声学基础

合集下载

声学基础

声学基础
媒质则是传播声波的条件,两者缺一不可。 • 置于弹性媒质中的振动体,由于它的振动,使得
振动体周围的媒质质点也随之作受迫振动。媒质 质点的振动在媒质中的传播,就称为声波。
媒质质点的运动和波的运动
• 在声波的波动过程中存在着两种既有联系、又有 区别的运动: 媒质质点的运动和波的运动。-麦浪 媒质中的质点仅在其平衡位置附近做往复运动, 它们并没有随着“波”的运动传播出去。 波则是能量传递的一种形式。波传播的是物质 的运动,而不是物质本身。因此,波动是物质运 动的一种形式。
化规律与活塞(声源)相同,但存在一定相位差。
• 换句话说,该点的振动方式在滞后x/c之后才与活
塞的振动方式完全相同。
• 同样地,t一旦确定,则位移仅仅是位置x
的函数。
• 这表示,对于某一确定的时刻而言,不同 质点振动的位移随空间位置也是按正弦的 规律变化的。
• 波长定义为,在一周期T 的时间内声波传播的距离,
p P P0
• 因此,声压定义为由于声扰动而产生的逾量 压强(简称逾压)p。
•在声波传播的过程中,声压p是随空间位置(x,y,z)与时
声场中某点某一时p刻的p瞬(x时, y声, z压, t值) ,称为瞬时声压。
而在一定时间间隔内的最大瞬时声压,称为峰值声压。 如果声压随时间的变化服从简谐规律,则峰值声压也就是
• 自然界中发声体发出的声音从频率角度分 两类: 纯音和复合音
• 纯音: 单一频率成分的音 • 复合音:两种以上频率构成的音,可以分
解为许多纯音之和 • 超低音:习惯上称频率低于60Hz的声音 • 低音: 频率为60-200Hz的声音 • 中音: 频率为200-1KHz的声音 • 中高音:频率为1-5KHz的声音 • 高音: 频率高于5KHz的声音

2-声学基础

2-声学基础

a.反射定律: b.折射定律:
三、声波的传播特性
★声波的反射定律与折射定律
与折射定律有关的讨论
由折射定律可知:
声波的折射是由声速决定的。
三、声波的传播特性
思考题 1、为什么声音在晚上要比晴朗的白天传播的远一点?
三、声波的传播特性
思考题2.为什么逆风传播的声音难以听清?
三、声波的传播特性
即:
pi pr pt
p zs c u
声阻抗 率
ui cos i u r cos r ut cos t
pr 2c2 cos i 1c1 cos t rp pi 2c2 cos i 1c1 cos t
p p 1
且处处与波阵面垂直的直线。)
二、声波的描述
声波的类型
类型 平面声波 球面声波 波阵面 垂直于传播 方向的平面 以任何值为 半径的球面 同轴圆柱面 声线 相互平行 的直线 由声源发出 的半径线 线声源发出 的半径线
声学基础知识
声源类型 平面声源 点声源
柱面声波
线声源
Chapter 2
声学基础知识
⑴ 声压
a、瞬时声压:某一瞬间的声压。
b、有效声压(pe):在一定时间间隔中将瞬 时声压对时间求方均根值即得有效声压。
二、声波的描述
1、声压和声压级
日常生活中声音的声压数据 (Pa)
声音种类
正常人耳能 听到最弱声 普通说话声 (1m远处) 公共汽车内
声压
2X10-5
声音种类
织布车间 柴油发动机、球 磨机 喷气飞机起飞
描述声波的基本物理量
声速:振动在媒质中传播的速度。
媒质特性的函数,取决于该媒质的弹性和密度。 声速会随环境的温度有一些变化。

声学基础

声学基础

Fa ξa → Km
对A求极值,得:共振频率为
1 z = zr = 1 − 2 2Qm
共振幅值为
A = Ar = Qm 1 1− 2 4Qm
Qm >
1 2
此时
f = fr = f0
1 1− 2 2Qm
1 Qm > 2
结论:当Qm近似为1时,A r =1.155,位移共振曲线最为均匀。
4. 振动系统的速度与加速度 (1)速度振幅规律
⎡ (1 + 2Q 2 ) ± 1 + 4Q 2 m m =⎢ 2 2Qm ⎢ ⎣ ⎤ ⎥ ⎥ ⎦
1 2
z1,2
相对频率差为
f1 − f 2 Δf 1 = = z1 − z2 = f0 f0 Qm
Qm降低,频率差增加,曲线变平坦。
(2)加速度振幅规律
a = aa cos(ω t − θ + π ),
z = zr = Qm
2 2 2Qm − 1


总结
(1)位移共振曲线在低频段(z<<1)为平坦区 (2)速度共振曲线在中频段(z=1)为平坦区 (3)加速度共振曲线在高频段(z>>1)为平坦区
四、强迫振动的能量 损耗功率:单位时间阻力对系统所做的功
WR = FR ⋅υ = − Rmυ
2
1 T 1 1 2 W R = ∫ WR dt = − Rmυa = − Rmω 2ξ a2 2 2 T 0
双弹簧串接与并接系统的振动
• 静止状态下合力为0,所以有如下关系
• 带入下面公式中
• 由此可以得到固有频率的另一个表达式
双弹簧串联相接
• 如图由静力学平衡条件可得
• 而两根弹簧的总位移等于各弹簧位移的 • 总和即

声学基础

声学基础

噪声测试讲义第一章声学基础知识第一节声音的产生与传播一、声音的产生首先我们看几个例子:敲鼓时听到了鼓声,同时能摸到鼓面的振动;人能讲话是由于喉咙声带的振动;汽笛声、喷气飞机的轰鸣声,是因为排气时气体振动而产生的。

通过观察实践人们发现一切发声的物体都在振动,振动停止发声也停止。

因此,人们得出声音是由于物体的振动产生的结论。

二、声源及噪声源发声的物体叫声源,包括一切固体、液体和气体。

产生噪声的发声体叫噪声源。

三、声音的传播声音的传播需要借助物体的,传声的物体也叫介质,因此,声音靠介质传播,没有介质声音是无法传播的,真空不能传声,在真空中我们听不到声音。

声音的传播形式(以大气为例)是以疏密相间的波的形式向远处传播的,因此也叫声波。

当声振动在空气中传播时空气质点并不被带走,它只是在原来位置附近来回振动,所以声音的传播是指振动的传递。

四、声速声音的传播是需要一定时间的,传播的快慢我们用声速来表示。

声速定义:每秒声音传播的距离,单位:M/s。

在空气中声速是340 m/s,水中声速为 1450m/s ,而在铜中则为 5000m/s。

可见,声音在液体和固体中的传播速度一般要比在空气中快得多,另外,声速还和温度有关。

第二节人是怎样听到声音的一、人耳的构造人耳是由外耳、中耳和内耳三部分组成,各部分具有不同的作用共同来完成人的听觉。

耳朵三部分组成结构见彩图。

外耳,包括耳壳和外耳道,它只起着收集声音的作用。

中耳,包括鼓膜、鼓室、咽鼓管等部分。

由耳壳经过外耳道可通到鼓膜,这里便进人中耳了。

鼓膜俗称耳膜,呈椭圆形,只有它才是接受声音信号的,它能随着外界空气的振动而振动,再把这振动传给后面的器官。

鼓室位于鼓膜的后面,是一个不规则的气腔。

有一个管道使鼓室和口腔相通,这个管道叫咽鼓管。

咽鼓管的作用是让空气从口腔进人中耳的鼓室,使鼓膜内外两侧的空气压力相等,这样鼓膜才能自由振动。

鼓室里最重要的器官是听小骨。

听小骨由锤骨、砧骨和镫骨组成,锤骨直接与鼓膜相依附,砧骨居中,镫骨在最里面,它们的构造和分布就象一具极尽天工的杠杆,杠杆的前头连着鼓膜,后头连着内耳。

声学基础知识

声学基础知识

声学基础知识声学基础知识⼀、声学基础1、⼈⽿能听到的频率范围是20—20KHZ。

2、把声能转换成电能的设备是传声器。

3、把电能转换成声能的设备是扬声器。

4、声频系统出现声反馈啸叫,通常调节均衡器。

5、房间混响时间过长,会出现声⾳混浊。

6、房间混响时间过短,会出现声⾳发⼲。

7、唱歌感觉声⾳太⼲,当调节混响器。

8、讲话时出现声⾳混浊,可能原因是加了混响效果。

9、声⾳三要素是指⾳强、⾳⾼、⾳⾊。

10、⾳强对应的客观评价尺度是振幅。

11、⾳⾼对应的客观评价尺度是频率。

12、⾳⾊对应的客观评价尺度是频谱。

13、⼈⽿感受到声剌激的响度与声振动的频率有关。

14、⼈⽿对⾼声压级声⾳感觉的响度与频率的关系不⼤。

15、⼈⽿对中频段的声⾳最为灵敏。

16、⼈⽿对⾼频和低频段的声⾳感觉较迟钝。

17、⼈⽿对低声压级声⾳感觉的响度与频率的关系很⼤。

18、等响曲线中每条曲线显⽰不同频率的声压级不相同,但⼈⽿感觉的响度相同。

19、等响曲线中,每条曲线上标注的数字是表⽰响度级。

20、⽤分贝表⽰放⼤器的电压增益公式是20lg(输出电压/输⼊电压)。

21、响度级的单位为phon。

22、声级计测出的dB值,表⽰计权声压级。

23、⾳⾊是由所发声⾳的波形所确定的。

24、声⾳信号由稳态下降60dB所需的时间,称为混响时间。

25、乐⾳的基本要素是指旋律、节奏、和声。

26、声波的最⼤瞬时值称为振幅。

27、⼀秒内振动的次数称为频率。

28、如某⼀声⾳与已选定的1KHz纯⾳听起来同样响,这个1KHz纯⾳的声压级值就定义为待测声⾳的响度。

29、⼈⽿对1~3KHZ的声⾳最为灵敏。

30、⼈⽿对100Hz以下,8K以上的声⾳感觉较迟钝。

31、舞台两侧的早期反射声对原发声起加重和加厚作⽤,属有益反射声作⽤。

32、观众席后侧的反射声对原发声起回声作⽤,属有害反射作⽤。

33、声⾳在空⽓中传播速度约为340m/s。

34、要使体育场距离主⾳箱约34m的观众听不出两个声⾳,应当对观众附近的补声⾳箱加0.1s延时。

《声学基础》课件

《声学基础》课件

声学与音乐学
声学研究为音乐学提供了 科学基础,有助于理解声 音在音乐中的产生、传播 和感知。
声学与医学
声学应用于医学领域,如 超声波成像、听力研究等, 为医学诊断与治疗提供了 重要工具。
结论
1 声音是什么?
声音是声波的感知,是人类与世界沟通的重要方式。
2 声学在生活中的应用
声学研究为我们提供了许多实用的应用,如语音识别、音乐欣赏、医学诊断等。
声波传播
1
声音的产生和传播方式
声音可以通过声源的振动产生,并在空气中以波的形式传播。了解声音传播的方 式对声学研究至关重要。
2
空气中声波传播的特性
空气中声波的传播速度、衰减和传播路径都受到温度、湿度和空气密度等因素的 影响。
3
物体表面反射和衍射
声波在物体表面上反射和衍射,这些现象会引起声音的反射、散射和聚焦。
《声学基础》PPT课件
# 声学基础 ## 概述 - 声波与声音的区别 - 声学基础概念 - 声学研究领域 ## 声波传播 - 声音的产生和传播方式 - 空气中声波传播的特性 - 物体表面反射和衍射 ## 声音特性 - 频率、波长及周期 - 振幅、声压和声强 - 速度和能量传播 ## 声学应用 - 声学与语音识别 - 声学与音乐学
3 声学的未来发展方向
随着科技的不断进步,声学研究将继续发展并为我们带来更多惊喜与可能。
声音特性
频率、波长及周期
声音的频率决定了它的音高; 波长和周期是描述声音波动特 征的声音的音量;声压和 声强是描述声音强度的指标。
速度和能量传播
声音传播速度的了解有助于研 究声音如何在空间中传递和传 播能量。
声学应用
声学与语音识别
声学在语音识别技术中发 挥着重要作用,帮助计算 机理解和转换人类的声音 信息。

声学基础知识

声学基础知识

声学基础知识声学是研究声音的产生、传播和接收的学科,它是物理学的一个重要分支,也与工程学、心理学等学科密切相关。

声音是一种机械波,是由介质中分子的振动引起的。

在日常生活中,我们所接触的声音与我们的情绪、心理状态有很大关联,而在工业、医学、通信等领域,声学也扮演着重要的角色。

本文将从声音的产生、传播和接收三个方面介绍声学的基础知识。

一、声音的产生声音是由物体振动引起的,当物体振动产生的机械波传播到我们的耳朵时,我们才能感知到声音。

声音的产生主要有以下几种方式:1. 自由振动:当一个物体自由地振动时,会在周围介质中产生声音。

例如,乐器弦线振动时产生的声音。

2. 强迫振动:当一个物体被外力作用迫使振动时,也会产生声音。

例如,乐器的音箱被演奏者的手和腮帮振动时产生的声音。

3. 空气振动:当空气被物体振动时,会通过空气分子的碰撞传播声音。

例如,人的嗓子发出的声音就是通过空气的振动传播出去的。

二、声音的传播声音是通过介质传播的,常见的传播介质有空气、水和固体。

声音传播的速度与介质的性质相关,例如,在空气中,声音传播的速度约为每秒343米。

声音传播的基本过程可以分为以下几个步骤:1. 振动:声音是由物体的振动引起的,当物体振动时,会在介质中产生声波。

2. 压缩与稀疏:振动的物体使介质中的分子产生交替的压缩和稀疏,形成纵波传播。

3. 传播:声波以纵波的形式沿介质传播,当声波到达物体后,物体的分子也会被振动,进而再次产生声波。

4. 接收:当声波达到接收器(如耳朵),通过耳膜、骨骼、耳腔等组织,被转化为神经信号,我们才能感知到声音。

三、声音的接收声音的接收是指我们如何感知和理解传播过程中产生的声音信号。

人类具有复杂而精细的听觉系统,能够感知各种不同频率和振幅的声音。

1. 听觉器官:人类的听觉器官包括外耳、中耳和内耳。

外耳通过外耳道将声音引入中耳,中耳通过鼓膜和听小骨(听骨链)将声波传递给内耳。

内耳中的耳蜗含有感音神经,能够将声波转化为神经信号。

声学基础知识

声学基础知识

声学基础知识声音,作为我们日常生活中最常接触到的感知,是一种形式的机械波,它通过物质的震动传播而产生。

声学是研究声音产生、传播和听觉效应等相关现象的学科。

本文将介绍声学的基础知识,包括声音的特性、声波的传播与衰减、和人类的听觉系统。

一、声音的特性声音有几个重要的特性,包括音调、音量和音色。

音调是指声音的高低,由声源的频率决定。

频率越高,音调越高;频率越低,音调越低。

音量是指声音的强弱,由声源振幅的大小决定。

振幅越大,音量越大;振幅越小,音量越小。

音色是指具有独特质感的声音特征,由声音的谐波成分和声源的包络形状决定。

不同的乐器演奏同一个音高,因为其谐波成分和包络形状不同,所以会有不同的音色。

二、声波的传播与衰减声波是指由声源振动产生的压力波。

声波传播时,需要介质作为传播介质,常见的介质包括空气、水、固体等。

在传播过程中,声波会经历衍射、反射、折射等现象。

衍射是指声波遇到障碍物时沿着障碍物的边缘传播,使声音能够绕过障碍物。

反射是指声波遇到障碍物后从障碍物上反弹回来,产生回声。

折射是指声波在介质之间传播时由于介质密度不同而改变传播方向。

声波在传播过程中会逐渐衰减,衰减的程度取决于声音传播的距离、传播介质的特性以及环境条件等。

一般来说,声音传播的距离越远,声波能量的衰减越大;传播介质的特性也会影响声波的衰减,固体传播声波的衰减相对较小,而空气和水传播声波的衰减相对较大。

环境条件如温度和湿度也会对声波的衰减产生一定影响。

三、人类的听觉系统人类的听觉系统是感知声音的重要器官。

它由外耳、中耳、内耳和大脑皮层等部分组成。

外耳包括耳廓和外耳道,它们的主要功能是接收和传导声音。

中耳包括鼓膜和听小骨(锤骨、砧骨和镫骨),它们的主要功能是将声音的机械能转换为神经信号。

内耳包括耳蜗和前庭,耳蜗负责感知声音,前庭负责维持平衡。

大脑皮层负责处理和解读声音信号。

人类听觉系统对不同频率的声音有不同的感知范围。

一般来说,人类可以听到频率范围在20Hz到20kHz之间的声音。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ρ1c1
pi
pt
pr
ρ 2 c2
o x
声压透射系数 D = Pt =
Pi
2 ρ 2 c2 2Z 2 = ρ 2 c 2 + ρ1c1 Z 2 + Z1
16
College of Underwater Acoustic Engineering
6 平面波在两种不同均匀介质界面上反射和折射
College of Underwater Acoustic Engineering
College of Underwater Acoustic Engineering 23
6 平面波在两种不同均匀介质界面上反射和折射
分界面上声波反射时的能量关系
垂直入射情况: I = I + I i r t 斜入射情况: I ≠ I + I i r t 两种介质的特性阻抗相差不大, 两种介质的特性阻抗相差不大,功率透射系数接 近1,例如换能器振子与透声外壳中,往往充以 ,例如换能器振子与透声外壳中, 蓖麻油或有机硅油。 蓖麻油或有机硅油。
第2章 声学基础
1 声波描述
声波:机械振动状态在介质中传播形成的波动形 声波:机械振动状态在介质中传播形成的波动形 状态在介质 式 分类: 分类:
<20Hz声波 次声 声波—次声 声波 >20kHz声波 超声 声波—超声 声波 20Hz~20kHz声波 音频声 ~ 声波—音频声 声波
流体介质:纵波( 流体介质:纵波(压缩波 Compressional Wave) ) 固体介质:纵波、横波( 固体介质:纵波、横波(切变波 Shear Wave) )
1 2 1 1 2 = 2 r + 2 sinθ + 2 2 θ r sin θ 2 r r r r sinθ θ
2
1 1 2 2 2 = + 2 r + 2 2 r r r r z
College of Underwater Acoustic Engineering 7
College of Underwater Acoustic Engineering
5
2 波动方程
连续性方程(质量守恒定律)
介质流入体元的净质量等于密度变化引起的体元内 质量的增加: ρ r = ρU t
( )
状态方程(绝热压缩定律)
介质的压缩和膨胀过程是绝热过程 :
dP = c dρ
2
c=
1

i =0
n 1
e jkdi sin θ
πd sin n sin θ λ = πd n sin sin θ λ
College of Underwater Acoustic Engineering
26
7 等间距均匀点源离散直线阵的声辐射
极大值1, (1)当 d sin θ = iλ 时,声压振幅出现极大值 ) 极大值 对应极大值的方向:
斜入射
College of Underwater Acoustic Engineering
21
6 平面波在两种不同均匀介质界面上反射和折射
全内反射
R= m cos θ i + i sin 2 θ i n 2 m cos θ i i sin θ i n
2 2
= R e iຫໍສະໝຸດ = 2arctgsin 2 θ i n 2 m cos θ i
柱面波
Z = iρ 0 c
( H 02 ) (kr )
H 1(2 ) (kr )
特点
具有与球面波相似的特点。 球面波和柱面波在远场近似为平面波。 球面波和柱面波在远场近似为平面波。Why?
College of Underwater Acoustic Engineering
13
5 相速度和群速度
相速度
College of Underwater Acoustic Engineering
β s ρ0
6
绝热压缩系数:单位压强变化引起体积相对变化。
College of Underwater Acoustic Engineering
2 波动方程
运动方程(牛顿第二定律)
r u ρ0 = p t
波动方程
2 2 2 = 2 + 2 + 2 x y z
2
1 2 p 2 p = 2 2 c t
18
6 平面波在两种不同均匀介质界面上反射和折射
斜入射
声压反射系数
ρ 2c2 cosθ i ρ1c1 cosθ t Z 2 n Z1n R= = ρ 2 c2 cosθ i + ρ1c1 cosθ t Z 2 n + Z1n
pi
ρ1c1
o x
θi
pr
声压透射系数
2 ρ 2 c2 cos θ i 2Z 2 n D= = ρ 2c2 cos θ i + ρ1c1 cos θ t Z 2 n + Z1n
非频散介质 c g = c p 频散介质 c g = c p + k
dc p dk
15
College of Underwater Acoustic Engineering
6 平面波在两种不同均匀介质界面上反射和折射
垂直入射
在分界面上,由于两介质的特性阻抗不同,声波分界面上会 发生反射和折射。
边界条件
振动状态在介质中传播的速度
cp =
ω
k
介质的相速度与频率无关,非频散介质; 介质的相速度与频率无关,非频散介质;反之为 频散介质。 频散介质。
College of Underwater Acoustic Engineering
14
5 相速度和群速度
群速度
声能量传播的速度(波群和波包的相速)
dω cg = dk
发生全内反射现象时, 发生全内反射现象时,声波反射时发生 角的相 位跳跃。 位跳跃。
College of Underwater Acoustic Engineering
22
6 平面波在两种不同均匀介质界面上反射和折射
非均匀平面波
波阵面(等相位面)上振 幅随离分界面的距离增大作指 数衰减。
低频声波深入海底的深度较大, 低频声波深入海底的深度较大,高频声波只能在 海底表面传播。 海底表面传播。
ρ 2 c2
θt
pt
法向声阻抗率
Z 1n = ρ1c1 cos θ i
Z 2 n = ρ 2 c 2 cos θ t
College of Underwater Acoustic Engineering 19
6 平面波在两种不同均匀介质界面上反射和折射
斜入射
n = c1 c 2 m = ρ 2 ρ1
R=
m cos θ i n 2 sin 2 θ i m cos θ i + n 2 sin 2 θ i
2m cos θ i m cos θ i n 2 sin 2 θ i
College of Underwater Acoustic Engineering 20
D=
6 平面波在两种不同均匀介质界面上反射和折射
College of Underwater Acoustic Engineering
24
7 等间距均匀点源离散直线阵的声辐射
辐射声压
在远场,总声压为:
jkρ 0 cQ0 j (ωt kr ) n 1 jkdi sin θ p (r , θ , t ) = e ∑e 4πr i =0 =0
当 θ = 0 时,各点源同相叠加,合成声压最大:
College of Underwater Acoustic Engineering 4
2 波动方程
假设条件
1. 介质静止、均匀、连续的:在波长距离上,声学 介质静止、均匀、连续的: 特性保持不变。 2. 介质是理想流体介质:忽略粘滞性和热传导性。 介质是理想流体介质: 3. 小振幅波:各声学量是一阶小量。 小振幅波:
r r (x , y , 0)
jkρ 0 cnQ0 j (ωt kr ) p(r , 0 , t ) = e 4πr
College of Underwater Acoustic Engineering 25
7 等间距均匀点源离散直线阵的声辐射
声场的方向性函数
p(r , θ , t ) 1 = D(θ ) = p(r , 0 , t ) n
4 介质声阻抗和声阻抗率
介质特性阻抗 声阻抗率
声场中某点声压与振速之比 ,它为一个复数(声压 与振速存在相位差)
Z= p u
ρ0c
平面波 Z = ± ρ 0 c 特点
平面波声压和振速处处同相(正向波)或反向(反 向波),声强处处相等,其声阻抗率与频率无关。
College of Underwater Acoustic Engineering 11
College of Underwater Acoustic Engineering 2
1 声波描述
声压(标量) 声压(标量):声波扰动引起介质压强的变化量
p = P P0
声场:声波所波及的空间 声场
位移(矢量):介质质点离开其平衡位置的距离 位移(矢量) 振速(矢量) 振速(矢量):介质流速或介质质点运动速度的变 r r r 化量
2 波动方程
速度势
介质单位质量具有的声扰动冲量 :
p
Ψ =∫
ρ0
dt
声压、质点振速与速度势关系
r u = Ψ
Ψ p = ρ0 t
1 Ψ Ψ= 2 2 c t
2 2
8
College of Underwater Acoustic Engineering
3 声场中能量
声能:声波传播引起的介质能量增量称为声能 声能密度
相关文档
最新文档