导数的综合大题及其分类.

合集下载

高中数学理科专题讲解高考大题专项(一)《导数的综合应用》教学课件

高中数学理科专题讲解高考大题专项(一)《导数的综合应用》教学课件
--
题型二 讨论函数的单调性例2(2019湖北八校联考一,21)已知函数f(x)=x3+ x2-4ax+1(a∈R).(1)略;(2)若函数h(x)=a(a-1)ln x-x3+3x+f(x),讨论函数h(x)的单调性.
--
--
解题心得在判断函数f(x)的单调性时,若f'(x)中含有参数不容易判断其正负时,需要对参数进行分类讨论,分类的标准:(1)按导函数是否有零点分大类;(2)在大类中按导函数零点的大小分小类;(3)在小类中按零点是否在定义域中分类.
当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.
--
--
题型二 求函数的极值、最值例2(2019四川成都七中一模,21)已知函数f(x)=xsin x+2cos x+ax+2,其中a为常数.(1)略;(2)求函数f(x)在[0,π]上的最小值.
--
解: (2)对∀x∈[0,π],f'(x)=xcos x-sin x+a,令g(x)=xcos x-sin x+a,g'(x)=-xsin x≤0,所以f'(x)在区间[0,π]上单调递减.当a≤0时,f'(x)≤f'(0)=a≤0,∴f(x)在区间[0,π]上单调递减,故fmin(x)=f(π)=aπ.当a≥π时,f'(x)≥f'(π)=a-π≥0,∴f(x)在区间[0,π]上单调递增,故fmin(x)=f(0)=4.当0<a<π时,因为f'(0)=a>0,f'(π)=a-π<0,且f'(x)在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x0∈(0,π),使得f'(x0)=0,且f(x)在[0,x0]上单调递增,在[x0,π]上单调递减.故f(x)的最小值等于f(0)=4和f(π)=aπ中较小的一个值.

高考导数题型大全及答案

高考导数题型大全及答案

第三讲导数的应用研热点(聚焦突破)类型一利用导数研究切线问题导数的几何意义导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x)就是曲线y=f(x)在点(x,f(x))处的切线的斜率,即k=f′(x);(2)曲线y=f(x)在点(x0,f(x))处的切线方程为y-f(x)=f′(x)(x-x).[例1](2012年高考安徽卷改编)设函数f(x)=a e x+1a e x+b(a>0).在点(2,f(2))处的切线方程为y=32x,求a,b的值.的值. [解析]∵f′(x)=a e x-1a e x,∴f′(2)=a e2-1a e2=32,解得a e2=2或a e2=-12(舍去),所以a=2e2,代入原函数可得2+12+b=3,即b=12,故a=2e2,b=12.跟踪训练已知函数f(x)=x3-x. (1)求曲线y=f(x)的过点(1,0)的切线方程;的切线方程;(2)若过x轴上的点(a,0)可以作曲线y=f(x)的三条切线,求a的取值范围.的取值范围.解析:(1)由题意得f′(x)=3x2-1.曲线y=f(x)在点M(t,f(t))处的切线方程为y-f(t)=f′(t)(x-t),即y=(3t2-1)·x-2t3,将点(1,0)代入切线方程得2t3-3t2+1=0,解得t=1或-12,代入y=(3t2-1)x-2t3得曲线y=f(x)的过点(1,0)的切线方程为y=2x-2或y=-14x+14. (2)由(1)知若过点(a,0)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a=0有三个相异的实根,记g(t)=2t3-3at2+a. 则g′(t)=6t2-6at=6t(t-a).当a>0时,函数g(t)的极大值是g(0)=a,极小值是g(a)=-a3+a,要使方程g(t)=0有三个相异的实数根,需使a>0且-a3+a<0,即a>0且a2-1>0,即a>1;当a=0时,函数g(t)单调递增,方程g(t)=0不可能有三个相异的实数根;当a<0时,函数g(t)的极大值是g(a)=-a3+a,极小值是g(0)=a,要使方程g(t)=0有三个相异的实数根,需使a<0且-a3+a>0,即a<0且a2-1>0,即a<-1. 综上所述,a的取值范围是(-∞,-1)∪(1,+∞).类型二利用导数研究函数的单调性函数的单调性与导数的关系在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.上单调递减.[例2](2012年高考山东卷改编)已知函数f(x)=lnxx ke+(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.轴平行. (1)求k的值;的值;(2)求f(x)的单调区间.的单调区间.[解析](1)由f(x)=ln x+k e x,得f′(x)=1-kx-x ln xx e x,x∈(0,+∞).由于曲线y=f(x)在(1,f(1))处的切线与x轴平行,所以f′(1)=0,因此k=1. (2)由(1)得f′(x)=(1-x-x ln x),x∈(0,+∞).令h(x)=1-x-x ln x,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0. 又e x>0,所以当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0. 因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).跟踪训练若函数f(x)=ln x-12ax2-2x存在单调递减区间,求实数a的取值范围.的取值范围.解析:由题知f′(x)=1x-ax-2=-ax2+2x-1x,因为函数f(x)存在单调递减区间,所以f′(x)=-ax2+2x-1x≤0有解.又因为函数的定义域为(0,+∞),则应有ax2+2x-1≥0在(0,+∞)上有实数解.(1)当a>0时,y=ax2+2x-1为开口向上的抛物线,所以ax2+2x-1≥0在(0,+∞)上恒有解;(2)当a<0时,y=ax2+2x-1为开口向下的抛物线,要使ax2+2x-1≥0在(0,+∞)上有实数解,则Δ=44a +>0,此时-1<a <0; (3)当a =0时,显然符合题意.综上所述,实数a 的取值范围是(-1,+∞). 类型三 利用导数研究函数的极值与最值1.求函数y =f (x )在某个区间上的极值的步骤在某个区间上的极值的步骤 (1)求导数f ′(x );(2)求方程f ′(x )=0的根x 0; (3)检查f ′(x )在x =x 0左右的符号;左右的符号; ①左正右负⇔f (x )在x =x 0处取极大值;处取极大值; ②左负右正⇔f (x )在x =x 0处取极小值.处取极小值.2.求函数y =f (x )在区间[a ,b ]上的最大值与最小值的步骤上的最大值与最小值的步骤(1)求函数y =f (x )在区间(a ,b )内的极值(极大值或极小值);(2)将y =f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个为最大值,最小的一个为最小值.最小的一个为最小值.[例3] (2012年高考北京卷)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx . (1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间,并求其在区间(-∞,-1]上的最大值. [解析] (1)f ′(x )=2ax ,g ′(x )=3x 2+b ,因为曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线, 所以f (1)=g (1),且f ′(1)=g ′(1). 即a +1=1+b ,且2a =3+b . 解得a =3,b =3. (2)记h (x )=f (x )+g (x ).当b =14a 2时,h (x )=x 3+ax 2+14a 2x +1,h ′(x )=3x 2+2ax +14a 2. 令h ′(x )=0,得x 1=-a 2,x 2=-a6. a >0时,h (x )与h ′(x )的变化情况如下: x (,)2a -¥-2a- (,)26aa--6a -(,)6a-+¥ ()h x ¢ +0 -0 +()h x所以函数h (x )的单调递增区间为(-∞,-a 2)和(-a 6,+∞);单调递减区间为(-a 2,-a6).当-a2≥-1,即0<a ≤2时,时, 函数h (x )在区间(-∞,-1]上单调递增,h (x )在区间(-∞,-1]上的最大值为h (-1)=a -14a 2. 当-a 2<-1,且-a6≥-1,即2<a ≤6时,时, 函数h (x )在区间(-∞,-a2)上单调递增,在区间(-a2,-1]上单调递减,h (x )在区间(-∞,-1]上的最大值为h (-a2)=1. 当-a6<-1,即a >6时,时, 函数h (x )在区间(-∞,-a2)上单调递增,在区间(-a2,-a6)上单调递减,在区间(-a6,-1]上单调递增,又因为h (-a 2)-h (-1)=1-a +14a 2=14(a -2)2>0,所以h (x )在区间(-∞,-1]上的最大值为h (-a2)=1. 跟踪训练(2012年珠海摸底)若函数f (x )=îíì2x 3+3x 2+1(x ≤0)e ax(x >0),在[-2,2]上的最大值为2,则a 的取值范围是( ) A .[12ln 2,+∞) B .[0,12ln 2] C .(-∞,0] D .(-∞,12ln 2] 解析:当x ≤0时,f ′(x )=6x 2+6x ,易知函数f (x )在(-∞,0]上的极大值点是x =-1,且f (-1)=2,故只要在(0,2]上,e ax≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x 在(0,2]上恒成立,故a ≤12ln 2. 答案:D 析典题(预测高考)高考真题【真题】 (2012年高考辽宁卷)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.点相切. (1)求a ,b 的值;的值;(2)证明:当0<x <2时,f (x )<9xx +6. 【解析】 (1)由y =f (x )过(0,0)点,得b =-1. 由y =f (x )在(0,0)点的切线斜率为32,又y ′ïïx =0=(1x +1+12x +1+a )ïïx =0=32+a ,得a =0. (2)证明:证法一 由均值不等式,当x >0时, 2(x +1)·1<x +1+1=x +2,故x +1<x2+1. 记h (x )=f (x )-9xx +6,则h ′(x )=1x +1+12x +1-54(x +6)2=2+x +12(x +1)-54(x +6)2<x +64(x +1)-54(x +6)2=(x +6)3-216(x +1)4(x +1)(x +6)2. 令g (x )=(x +6)3-216(x +1), 则当0<x <2时,g ′(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数. 又由g (0)=0,得g (x )<0,所以h ′(x )<0. 因此h (x )在(0,2)内是递减函数. 又h (0)=0,得h (x )<0.于是当0<x <2时,f (x )<9xx +6. 证法二 由(1)知f (x )=ln(x +1)+x +1-1. 2(x+1)·1<,故x+1<2+=1-<0)<3x9<31+12x+1)1[3x+1)1[3)(7)<9. =ln xx,其中+12;-1x=x-1x,+12=ln xx+12,=1-ln xx2,当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增,所以h(x)max=h(e)=1e+12<12+12=1=f(x)min,所以在(1)的条件下,f(x)>g(x)+1 2. (3)假设存在实数a,使f(x)=ax-ln x(x∈(0,e])有最小值3,f′(x)=a-1x=ax-1x. ①当a≤0时,因为x∈(0,e],所以f′(x)<0,而f(x)在(0,e]上单调递减,所以f(x)min=f(e)=a e-1=3,a=4e(舍去),此时f(x)无最小值;②当0<1a<e时,f(x)在(0,1a)上单调递减,在(1a,e]上单调递增,所以f(x)min=f(1a)=1+ln a=3,a=e2,满足条件;③当1a≥e时,因为x∈(0,e],所以f′(x)<0,所以f(x)在(0,e]上单调递减,f(x)min =f(e)=a e-1=3,a=4e(舍去) 此时f(x)无最小值.综上,存在实数a=e2,使得当x∈(0,e]时,f(x)有最小值3. 。

导数复习题(含答案)

导数复习题(含答案)
所以函数 在 上是增函数,
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()

高二数学导数的综合运用试题答案及解析

高二数学导数的综合运用试题答案及解析

高二数学导数的综合运用试题答案及解析1.已知使函数y=x3+ax2-a的导数为0的x值也使y值为0,则常数a的值为()A.0B.±3C.0或±3D.非以上答案【答案】C【解析】若,则或,当时,,则;当时,,则或,所以或,答案选C.【考点】导数的定义2.设函数f()=,且方程的两个根分别为1,4.(1)当=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求的取值范围.【答案】(1)f(x)=x3-3x2+12x;(2)[1,9]【解析】(1)方程的两个根分别为1,4可知关于a、b、c的两个方程,又a=3,解得b=-3,c=12,而曲线过原点,所以d=0,所以解析式为f(x)=x3-3x2+12x,(2)由于a>0,所以“f(x)=x3+bx2+cx+d在(-∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”,因此a>0,,解得a∈[1,9].试题解析:由f(x)=x3+bx2+cx+d得f′(x)=ax2+2bx+c∵f′(x)-9x=ax2+2bx+c-9x=0的两根为1,4.∴(*)(1)当a=3时,由(*)式得,解得b=-3,c=12.又∵曲线y=f(x)过原点,∴d=0.故f(x)=x3-3x2+12x.(2)由于a>0,所以“f(x)=x3+bx2+cx+d在(-∞,+∞)内无极值点”等价于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”,由(*)式得2b=9-5a,c=4a.又∵Δ=(2b)2-4ac=9(a-1)(a-9)解,得a∈[1,9],即a的取值范围为[1,9].【考点】1.函数与导函数的综合应用;2.不等式恒成立问题3.已知函数f(x)=x2+2alnx.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数在上是减函数,求实数a的取值范围.【答案】(Ⅰ)当a≥0时,递增区间为(0,+∞);当a<0时,递减区间是(0,);递增区间是(,+∞);(Ⅱ).【解析】解题思路:(Ⅰ)求定义域与导函数,因含有参数,分类讨论求出函数的单调区间;(Ⅱ)利用“函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立”,得到不等式恒成立;再分离参数,求函数的最值即可.规律总结:若函数在某区间上单调递增,则在该区间恒成立;“若函数在某区间上单调递减,则在该区间恒成立.试题解析:(Ⅰ)f′(x)=2x+=,函数f(x)的定义域为(0,+∞).①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);②当a<0时,f′(x)=.当x变化时,f′(x),f(x)的变化情况如下:(0,)(,+∞)-0+由上表可知,函数f(x)的单调递减区间是(0,);单调递增区间是(,+∞).(Ⅱ)由g(x)=+x2+2aln x,得g′(x)=-+2x+,由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.令h(x)=-x2,在[1,2]上h′(x)=--2x=-(+2x)<0,所以h(x)在[1,2]上为减函数,h(x)=h(2)=-,所以a≤-.min故实数a的取值范围为{a|a≤-}.【考点】1.利用导数求函数的单调区间;2.根据函数的单调性求参数.4.已知,则导函数f′(x)是().A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数【答案】D.【解析】,;,即是奇函数,且在上单调递增,则有最大值,也有最小值;故选D 【考点】函数的性质.5.设函数f(x)=x3﹣x2﹣2x﹣.(1)求函数f(x)的单调递增、递减区间;(2)当x∈[﹣1,1]时,f(x)<m恒成立,求实数m的取值范围.【答案】(1)f(x)的单调增区间为(﹣∞,﹣]和[1,+∞),单调减区间为[﹣,1]; (2)m >.【解析】(1)首先应求导数,利用导数的为正或为负,解对应不等式可得函数的单调增(减)区间;(2)由不等式恒成立问题可通过分离参数等价转化成f(x)<m,求函数f(x)的最大值即可.max试题解析:(1)f′(x)=3x2﹣x﹣2=0,得x=1,﹣.在(﹣∞,﹣)和[1,+∞)上f′(x)>0,f(x)为增函数;在(﹣,1)上f′(x)<0,f(x)为减函数.所以所求f(x)的单调增区间为(﹣∞,﹣]和[1,+∞),单调减区间为[﹣,1].(2)由(1)知,当x∈[﹣1,﹣]时,f′(x)>0,[﹣,1]时,f′(x)<0∴f(x)≤f(﹣)=.∵当x∈[﹣1,1]时,f(x)<m恒成立,∴m>.【考点】1.利用导数研究函数的单调性;2.不等式的恒成立问题.6.已知,函数(为自然对数的底数).(Ⅰ)若,求函数的单调区间;(Ⅱ)若的最小值为,求的最小值.【答案】(Ⅰ)的单调减区间为单调增区间为;(Ⅱ).【解析】(Ⅰ)由于当a=1时,,则,分别由f′(x)>0,f′(x)<0,进而求出函数f(x)的单调区间.(Ⅱ)由题意可知:恒成立,且等号可取.令转化为方程求解.试题解析:(Ⅰ)时, ,当时,当时,所以的单调减区间为单调增区间为.(Ⅱ)由题意可知:恒成立,且等号可取.即恒成立,且等号可取.令故由得到,设,当时,;当时,.在上递减,上递增.所以当时, ,即,在上,,递减;在上,,递增.所以设,,在上递减,所以故方程有唯一解,即.综上所述,当时,仅有满足的最小值为,故的最小值为.【考点】1.利用导数研究函数的单调性;2.利用导数求函数的极值、最值;3.分类讨论.7.设函数,则()A.x=1为的极大值点B.x=-1为的极大值点C.x=1为的极小值点D.x=-1为的极小值点【答案】D【解析】因为=,则当<-1时,<0,当>-1时,>0,则在(-,-1)上是减函数,在(0,+)上是增函数,则当=-1时,取极小值,故选D.考点:常见函数的导数,导数的运算法则,导数的综合运用8.已知函数.(1)若,求函数的单调区间;(2)设函数在区间上是增函数,求的取值范围.【答案】(1)递增区间是(−∞,−),(0,+∞);递减区间是(−,0).(2)[-,+).【解析】(1)求出导函数,解出当=1时,>0对应的区间就是的增区间,<0对应的区间就是的减区间;(2)由函数在区间上是增函数知≥0对∈[1,2]恒成立,通过参变分离化为a≥−对∈[1,2]恒成立,求出−在∈[1,2]上的最大值,则a大于等于−在∈[1,2]上的最大值,即得到a的取值范围.试题解析:=,(1)当a=1时,=,令=0得x=0或x=−∴当变化时,,的变化情况如下表(0,(−∞,−)−(−,0)∴的递增区间是(−∞,−),(0,+∞);递减区间是(−,0).(2)∵函数在区间[1,2]上是增函数,∴对任意的∈[1,2]恒有≥0,即对任意的∈[1,2]恒有a≥−∴a≥[−]max,而函数y=−在区间[1,2]上是减函数,∴当=1时,函数y=−取最大值−,∴a≥−.∴的取值范围为[-,+).【考点】常见函数的导数,导数与函数单调性关系,恒成立问题,转化思想9.已知函数,其中,为自然对数的底数.(1)设是函数的导函数,求函数在区间上的最小值;(2)若,函数在区间内有零点,求的取值范围。

高中数学导数最全类型题

高中数学导数最全类型题

导数及其应用1、 导数的几何意义 已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线倾斜角,则α的取值范围是多少?2、 若曲线y=2x 2的一条切线l 与直线x+4y-8=0垂直,则切线l 的方程为3、 若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+9415-x 都相切 ,则a 的值为多少4、 曲线y=e x 在点(2,e 2)处的切线与坐标轴围成的三角形的面积为多少?5、 已知函数f (x )的定义域为[)∝+-,3,且f(6)=2,)(,x f 为f(x)的导函数,图像如图所示,若正数a ,b 满足f (2a+b )<2,则23-+a b 的取值范围。

6、 曲边梯形由曲线y=x 2+1,y=0,x=1,x=2所围成,过曲线y=x 2+1,x ∈[1,2 ]上一点P 作切线,使得次切线从23、函数)(x f 的定义域为开区间(a ,b ),导函数)`(x f 在区间(a ,b )内的图像如图所示,则函数)(x f 在区间(a ,b )内的极小值点有几个?24、设函数21)(ax e x f x+=,其中a 为正实数。

(1) 当a=43时,求)(x f 的极值点; (2) 若)(x f 为R 上的单调函数,求a 的取值范围利用导数求解函数的最值 25、设函数)(x f =x x e 122+,x exe x g 2)(=,对任意x 1,x 2∈(0,+∞),不等式1)()(21+≤k xf k xg 恒成立,则正数k 的取值范围为多少?导数解决实际应用问题 31、 某市政府为了打造宜居城市,计划在公园内新建一个如图所示的矩形ABCD 的休闲区,内部是景观区A 1B 1C 1D 1,景观区四周是人行道,已知景观区的面积为8000平方米,人行道的宽度为5m 。

(1) 设景观区的宽B 1C 1的长度为x 米,求休闲区ABCD 所占面积关于x 的函数;(2) 规划要求景观区的宽B 1C 1的长度不能超过50米,如何设计景观区的长和宽,才能使ABCD 所占面积最小?32、 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位;cm )满足关系C (x )=)100(53≤≤+x x k,若不建隔热层,每年能源消耗费用为8万元,设)(x f 为隔热层建造费用与20年的能源消耗费用之和。

高考导函数综合训练(含标准参考答案)

高考导函数综合训练(含标准参考答案)

导函数的综合应用【典型例题】考点一、利用导数研究函数的零点或方程的根【例1】(2015·高考北京卷)设函数f(x)=-k ln x,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.(2)【变式训练2】已知函数f(x)=(e为自然对数的底数).(1)求函数f(x)的单调区间;(2)设函数φ(x)=xf(x)+tf′(x)+,存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求实数t的取值范围.考点三与导函数有关的参数求解或求取值范围问题【例3】已知函数f(x)=ln x-.(2)M;【应用体验】1.函数f(x)=ax3+x恰有三个单调区间,则a的取值范围是__________.2.若函数f(x)=x+a sin x在R上递增,则实数a的取值范围为________.3.已知函数f (x )的定义域为R ,f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A.(-3,-2)∪(2,3)B.(-,)C.(2,3)4.)5.,g ′(x )>01.已知曲线cos y ax x =在(22A .2πB .2π-C .1-πD .1π2.已知定义域为R 的偶函数()f x ,其导函数为()f x ',对任意[)0,x ∈+∞,均满足:()()2xf x f x '>-.若()()2g x x f x =,则不等式()()21g x g x <-的解集是()A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭3.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( )A.B .(-∞,3] C.D .[3,+∞)二、填空题4.a 12≤恒5.6.7y8.已知函数f (x )=ln x ++ax (a 是实数),g (x )=+1.(1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.B 组能力提升2.b 的3.2)为偶5.已知函数()()21x f x e x ax a =--+,其中a <1,若存在唯一的整数0x ,使得()0f x <0,则a 的取值范围是.(e 为自然对数的底数)6.若()x x f x e ae -=+为偶函数,则21(1)e f x e +-<的解集为_____________.三、解答题7.(2015·高考广东卷)设a>1,函数f(x)=(1+x2)e x-a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.【例题1】[解](1)由f(x)=-k ln x(k>0),得x>0且f′(x)=x-=.由f′(x)=0,解得x=.f(x)与f′(x)在区间(0,+∞)上的情况如下:∞);f(x)在x=处取得极小值f()=.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以≤0,从而k≥e.当k=e时,f(x)在区间(1,)上单调递减,且f()=0,所以x=是f(x)在区间(1,]上的唯一零点.,0000由u′(x)=1-≥0知,函数u(x)在区间(1,+∞)上单调递增,故0=u(1)<a0=u(x0)<u(e)=e-2<1,即a0∈(0,1).当a=a0时,有f′(x0)=0,f(x0)=φ(x0)=0.再由(1)知,f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,从而f(x)>f(x0)=0;又当x∈(0,1]时,f(x)=(x-a0)2-2x ln x>0.故x∈(0,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【例题2】解:(1)m=-1时,f(x)=(1-x)e x+x2,则f′(x)=x(2-e x),(2)假设存在x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,则2[φ(x)]min<[φ(x)]max.∵φ(x)=xf(x)+tf′(x)+e-x=,∴φ′(x)==-.①当t≥1时,φ′(x)≤0,φ(x)在[0,1]上单调递减,∴2φ(1)<φ(0),即t>3->1.②当t≤0时,φ′(x)>0,φ(x)在[0,1]上单调递增,∴2φ(0)<φ(1),即t<3-2e<0.③当0<t<1时,若x∈[0,t),φ′(x)<0,φ(x)在[0,t)上单调递减;若x∈(t,1],φ′(x)>0,φ(x)在(t,1]上单调递增,所以2φ(t)<max{φ(0),φ(1)},即2·<max,(*)③若-e<a<-1,令f′(x)=0得x=-a,当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,∴f(x)min=f(-a)=ln(-a)+1=,∴a =-.综上所述,a =-.(3)∵f (x )<x 2,∴ln x -<x 2.又x >0,∴a >x ln x -x 3.令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2,1.【答案】C 【解析】令()cos y f x ax x ==,则()c o s s in f x a x a x x '=-,所以()cos sin 22222a a f a πππππ'=-=- 12=,解得1a =-π.故选C . 2.【答案】C【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x '''=+=+>,而()()2g x x f x =也为偶函数,所以()()()()2121|2||1||2||1|321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.3.解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]12k ≤12≥. 令()333x g x x x e =-+-,则()233(1)(33)x x g x x x x e e'=--=-++,所以当(,1)x ∈-∞时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,所以()g x 在(,1)x ∈-∞上是减函数,在(1,)x ∈+∞是增函数,故()()min 111g x g e==-.6.【答案】),1()1,(+∞⋃--∞【解析】()()()()()22''2'211221'()222x g x f x g x x f x x x f x f x ⎡⎤=--∴=⋅-=⋅-<⎣⎦ ()'2210f x ∴⋅-<()'0g x ∴>得0x <,()'0g x <得0x >()()g x g x -=可知函数为偶函数()()()111010g f g =-=∴-=,结合()g x 的函数图像可知()0g x <的解集为),1()1,(+∞⋃--∞,即不等式212)(22+<x x f 的解集为),1()1,(+∞⋃--∞ 7.解:(1)f ′(x )=x -(a +b )+=.(a ,(a ,+∞)点,不合题意.综上所述,a 的取值范围为.8.解:(1)当a =2时,f (x )=ln x ++2x ,x ∈(0,+∞),f ′(x )=-+2==,令f ′(x )=0,则x =-1或x =.当x ∈时,f ′(x )<0;当x ∈时,f ′(x )>0,所以f (x )在x =处取到最小值,最小值为3-ln2;无最大值.(2)f ′(x )=-+a =,x ∈[1,+∞),显然a ≥0时,f ′(x )≥0,且不恒等于0,所以函数f (x )在[1,+∞)上是单调递增函数,符合要求.当a <0时,令h (x )=ax 2+x -1,易知h (x )≥0在[1,+∞)上不恒成立,所以函数f (x )在[1,+∞)上只能是单调递减函数.a 无试题分析:设12()()x g x e f x =,则11122211'()'()()(()2'())22x x x g x e f x e f x e f x f x =+=+,则已知'()0g x >,所以()g x 是增函数,所以(1)(0)g g >,即12(1)(0)e f f >,(1)f>A . 考点:导数与函数的单调性.2.【答案】C【解析】 试题分析:由题意,得2212()ln ()()x x b x x b f x x +----'=,则()()f x xf x +'=2ln ()x x b x+--212()ln ()x x b x x b x +----=12()x x b x +-.若存在1[,2]2x ∈,使得()'()f x x f x >-⋅,则12()0x x b +->,所以12b x x <+.设1()2g x x x=+,则222121()122x g x x x -'=-=,当122x ≤≤时,()g x '<递增,94=,)x 是单)1=,所以(g )∞,故试题分析:验证发现,当x=1时,将1代入不等式有0≤a+b ≤0,所以a+b=0,当x=0时,可得0≤b ≤1,结合a+b=0可得-1≤a ≤0,令f (x )=x 4-x 3+ax+b ,即f (1)=a+b=0,又f ′(x )=4x 3-3x 2+a ,f ′′(x )=12x 2-6x ,令f′′(x)>0,可得x>12,则f′(x)=4x3-3x2+a在[0,12]上减,在[12,+∞)上增,又-1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0,又x≥0时恒有430x x ax b≤-++,结合f(1)=a+b=0知,1必为函数f(x)=x4-x3+ax+b的极小值点,也是最小值点.y ax =-12 x>-时,1时,考点:利用导数研究函数的极值;函数的零点.6.【答案】(0,2)【解析】试题分析:由()x x f x e ae -=+为偶函数可得1a =,所以()x x f x e e -=+.因为()x x f x e e -'=-),0(+∞上为增函数,所以()(0)0f x f ''>=,所以函数()f x 在),0(+∞上为增函数,所以21(1)e f x e+-<等价于1(1)f x e e --<+,即(1)(1)f x f -<,所以111x -<-<,所以02x <<. 考点:1、函数的奇偶性;2、函数的单调性.7.解:(1)f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ≥0,故f (x )是R 上的单调(2)ln 2a )a(3)0,即8.=2,设h (x )=f (x )-g (x )=(x +1)ln x -,当x ∈(0,1]时,h (x )<0,又h (2)=3ln2-=ln8->1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0.因为h ′(x )=ln x ++1+,所以当x ∈(1,2)时,h ′(x )>1->0,当x∈[2,+∞)时,h′(x)>0,所以当x∈(1,+∞)时,h(x)单调递增.所以k=1时,方程f(x)=g(x)在(k,k+1)内存在唯一的根.(3)由(2)知,方程f(x)=g(x)在(1,2)内存在唯一的根x0,且x∈(0,x0)时,f(x)<g(x),x∈(x0,+∞)时,f(x)>g(x),所以m(x)=。

【高二】导数的概念综合测试题(含答案)

【高二】导数的概念综合测试题(含答案)

【高二】导数的概念综合测试题(含答案)选修2-21.1第2课时导数的概念我1.函数在某一点的导数是( )a、此时函数值增量与自变量增量之比b.一个函数c、是常数,不是变量d.函数在这一点到它附近一点之间的平均变化率[答:]C[解析] 由定义,f′(x0)是当δx无限趋近于0时,δyδx无限趋近的常数,故应选c.2.如果粒子a按照s=3t2定律移动,则t0=3时的瞬时速度为()a.6 b.18c、 54d、 81[答案] b[分析]∵ s(T)=3t2,t0=3,∴δs=s(t0+δt)-s(t0)=3(3+δt)2-3?32=18δt+3(δt)2∴ δsδt=18+3δt。

当δt→0时,δsδt→18,故应选b.3.y=x2在x=1处的导数为()a.2x b.2c、 2+δxd.1[答案] b[分析]∵ f(x)=X2,x=1,∴δy=f(1+δx)2-f(1)=(1+δx)2-1=2?δx+(δx)2∴ δyδx=2+δx当δx→0时,δyδx→2‡f′(1)=2,因此应选择B4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为( )a、 37b、 38c.39 d.40[答:]d[解析] ∵δsδt=4(5+δt)2-3-4×52+3δt=40+4δt,∴s′(5)=limδt→0δsδt=limδt→0(40+4δt)=40。

因此,D5.已知函数y=f(x),那么下列说法错误的是( )a、δy=f(x0+δx)-f(x0)称为函数值的增量b.δyδx=f(x0+δx)-f(x0)δx叫做函数在x0到x0+δx之间的平均变化率c、 F(x)在x0处的导数写成y′d.f(x)在x0处的导数记为f′(x0)[答:]C[解析] 由导数的定义可知c错误.故应选c.(X.XF=0)的导数可以表示为(X.XY′)的函数a.f′(x0)=f(x0+δx)-f(x0)b、f′(x0)=limδx→0[f(x0+δx)-f(x0)]c.f′(x0)=f(x0+δx)-f(x0)δxd、f′(x0)=limδx→0f(x0+δx)-f(x0)δx[答案] d【分析】从导数的定义,我们知道D是正确的。

3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)(解析版)

3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)(解析版)

3类导数综合问题解题技巧(端点效应(必要性探索)、函数的凹凸性、洛必达法则)技法01端点效应(必要性探索)解题技巧知识迁移端点效应的类型1.如果函数f(x)在区间[a,b]上,f(x)≥0恒成立,则f(a)≥0或f(b)≥0.2.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0(或f(b)=0),则f (a)≥0 或f (b)≤0 .3.如果函数f(x)在区问[a,b]上,f(x)≥0恒成立,且f(a)=0,f (a)=0(或f(b)=0,f (b)≤0 则f (a)≥0 或f (b)≤0 .1(2023·全国·统考高考真题)已知函数f(x)=ax-sin xcos3x,x∈0,π2(1)当a=8时,讨论f(x)的单调性;(2)若f(x)<sin2x恒成立,求a的取值范围.【法一】端点效应一令g(x)=f(x)-sin2x,x∈0,π2,得g(0)=0,且g(x)<0在x∈0,π2上恒成立画出草图根据端点效应, 需要满足g (0)≤0,而g (x)=a-1+2sin2xcos4x-2cos2x则g (0)=a-3, 令g (0)≤0, 得a≤3当a≤3时, 由于g(0)=0, 只需证g (x)<0即可而g (x)含有参数a, 故可对g (x)进行放缩即g x =a-1+2sin2xcos4x-2cos2x≤3-1+2sin2xcos4x-2cos2x=5-3-2cos2xcos4x-4cos2x令t=cos2x, 其中0<t<1设h(t)=5-3-2tt2-4t则h (t)=6t3-2t2-4=-4t3-2t+6t3令p(t)=-4t3-2t+6则p (t)=-12t2-2<0, 故p(t)在(0,1)上递减, 得p(t)>p(1)=0则h (t)>0, 得h(t)在(0,1)上单调递增, 则h(t)<h(1)=0即g (x)<0, 满足g(x)<g(0)=0成立当a>3时,由于g 0 =a-3>0,故存在x0, 使得在0,x0上g (x)>0,所以g(x)在0,x0上单调递增, 则g(x)>g(0)=0, 不成立特上所述:a≤3.【法二】端点效应二(2)f(x)<sin2x⇒ax-sin xcos3x <sin2x⇒g(x)=ax-sin2x-sin xcos3x<0由于g(0)=0, 且g (x)=a-2cos2x-cos2x+3sin2xcos4x,注意到当g (0)>0, 即a>3时, ∃x0∈0,π2使g (x)>0在x∈0,x0成立, 故此时g(x)单调递减∴g(x)>g(0)=0, 不成立.另一方面, 当a≤3时, g(x)≤3x-sin2x-sin xcos3x≡h(x), 下证它小于等于0 .令h x =3-2cos2x-3-2cos2x cos2x=3cos4x+2cos2x-3-2cos2x cos4xcos4x =3cos4x-1+2cos2x1-cos2x cos2xcos4x=-cos2x-124cos2x+3cos4x<0.∴g(x)单调递减, ∴g(x)≤g(0)=0. 特上所述:a≤3.【法三】设g(x)=f(x)-sin2xg (x)=f (x)-2cos2x=g(t)-22cos2x-1=at2+2t-3t2-2(2t-1)=a+2-4t+2t-3t2设φ(t)=a+2-4t+2t -3 t2φ (t)=-4-2t2+6t3=-4t3-2t+6t3=-2(t-1)(2t2+2t+3)t3>0所以φ(t)<φ(1)=a-3.1°若a∈(-∞,3],g (x)=φ(t)<a-3≤0即g(x)在0,π2上单调递减,所以g(x)<g(0)=0.所以当a∈(-∞,3],f(x)<sin2x,符合题意.2°若a∈(3,+∞)当t→0,2t-3t2=-31t-132+13→-∞,所以φ(t)→-∞.φ(1)=a-3>0.所以∃t0∈(0,1),使得φt0 =0,即∃x0∈0,π2,使得g x0 =0.当t∈t0,1,φ(t)>0,即当x∈0,x0,g (x)>0,g(x)单调递增.所以当x∈0,x0,g(x)>g(0)=0,不合题意.综上,a的取值范围为(-∞,3].1(2023·全国·统考高考真题)已知函数f x =ax-sin xcos2x,x∈0,π2.(1)当a=1时,讨论f x 的单调性;(2)若f x +sin x<0,求a的取值范围.【答案】(1)f x 在0,π2上单调递减(2)a≤0【分析】(1)代入a=1后,再对f x 求导,同时利用三角函数的平方关系化简f x ,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数g x =f x +sin x,从而得到g x <0,注意到g0 =0,从而得到g 0 ≤0,进而得到a≤0,再分类讨论a=0与a<0两种情况即可得解;法二:先化简并判断得sin x-sin xcos2x<0恒成立,再分类讨论a=0,a<0与a>0三种情况,利用零点存在定理与隐零点的知识判断得a>0时不满足题意,从而得解.【详解】(1)因为a=1,所以f x =x-sin xcos2x,x∈0,π2,则f x =1-cos x cos2x-2cos x-sin xsin xcos4x=1-cos2x+2sin2xcos3x=cos3x-cos2x-21-cos2xcos3x=cos3x+cos2x-2cos3x,令t=cos x,由于x∈0,π2,所以t=cos x∈0,1 ,所以cos 3x +cos 2x -2=t 3+t 2-2=t 3-t 2+2t 2-2=t 2t -1 +2t +1 t -1 =t 2+2t +2 t -1 ,因为t 2+2t +2=t +1 2+1>0,t -1<0,cos 3x =t 3>0,所以f x =cos 3x +cos 2x -2cos 3x <0在0,π2 上恒成立,所以f x 在0,π2 上单调递减.(2)法一:构建g x =f x +sin x =ax -sin x cos 2x +sin x 0<x <π2 ,则g x =a -1+sin 2xcos 3x +cos x 0<x <π2 ,若g x =f x +sin x <0,且g 0 =f 0 +sin0=0,则g 0 =a -1+1=a ≤0,解得a ≤0,当a =0时,因为sin x -sin xcos 2x =sin x 1-1cos 2x ,又x ∈0,π2 ,所以0<sin x <1,0<cos x <1,则1cos 2x >1,所以f x +sin x =sin x -sin xcos 2x <0,满足题意;当a <0时,由于0<x <π2,显然ax <0,所以f x +sin x =ax -sin x cos 2x +sin x <sin x -sin xcos 2x <0,满足题意;综上所述:若f x +sin x <0,等价于a ≤0,所以a 的取值范围为-∞,0 .法二:因为sin x -sin x cos 2x =sin x cos 2x -sin x cos 2x =sin x cos 2x -1 cos 2x =-sin 3xcos 2x ,因为x ∈0,π2 ,所以0<sin x <1,0<cos x <1,故sin x -sin xcos 2x <0在0,π2 上恒成立,所以当a =0时,f x +sin x =sin x -sin xcos 2x <0,满足题意;当a <0时,由于0<x <π2,显然ax <0,所以f x +sin x =ax -sin x cos 2x +sin x <sin x -sinxcos 2x <0,满足题意;当a >0时,因为f x +sin x =ax -sin x cos 2x +sin x =ax -sin 3xcos 2x ,令g x =ax-sin3xcos2x0<x<π2,则g x =a-3sin2x cos2x+2sin4xcos3x,注意到g 0 =a-3sin20cos20+2sin40cos30=a>0,若∀0<x<π2,gx >0,则g x 在0,π2上单调递增,注意到g0 =0,所以g x >g0 =0,即f x +sin x>0,不满足题意;若∃0<x0<π2,gx0<0,则g 0 g x0<0,所以在0,π2上最靠近x=0处必存在零点x1∈0,π2,使得g x1 =0,此时g x 在0,x1上有g x >0,所以g x 在0,x1上单调递增,则在0,x1上有g x >g0 =0,即f x +sin x>0,不满足题意;综上:a≤0.【点睛】关键点睛:本题方法二第2小问讨论a>0这种情况的关键是,注意到g 0 >0,从而分类讨论g x 在0,π2上的正负情况,得到总存在靠近x=0处的一个区间,使得g x >0,从而推得存在g x >g0 =0,由此得解.2(2020·全国·统考高考真题)已知函数f(x)=e x+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x≥0时,f(x)≥12x3+1,求a的取值范围.【答案】(1)当x∈-∞,0时,f'x <0,f x 单调递减,当x∈0,+∞时,f'x >0,f x 单调递增.(2)7-e24,+∞【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x=0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a的取值范围.【详解】(1)当a=1时,f x =e x+x2-x,f x =e x+2x-1,由于f x =e x+2>0,故f'x 单调递增,注意到f 0 =0,故:当x∈-∞,0时,f x <0,f x 单调递减,当x∈0,+∞时,f x >0,f x 单调递增.(2)[方法一]【最优解】:分离参数由f x ≥12x3+1得,e x+ax2-x≥12x3+1,其中x≥0,①.当x=0时,不等式为:1≥1,显然成立,符合题意;②.当x>0时,分离参数a得,a≥-e x-12x3-x-1x2,记g x =-e x-12x3-x-1x2,g x =-x-2e x-12x2-x-1x3,令h x =e x-12x2-x-1x≥0,则h x =e x-x-1,h x =e x-1≥0,故h'x 单调递增,h x ≥h 0 =0,故函数h x 单调递增,h x ≥h0 =0,由h x ≥0可得:e x-12x2-x-1≥0恒成立,故当x∈0,2时,g x >0,g x 单调递增;当x∈2,+∞时,g x <0,g x 单调递减;因此,g xmax=g2 =7-e2 4,综上可得,实数a的取值范围是7-e24,+∞.[方法二]:特值探路当x≥0时,f(x)≥12x3+1恒成立⇒f(2)≥5⇒a≥7-e24.只需证当a≥7-e24时,f(x)≥12x3+1恒成立.当a≥7-e24时,f(x)=ex+ax2-x≥e x+7-e24⋅x2-x.只需证明e x+7-e24x2-x≥12x3+1(x≥0)⑤式成立.⑤式⇔e2-7x2+4x+2x3+4e x≤4,令h(x)=e2-7x2+4x+2x3+4e x(x≥0),则h (x)=13-e2x2+2e2-9x-2x3e x=-x2x2-13-e2x-2e2-9e x=-x(x-2)2x+e2-9e x,所以当x∈0,9-e2 2时,h(x)<0,h(x)单调递减;当x∈9-e22,2,h (x)>0,h(x)单调递增;当x∈(2,+∞),h (x)<0,h(x)单调递减.从而[h(x)]max=max{h(0),h(2)}=4,即h(x)≤4,⑤式成立.所以当a≥7-e24时,f(x)≥12x3+1恒成立.综上a≥7-e2 4.[方法三]:指数集中当x≥0时,f(x)≥12x3+1恒成立⇒e x≥12x3+1-ax2+x⇒12x3-ax2+x+1e-x≤1,记g x =12x3-ax2+x+1e-x(x≥0),g x =-12x3-ax2+x+1-32x2+2ax-1e-x=-12x x2-2a+3x+4a+2e-x=-1 2x x-2a-1x-2e-x,①.当2a+1≤0即a≤-12时,gx =0⇒x=2,则当x∈(0,2)时,g x >0,g x 单调递增,又g0 =1,所以当x∈(0,2)时,g x >1,不合题意;②.若0<2a+1<2即-12<a<12时,则当x∈(0,2a+1)∪(2,+∞)时,gx <0,g x 单调递减,当x∈(2a+1,2)时,g x >0,g x 单调递增,又g0 =1,所以若满足g x ≤1,只需g2 ≤1,即g2 =(7-4a)e-2≤1⇒a≥7-e24,所以当⇒7-e24≤a<12时,g x ≤1成立;③当2a+1≥2即a≥12时,g x =12x3-ax2+x+1e-x≤12x3+x+1e-x,又由②可知7-e24≤a<12时,g x ≤1成立,所以a=0时,g(x)=12x3+x+1e-x≤1恒成立,所以a≥12时,满足题意.综上,a≥7-e2 4.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!3(2022·全国·统考高考真题)已知函数f(x)=xe ax-e x.(1)当a =1时,讨论f (x )的单调性;(2)当x >0时,f (x )<-1,求a 的取值范围;(3)设n ∈N ∗,证明:112+1+122+2+⋯+1n 2+n>ln (n +1).【答案】(1)f x 的减区间为-∞,0 ,增区间为0,+∞ .(2)a ≤12(3)见解析【分析】(1)求出f x ,讨论其符号后可得f x 的单调性.(2)设h x =xe ax -e x +1,求出h x ,先讨论a >12时题设中的不等式不成立,再就0<a ≤12结合放缩法讨论h x 符号,最后就a ≤0结合放缩法讨论h x 的范围后可得参数的取值范围.(3)由(2)可得2ln t <t -1t对任意的t >1恒成立,从而可得ln n +1 -ln n <1n 2+n 对任意的n ∈N *恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当a =1时,f x =x -1 e x ,则f x =xe x ,当x <0时,f x <0,当x >0时,f x >0,故f x 的减区间为-∞,0 ,增区间为0,+∞ .(2)设h x =xe ax -e x +1,则h 0 =0,又h x =1+ax e ax -e x ,设g x =1+ax e ax -e x ,则g x =2a +a 2x e ax -e x ,若a >12,则g 0 =2a -1>0,因为g x 为连续不间断函数,故存在x 0∈0,+∞ ,使得∀x ∈0,x 0 ,总有g x >0,故g x 在0,x 0 为增函数,故g x >g 0 =0,故h x 在0,x 0 为增函数,故h x >h 0 =0,与题设矛盾.若0<a ≤12,则h x =1+ax e ax -e x =e ax +ln 1+ax -e x ,下证:对任意x >0,总有ln 1+x <x 成立,证明:设S x =ln 1+x -x ,故S x =11+x -1=-x 1+x<0,故S x 在0,+∞ 上为减函数,故S x <S 0 =0即ln 1+x <x 成立.由上述不等式有e ax +ln 1+ax -e x <e ax +ax -e x =e 2ax -e x ≤0,故h x ≤0总成立,即h x 在0,+∞ 上为减函数,所以h x <h0 =0.当a≤0时,有h x =e ax-e x+axe ax<1-1+0=0, 所以h x 在0,+∞上为减函数,所以h x <h0 =0.综上,a≤1 2 .(3)取a=12,则∀x>0,总有xe 12x-e x+1<0成立,令t=e 12x,则t>1,t2=e x,x=2ln t,故2t ln t<t2-1即2ln t<t-1t对任意的t>1恒成立.所以对任意的n∈N*,有2ln n+1n<n+1n-nn+1,整理得到:ln n+1-ln n<1n2+n,故112+1+122+2+⋯+1n2+n>ln2-ln1+ln3-ln2+⋯+ln n+1-ln n=ln n+1,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.技法02函数凹凸性解题技巧知识迁移凹函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2>f x 1+x22 .凸函数:对于某区间内∀x 1,x 2, 都有f x 1 +f x 2 2<f x 1+x22.1在△ABC 中, 求sin A +sin B +sin C 的最大值.因为函数y =sin x 在区间(0,π)上是上凸函数, 则13(sin A +sin B +sin C )≤sin A +B +C 3 =sin π3=32即sin A +sin B +sin C ≤332, 当且仅当sin A =sin B =sin C 时, 即A =B =C =π3时,取等号.上述例题是三角形中一个重要的不等式:在△ABC 中,sin A +sin B +sin C ≤332.2(2021·黑龙江模拟)丹麦数学家琴生(Jensen )是19世纪对数学分析做出卓越贡献的数学家,特别是在函数的凹凸性与不等式方面留下了很多宝贵的成果.设函数f (x )在(a ,b )上的导函数为f (x ),f (x )在(a ,b )上的导函数为f (x ),若在(a ,b )上f (x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=e x -x ln x -m 2x 2在(1,4)上为“凸函数”,则实数m 的取值范围是()A.e -1,+∞B.e -1,+∞C.e 4-14,+∞D.e 4-14,+∞因为f (x )=e x -x ln x -m 2x 2,所以f (x )=e x -1+ln x -mx =e x -mx -ln x -1,f (x )=e x -m -1x,因为f (x )=e x -x ln x -m 2x 2在(1,4)上为“凸函数”,所以f (x )=e x -m -1x<0对于x ∈(1,4)恒成立,可得m >e x -1x对于x ∈(1,4)恒成立,令g x =e x -1x,则m >g x max ,因为g x =e x +1x 2>0,所以g x=e x-1x 在(1,4)单调递增,所以g x max <g 4 =e 4-14,所以m ≥e 4-14,【答案】C1(全国·高考真题)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.【答案】(Ⅰ)(0,+∞);(Ⅱ)见解析【详解】试题分析:(Ⅰ)求导,根据导函数的符号来确定(主要要根据导函数零点来分类);(Ⅱ)借助(Ⅰ)的结论来证明,由单调性可知x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0.设g (x )=-xe 2-x -(x -2)e x ,则g '(x )=(x -1)(e 2-x -e x ).则当x >1时,g '(x )<0,而g (1)=0,故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.试题解析:(Ⅰ)f '(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).(Ⅰ)设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.(Ⅱ)设a >0,则当x ∈(-∞,1)时,f '(x )<0;当x ∈(1,+∞)时,f '(x )>0.所以f (x )在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a 2,则f(b)>a2(b-2)+a(b-1)2=a b2-32b>0,故f(x)存在两个零点.(Ⅲ)设a<0,由f'(x)=0得x=1或x=ln(-2a).若a≥-e2,则ln(-2a)≤1,故当x∈(1,+∞)时,f'(x)>0,因此f(x)在(1,+∞)单调递增.又当x≤1时f(x)<0,所以f(x)不存在两个零点.若a<-e2,则ln(-2a)>1,故当x∈(1,ln(-2a))时,f'(x)<0;当x∈(ln(-2a),+∞)时,f'(x)>0.因此f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(Ⅱ)不妨设x1<x2,由(Ⅰ)知x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),f(x)在(-∞,1)单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-xe2-x-(x-2)e x,则g'(x)=(x-1)(e2-x-e x).所以当x>1时,g'(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.【考点】导数及其应用【名师点睛】对于含有参数的函数单调性、极值、零点问题,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简.解决函数不等式的证明问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.2(2021·全国·统考高考真题)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【答案】(1)f x 的递增区间为0,1,递减区间为1,+∞;(2)证明见解析.【分析】(1)首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令1a =m,1b=n,命题转换为证明:2<m+n<e,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)f x 的定义域为0,+∞.由f x =x1-ln x得,f x =-ln x,当x=1时,f′x =0;当x∈0,1时f′x >0;当x∈1,+∞时,f'x <0.故f x 在区间0,1内为增函数,在区间1,+∞内为减函数,(2)[方法一]:等价转化由b ln a-a ln b=a-b得1a1-ln1a=1b1-ln1b,即f1a =f1b .由a≠b,得1a≠1b.由(1)不妨设1a∈(0,1),1b∈(1,+∞),则f1a>0,从而f1b >0,得1b∈(1,e),①令g x =f2-x-f x ,则g (x)=ln(2-x)+ln x=ln(2x-x2)=ln[1-(x-1)2],当x∈0,1时,g′x <0,g x 在区间0,1内为减函数,g x >g1 =0,从而f2-x>f x ,所以f2-1 a>f1a =f1b ,由(1)得2-1a<1b即2<1a+1b.①令h x =x+f x ,则h'x =1+f x =1-ln x,当x∈1,e时,h′x >0,h x 在区间1,e内为增函数,h x <h e =e,从而x+f x <e,所以1b+f1b<e.又由1a∈(0,1),可得1a<1a1-ln1a=f1a =f1b ,所以1a+1b<f1b+1b=e.②由①②得2<1a+1b<e.[方法二]【最优解】:b ln a-a ln b=a-b变形为ln aa -ln bb=1b-1a,所以ln a+1a=ln b+1b.令1a=m,1b=n.则上式变为m1-ln m=n1-ln n,于是命题转换为证明:2<m+n<e.令f x =x1-ln x,则有f m=f n,不妨设m<n.由(1)知0<m<1,1<n<e,先证m+n>2.要证:m +n >2⇔n >2-m ⇔f n <f 2-m ⇔f (m )<f 2-m ⇔f m -f 2-m <0.令g x =f x -f 2-x ,x ∈0,1 ,则g ′x =-ln x -ln 2-x =-ln x 2-x ≥-ln1=0,∴g x 在区间0,1 内单调递增,所以g x <g 1 =0,即m +n >2.再证m +n <e .因为m 1-ln m =n ⋅1-ln n >m ,所以需证n 1-ln n +n <e ⇒m +n <e .令h x =x 1-ln x +x ,x ∈1,e ,所以h 'x =1-ln x >0,故h x 在区间1,e 内单调递增.所以h x <h e =e .故h n <e ,即m +n <e .综合可知2<1a +1b<e .[方法三]:比值代换证明1a +1b>2同证法2.以下证明x 1+x 2<e .不妨设x 2=tx 1,则t =x 2x 1>1,由x 1(1-ln x 1)=x 2(1-ln x 2)得x 1(1-ln x 1)=tx 1[1-ln (tx 1)],ln x 1=1-t ln tt -1,要证x 1+x 2<e ,只需证1+t x 1<e ,两边取对数得ln (1+t )+ln x 1<1,即ln (1+t )+1-t ln tt -1<1,即证ln (1+t )t <ln tt -1.记g (s )=ln (1+s )s ,s ∈(0,+∞),则g (s )=s1+s-ln (1+s )s2.记h (s )=s 1+s -ln (1+s ),则h ′(s )=1(1+s )2-11+s <0,所以,h s 在区间0,+∞ 内单调递减.h s <h 0 =0,则g 's <0,所以g s 在区间0,+∞ 内单调递减.由t ∈1,+∞ 得t -1∈0,+∞ ,所以g t <g t -1 ,即ln (1+t )t <ln t t -1.[方法四]:构造函数法由已知得ln a a -ln b b =1b -1a ,令1a =x 1,1b=x 2,不妨设x 1<x 2,所以f x 1 =f x 2 .由(Ⅰ)知,0<x1<1<x2<e,只需证2<x1+x2<e.证明x1+x2>2同证法2.再证明x1+x2<e.令h(x)=1-ln xx-e(0<x<e),h (x)=-2+ex+ln x(x-e)2.令φ(x)=ln x+ex-2(0<x<e),则φ′(x)=1x-ex2=x-ex2<0.所以φx >φe =0,h′x >0,h x 在区间0,e内单调递增.因为0<x1<x2<e,所以1-ln x1x1-e<1-ln x2x2-e,即1-ln x11-ln x2>x1-ex2-e又因为f x1=f x2,所以1-ln x11-ln x2=x2x1,x2x1>x1-ex2-e,即x22-ex2<x21-ex1,x1-x2x1+x2-e>0.因为x1<x2,所以x1+x2<e,即1a+1b<e.综上,有2<1a+1b<e结论得证.【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于x1+x2-e<0的式子,这是本方法证明不等式的关键思想所在.3(陕西·高考真题)已知函数A(1,1).(1)若直线y=kx+1与f(x)的反函数的图像相切, 求实数k的值;(2)设x>0, 讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.(3)设a<b,比较f(a)+f(b)2与f(b)-f(a)b-a的大小, 并说明理由.【答案】(1)k=1 e2(2)当m>e24时两曲线有2个交点;当m=e24时两曲线有1个交点;当m<e24时两曲线没有交点(3)f(a)+f(b)2>f(b)-f(a)b-a,理由见解析.【分析】(1)设切点(x0,kx0+1),利用导数的几何意义得到方程组可得答案;(2)e x=mx2(x>0)⇔m=e xx2(x>0),转化为y=m与g(x)=e xx2(x>0)图象交点的个数问题;(3)作差得到e ab-a1+e b-a-21-e b-a2b-a,令b-a=t>0,构造新函数g(t)=(t+2)e t+t-2,求导即可得到答案.【详解】函数f(x)=e x,x∈R⇒f (x)=e x(1)函数1x0=k⇒kx0=1,f(x)=e x,x∈R的反函数为y=ln x,x>0,y =1x,设切点坐标为(x0,kx0+1)则1x0=k⇒kx0=1,ln x0=2⇒x0=e2⇒k=1e2.(2)令f(x)=mx2即e x=mx2(x>0)⇒m=e xx2(x>0),设g(x)=e xx2(x>0)有g (x)=e x(x-2)x3(x>0),当x∈(0,2],g (x)<0,当x∈[2,+∞),g (x)>0所以函数g(x)在(0,2]上单调递减,在[2,+∞)上单调递增,g(x)min=g(2)=e24,所以当m>e24时,两曲线有2个交点;当m=e24时,两曲线有1个交点;当m<e24时,两曲线没有交点.(3)f(a)+f(b)2>f(b)-f(a)b-a.f a +f b2-f b -f ab-a=e a+e b2-e a-e bb-a=e a1+e b-a2-1-e b-ab-a=e ab-a1+e b-a-21-e b-a2b-a∵a<b,令b-a=t>0∴上式=e a t1+e t-21-e t2t=e a2t⋅t+2e t+t-2令g(t)=(t+2)e t+t-2,则g (t)=(t+3)e t+1>0恒成立,∴g(t)>g(0)=0,而e a2t >0,∴e a2t⋅t+2e t+t-2>0,故f(a)+f(b)2>f(b)-f(a)b-a.【点睛】本题考查函数、导数、不等式、参数等问题,属于难题.第二问运用数形结合思想解决问题,能够比较清晰的分类,做到不吃不漏.最后一问,考查函数的凹凸性,富有明显的几何意义,为考生探索结论提供了明确的方向,对代数手段的解决起到导航作用.技法03洛必达法则解题技巧知识迁移洛必达法则:法则1若函数f(x)和g(x)满足下列条件:(1)limx→a f x =0及limx→ag x =0; (2)在点a的去心邻域内,f(x)与g(x)可导且g'(x)≠0; (3)limx→a f xg x=l,那么limx→a f xg x=limx→af xg x=l。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档