新人教版八年级数学上总复习课件

合集下载

人教版 八年级数学上 14.2.2完全平方公式 课件(共28张PPT)

人教版   八年级数学上 14.2.2完全平方公式  课件(共28张PPT)

填空:
(1)(a 2)(a 2) __a_2___4__; (2)(m n)(m n) _m__2___n_2_;
(3)(2x
1)(1
2x)
_1___4_x_2__; (4)( 1 2
p
2q)(2q
1 2
p)
4_q_2__14__p_2 _
.
合作探究
思考1:计算下列多项式的积,你能发现什么规律?
× ×
(a +b)2 =a2+2ab +b2 (a -b)2 =a2 -2ab +b2
(3) (-x +y)2 =x2+2xy +y2×
(-x +y)2 =x2 -2xy +y2
(4) (2x+y)2 =4x2 +2xy +y2× (2x +y)2 =4x2+4xy +y2
小试牛刀 那 (-x-6)2呢? 2.利用完全平方公式计算:
醍醐灌顶: (a+b)2 与(-a-b)2 相等, (a-b)2 与(b-a)2相等。
小试牛刀
4.已知x-y=6,xy=-8.求: (1)x2+y2的值; (2)(x+y)2的值.
解:(1)∵x-y=6,xy=-8, (2)∵x2+y2=20,xy=-8,
(x-y)2=x2+y2-2xy, ∴(x+y)2=x2+y2+2xy
(1)( p 1)2 ( p 1)( p 1) __p_2___2_p___1_; (2)(m 2)2 (_m__2_)_(_m__2_)_ m__2__4__m___4___; (3)( p 1)2 ( p 1)( p 1) __p_2__2__p__1__; (4)(m 2)2 (_m__2_)_(_m__2_)_ _m_2___4_m___4___ .

人教版八年级数学上册课件:14章 整式的乘法与因式分解--知识点复习 (共53张PPT)

人教版八年级数学上册课件:14章   整式的乘法与因式分解--知识点复习 (共53张PPT)

A.(6a3+3a2)÷
1 2
a=12a2+6a
B.(6a3-4a2+2a)÷2a=3a2-2a
C.(9a7-3a3)÷(﹣
1 3
a3)=﹣27a4+9
C.( 14a2+a)÷(﹣12a)=﹣12 a-2
5.一个多项式与﹣2x2的积为﹣2x5+4x3﹣x2,则这个多项式

.
6.计算:⑴
(9x2y-6xy2)÷3xy;
2.已知M= a-1,N=a2- a(a为任意实数),则M,N的
大小关系为( A ) A. M<N B. M=N C. M>N D.不能确定
3.若x2+y2+ =2x+y,则y-x= .
3、am﹣n=am ÷ an(a≠0,m,n都
是正整数,并且m>n).
10
知识点一:幂的运算性质
巩固练习
1.(易错题)若(1-x)1-3x=1,则x的取值有( C )个.
A.0 B.1 C.2 D.3 4
2.若3x=4,9y=7,则3x-2y的值为 7 . 3.已知am=3,an=2,则a2m-n的值为 4.5 .
为( B ) A M<N
B M>N
C M=N D.不能确定
10.计算:(1)(x+1)(x+4); (2)(y-5)(y-6); (3)(m-3)(m+4)
(x+p)(x+q)
18
知识点二:整式的运算
知识回顾
单项式的除法法则: 系数、同底数幂分别相除 只在被除式里含有的字母
19Βιβλιοθήκη 知识点二:整式的运算2
重点难点
重点:运用整式的乘法法则和除法法则进行运算;因式分 解. 难点:应用整式的乘法和因式分解决问题.

新人教版八年级数学上册全册精品课件

新人教版八年级数学上册全册精品课件
2022/3/28
新人教版八年级数学上册
第十一章 三角形
11.1.1三角形的边
2022/3/28
学习目标
情境引入
1.掌握并认识三角形并其有关概念及三角形的分 类.
2.通过理解“三角形两边的和大于第三边”,并 运用这个性质解决问题. 学习重点
体会“三角形两边的和大于第三边”的理解和运用.
2022/3/28
边的表示:三角形ABC的边AB、AC和BC可用小写字母分别表
示为_c_,__a_,__b_.
顶点A

边c
Байду номын сангаас边b
2022/3/28
角 顶点B

边a
顶点C
三角形的对边与对角:
A
B
C
在△ABC中,
AB边所对的角是: ∠C
∠A所对的边是: B C 再说几个对边与对角的关系试试.
2022/3/28
辨一辨:下列图形符合三角形的定义吗?
2022/3/28
埃及金字塔
水 分 子 结 构 示 意 图
2022/3/28
飞机机翼
问题: (1)从古埃及的金字塔到现代的飞机,从宏伟的建筑
物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.
2022/3/28
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形?
(2)以AB为边的三角形有哪些?
△ABC、△ABE.
D
(3)以E为顶点的三角形有哪些? A
△ ABE 、△BCE、 △CDE.
(4)以∠D为角的三角形有哪些?
E
△ BCD、 △DEC.
B
C

人教版初中八年级上册数学-期末复习 第12章全等三角形 课件(共48张PPT)

人教版初中八年级上册数学-期末复习 第12章全等三角形 课件(共48张PPT)
的依据是_H__L_.
第3题
4.如图,AO=BO,下列条件不能判定△AOD≌△BOC 的是( B )
A.OC=OD C. ∠A=∠B
第4题 B.AD=BC D.∠C=∠D
【考点 3】角平分线的性质和判定 5.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,AB=6,CD
=2,则点 D 到 AB 的距离是_2_,△ABD 的面积是_6_.
用 HL 证 Rt△ABC≌Rt△DEC. 得 ∠A=∠D, 从而 AB∥DE.
10.如图,在△ABC 和△DEF 中,下面有四个条件,请你在其中 选 3 个作为题设,余下的 1 个作为结论,写一个真命题,并加 以证明. ① AB=DE;②AC=DF;③∠ABC=∠DEF;④BE =CF.
题设:①③④;结论:② 证明提示:BC=BE+EC=CF+EC=EF. 用 SAS 证明△ABC≌△DEF,从而 AC=DF.
证明:(1)如图,连接 AF, ∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE, ∵∠ACB=∠AEF=90°,AF=AF, ∴Rt△ACF≌Rt△AEF, ∴CF=EF.∴BF+EF=BF+CF=BC, ∴BF+EF=DE;
(2)如图,DE=BF-EF,理由是: 连接 AF,∵Rt△ABC≌Rt△ADE, ∴AC=AE,BC=DE, ∵∠E=∠ACF=90°,AF=AF, ∴Rt△ACF≌Rt△AEF,∴CF=EF, ∴DE=BC=BF-FC=BF-EF,即 DE=BF-EF.
24.已知 Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°. (1)将这两个三角形按图①方式摆放,使点 E 落在 AB 上,DE 的延长线交 BC 于点 F.求证:BE+EF=DE; (2)改变△ADE 的位置,使 DE 交 BC 的延长线于点 F(如图②), 写出此时 BF、EF 与 DE 之间的等量关系,并说明理由.

新人教版八年级数学上册全册课件

新人教版八年级数学上册全册课件

巩固并运用“三角形两边的和大于第三边”
追问 解决这类问题我们通常用哪两条线段的和与 第三条线段做比较就可以了?为什么?
用较小两条线段的和与第三条线段做比较; 若较小两条线段的和大于第三条线段,就能保证 任意两条线段的和大于第三条线段.
巩固并运用“三角形两边的和大于第三边”
例2 用一条长为18 cm的细绳围成一个等腰三角 形.(1)如果腰长是底边的2倍,那么各边的长是多 少?
△BDC.
B
C
课堂练习
练习2 下列说法正确的有_(__4_)___. (1)锐角三角形是三条边都不相等的三角形; (2)直角三角形不是等腰三角形; (3)等腰三角形是等边三角形; (4)等边三角形是等腰三角形.
探索与证明三角形三边的关系
问题3 如图,任意画一个△ABC,一只小虫从点 B 出发,沿三角形的边爬到点C,它有几条路线可以选 择?各条线路的长一样吗?你能运用所学知识解释你的 结果吗?你能由此推出三条边之间有怎样的关系?
三边都不相等的三角形
三角形
底边和腰不相等的等腰三角形
等腰三角形 等边三角形
理解三角形的分类
追问 按边分类后的特殊三角形之间有什么关系? 它们的边和角怎样命名?
课堂练习
练习1 图中有几个三角形?用符号表示这些三角 形.
图中有5个三角形. A
D
三角形的表示为:
△ABE, △ABC,
E
△BEC, △EDC,
八年级 上册
11.1 与三角形有关的线段 (第2课时)
课件说明
• 在已学过的过直线外一点作已知直线的垂线、线段的 中点、角的平分线等知识的基础上,本节课学习与三 角形有关的三种重要线段及三角形的稳定性.
课件说明

人教版八年级上册数学第十二章知识点总结与复习课件

人教版八年级上册数学第十二章知识点总结与复习课件
=CF;
理由:
A

方法一 可证△CBF ≌△DAE;
方法二 可证△CAF ≌△DBE.

B
D
归纳小结
(1)本章的核心知识有哪些?这些知识之间有何联系? (2)结合本节课的学习,谈谈全等三角形的知识在解
题中有哪些作用?
布置作业
教科书第55页第10、11、13题.
体系建构
问题2 请同学们整理一下本章所学的主要知识, 你能发现它们之间的联系吗?你能画出一个本章的知 识结构图吗?
本章的知识结构图:
SSS、SAS、ASA、AAS、HL
判定
全等形
全等三角形
角平分线的性质
性质
对应边相等,对应角相等
体系建构
问题3 结合本章知识结构图,思考以下问题: (1)回顾本章的学习过程,全等三角形的性质和判定
人教版八年级 上册
第十二章 知识点总结与复习
课件说明
• 全等三角形的概念是学习本章的基础,研究全等三 角形性质和判定是对对应边之间、对应角之间的相 等关系方面进行的探究,是证明角平分线的性质和 判定的基础.全等三角形的性质和判定又是证明线 段相等和角相等的重要方法.在性质和判定的探究 过程中,渗透了研究几何图形的基本思路和方法.
课件说明
• 学习目标: 1.复习本章的重点内容,整理本章知识,形成知识 体系. 2.巩固和运用全等三角形的相关知识解决问题,进 一步发展推理能力.
• 学习重点: 复习全等三角形判定、性质及角平分线的性质和判 定,建立本章知识结构;运用全等三角形的知识解 决问题.
知识梳理
问题1 请同学们回答下列问题: (1)你能举出一些实际生活中全等形的例子吗? (2)举例说明全等三角形有什么性质? (3)从三角形的三条边对应相等、三个角对应相等中

八年级数学上册期末复习精炼第十二章全等三角形本章知识梳理课件新版新人教版

第十二章 全等三角形 本章知识梳理
思维导图
考纲要求
1. 理解全等三角形的概念,能识别全等三角形中的对应边、对应角. 2. 掌握两边及其夹角分别相等的两个三角形全等、两角及其夹边分别相等的 两个三角形全等、三边分别相等的两个三角形全等等基本事实,并能证明定 理:两角分别相等且其中一组等角的对边相等的两个三角形全等. 3. 探索并掌握判定直角三角形全等的“斜边、直角边”定理. 4. 探索并证明角平分线的性质定理:角的平分线上的点到角的两边的距离相 等;反之,角的内部到角的两边的距离相等的点在角的平分线上.
5. 两边和它们的_夹__角___分别相等的两个三角形全等,简写成 “___边__角___边_”或“______S”A.S 6. _两__角____和它们的___夹__边__分别相等的两个三角形全等,简 写成“____角__边__角_”或“______A”SA. 7. 两角和其中一角的_对___边__分别相等的两个三角形全等,简 写成“__角____角___边”或“___A__A”S . 8. 斜边和一条直角边分别相等的两个直角三角形全等,简写 成“_斜__边__、___直__角__边”或“____H__L”. 9. 角的平分线上的点到角的两边的距离_相__等___;角的内部到 角的两边的距离相等的点在这个角的_____平___分_上线.
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。
一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物理 课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档