 表示,频率的单位是赫兹(Hz),简称赫 。
• 声波在传声介质中,每秒钟传播的距离称 为声波的传播速度,简称声速,用符号c表 示,单位是米/秒(m/s)
若n=2,则
L p总 L p 1l0 g 2L p3
2020/2/20
两个不等的声压级LP1和LP2(设 LP1≥LP2)叠加
L P 2 l0 g P 1 P 2 r P e 2 2 f 2 lP 0 g P r 1e 1 f l1 0 g P P 1 2 2 2 ( ) L P 1 1 l1 0 g 1 ( L P 1 0 1 L P 2 0 )

声学基础知识.docx

声学基础知识.docx

声学基础知识添加时间:2008-11-28 9:32:07文章来源:中国吸音隔声降噪网声音听觉理论由于人耳听觉系统非常复杂,迄今为止人类对它的生理结构和听觉特性还不能从生理解剖角度完全解释清楚。

所以,对人耳听觉特性的研究H前仅限于在心理声学和语言声学。

人耳对不同强度、不同频率声咅的听觉范围称为声域。

在人耳的声域范围内,声音听觉心理的主观感受主要有响度、音高、音色等特征和掩蔽效应、高频定位等特性。

其中响度、音高、音色可以在主观上用来描述具有振幅、频率和相位三个物理量的任何复杂的声音,故又称为声音〃三耍素〃;而在多种音源场合,人耳掩蔽效应等特性更重要,它是心理声学的基础。

下面简单介绍一下以上问题。

一、声音三要素1.响度响度,乂称声强或音量,它表示的是声音能量的强弱程度,主要取决丁•声波振幅的人小。

声音的响度一般用声压(达因/平方厘米)或声强(瓦特/平方厘米)来计量,声压的单位为帕(Pa),它与基准声压比值的对数值称为声压级,单位是分贝(dB)o对于响度的心理感受,一般用单位宋(Sone)来度量,并定义1kHz、40dB的纯音的响度为1宋。

响度的相对量称为响度级,它表示的是某响度与基准响度比值的对数值,单位为I I方(phon),即当人耳感到某声音与1kHz单一频率的纯音同样响时,该声音声压级的分贝数即为其响度级。

可见,无论在客观和主观上,这两个单位的概念是完全不同的,除1kHz纯音外,声压级的值-般不等于响度级的值,使用屮要注意。

响度是听觉的基础。

正常人听觉的强度范围为0dB-140dB(也有人认为是-5dB-130d B)o 固然,超出人耳的可听频率范I韦1(即频域)的声音,即使响度再人,人耳也听不出来(即响度为零)。

但在人耳的对听频域内,若声音弱到或强到一定程度,人耳同样是听不到的。

当声音减弱到人耳刚刚可以听见吋,此吋的声音强度称为〃听阈〃。

一般以lkllz纯音为准进行测量,人耳刚能听到的声压为OdB(通常人于0. 3dB即有感受)、声强为10-16W/cm2时的响度级定为0 口方。

声学基础

声学基础

第二讲 第二讲: 第二讲:听觉系统生理与病理 听觉系统生理与病理 作者:胡丽
作者:胡丽
听觉的概念
• 听觉包含听力 听能 听力和听能 听力
• 听力:是听觉器官的生理机能,可以用听 听力:
的分析综 听能:
合等能力,是在听力基础上经过有意无意 的训练而形成并提高的.
• 强度感受: • 听阈:人耳可听见声音的频率范围.0到140 分贝可听见,还有负10分贝 • 舒适阈:人耳听起来比较舒服且听的比较清晰的 声音强度范围.(正常范围在40-60分贝) • 不舒适阈:在舒适阈和痛阈之间那部分,60- 100分贝之间 • 痛阈:能引起听觉疼痛的最小刺激量为痛阈.在 140分贝
• 谢谢
谢 谢!
神经纤维传到大脑.
• 骨导-声波直接经颅骨途径使外淋巴发生
波动,并激动耳蜗的旋转器发生听觉.
听觉系统病理
• • • • 听觉病理 按照病变部位不同,听力障碍可以分为: 传导性听力障碍:外耳/中耳疾病 感音神经性听力障碍:内耳疾病/听神经 及中枢疾病 • 混合性听力障碍:中耳及内耳均有疾病
外耳疾病


• 它始于耳道末端处的鼓膜.包括三块听小 骨(也称听骨链),听骨链将鼓膜与内耳 连接起来,将声音使鼓膜产生的振动传送 到内耳.
内 耳
• 内耳:是耳朵最复杂的部分,它位于中耳
的后方. • 包括:前庭 半规管 耳蜗柯蒂氏器 毛 细胞 蜗后几大部分
听觉生理
• 听觉的过程:
• 气导-外耳传到中耳再传到内耳最后通过
第一讲:声学基础 第一讲: 第一讲:声学基础
作者:胡丽
作者:胡丽
声音的产生 • 声音的产生:
物体的机械振动产生声音,空气振动 形成疏密相间的纵波.

第1章_声学基础_绪论

第1章_声学基础_绪论
声学基础
1
课程的目标与任务
基础性专业课程 从声音的物理学原理出发,利用高等数学、大学
物理等课程的基础理论知识,解决声学问题。 从人耳的听觉特性出发,解决人对的声音的感知
问题。
2
课程的主要内容
➢ 振动与波 ➢ 声波的基本概念和性质 ➢ 人耳的听觉心理 ➢ 声音信号分析 ➢ 音律分析 ➢ 乐器声学 ➢ 声乐和语音分析 ➢ 噪声控制 ➢ 室内声学原理 ➢ 音质评价
各声部在不同时间、不同地点分别录制 适用类型:流行音乐
声学基础
同期录音
优点:融合度好,感染力强 缺点:录制难度大
第一章 绪论
声学基础
分期录音
第一章 绪论
优点:时间、空间不受限制;缺点:融合性不好
流程:前期录音 后期缩混 母带处理 输出成品
Recording
Mixing Down Mastering Product Manufacture
13
声学基础
思考问题
第一章 绪论
➢ 物体围绕它的平衡位置的往复运动叫做振动, 而振动在连续介质中的传播就产生声音。
➢ 声波有两个基本要素:
① 声源,即振动的物体。 ② 声波赖以传播的介质,这种介质可以是固体、液
体或气体。
14
声学基础
思考问题
声音是怎么传播的
第一章 绪论
声音经过各次反射最 终到达人耳,其时域 和频域的波形在这过 程中发生很大变化
鼻腔 口腔
鼻输出 口输出
语音产生的动力源于肺,肺产生 压缩空气,然后通过气管、喉、 口腔、鼻腔、牙齿、嘴唇等这一 套发声器官调制以后,再喷射出 来,就产生了语音。
18
声学基础
思考问题
第一章 绪论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

声学基础
1. 声音的定义和特性
声音是由物体振动产生的机械波在空气或其他介质中的传
播所引起的感觉或听觉体验。

声音是一种能量,以波动的形式传播。

常见的声音特性有音调、音量和音色。

音调是指声音的频率特性,决定了声音的音高。

频率越高,音调越高;频率越低,音调越低。

音量是指声音的强度或响度。

音量的单位是分贝(dB),
它是一个对数单位,用来量化声音的强弱。

音色是指声音的质地或特点,决定了声音的品质和区别。

每个声音都有独特的音色,这是由声音的频谱成分和谐波组成来决定的。

2. 声音的传播
声音是通过物质媒介的振动传播的。

空气是最常见的媒介,但声音在其他媒介中也可以传播,如水、金属等。

当一个物体振动时,它会在周围的介质中产生一系列的压缩和稀疏波,称为机械波。

这些波通过分子的碰撞传播,沿着波的传播方向形成了波峰和波谷。

声音的传播速度取决于介质的性质和温度。

在空气中,声音的速度约为340米/秒。

声音传播的距离与时间之间的关系可以用声音的传播公式来描述:
距离 = 速度 × 时间
3. 声音的产生
声音的产生是由物体的振动引起的。

当一个物体振动时,它会向周围传播机械波,并在空气中制造了声音。

一般来说,声音的振动是由物体的某种能源提供的。

常见的声音产生源包括乐器、人的声带、机械设备、风等。

在乐器中,不同的乐器通过不同的方式产生声音。

例如,钢琴通过击打弦和音板来发声,吹管乐器通过气流的振动来产生声音。

人的声带是声音的主要产生器。

当气流从肺部通过声门时,声带开始振动,产生声音。

人的口腔和鼻腔的共鸣器官会改变声音的音色,形成不同的语音和音调。

4. 声音的接收与听觉
声音的接收是通过听觉器官进行的。

人类的听觉器官是耳朵,它包括外耳、中耳和内耳三部分。

外耳由耳廓和外耳道组成,它的作用是收集声音并将其传
送到耳膜。

耳廓能够帮助我们感知声音的方向和位置。

中耳包括鼓膜和三个小骨头:锤骨、砧骨和镫骨。

当声音
到达耳膜时,它使鼓膜振动,并通过传导链传递到内耳。

内耳包括前庭和蜗蜗。

前庭负责平衡感知,而蜗蜗则是听
觉的主要部分。

蜗蜗包含着上千个细胞,称为毛细胞。

当声音振动传递到蜗蜗时,它会刺激毛细胞,进而产生神经信号。

这些信号被传送到大脑,我们才能意识到声音。

5. 声学的应用
声学是研究声音及其应用的学科,具有广泛的应用领域。

音乐是声学的一个重要应用。

声学可以帮助我们理解音乐
的特性和演奏技巧,并为音乐制作和音响技术提供基础。

语音通讯是声学的另一个应用领域。

声学研究可以帮助我
们理解语言的产生和传播机制,使我们能够改进语音识别和语音合成技术。

建筑声学研究如何改善建筑物的声学环境,以提供舒适的
听觉体验。

它包括控制和消除噪声、改善音质和声学设计等方面。

医学声学研究声音在医学诊断和治疗中的应用。

例如,超
声波成像和听力测试等技术就是应用了声学的原理。

结论
声学是研究声音的传播、产生和接收的学科,涵盖了广泛
的领域。

了解声学的基础知识有助于我们更好地理解和应用声音在生活中的重要性。

通过学习声学,我们可以更好地欣赏音乐,改善语音通讯技术,优化建筑设计和提升医学诊疗等领域。

相关文档
最新文档