-2017年高考文科数学真题汇编:直线和圆老师版(最新整理)
2012-2017年高考文科数学真题汇编:直线和圆老师版(最新整理)

95 4 3
x
3
;
31(2016 年新课标 1 理)设圆 x2 y2 2x 15 0 的圆心为 A,直线 l 过点 B(1,0)且与 x 轴不重合,l
交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E.(I)证明 EA EB 为定值,并写出点 E 的轨迹
方程。
【详细解答】(I)圆心为 A(1, 0) ,圆的半径为 AD 4 , AD AC ,
22.(2015 北京文)圆心为 1,1 且过原点的圆的方程是( D )
A. x 12 y 12 1
B. x 12 y 12 1
C. x 12 y 12 2
D. x 12 y 12 2
23.(2015 年广东理)平行于直线 2x y 1 0 且与圆 x2 y2 5 相切的直线的方程是( D )
学员姓名 授课老师
授课日期及时段
学科教师辅导教案
年级
高三
辅导科目
课时数
2h
第
2017 年 月 日 : — :
数学 次课
历年高考试题集锦——直线和圆
1.(2012 辽宁文)将圆 x2+y2 -2x-4y+1=0 平分的直线是( C )
(A)x)x-y+1=0 (D)x-y+3=0
4 的距离为
5 ,则圆 C 的方程为____ (x 2)2 y2 9. ______
5
19、(2016 年全国 I 卷)设直线 y=x+2a 与圆 C:x2+y2-2ay-2=0 相交于 A,B 两点,若
,则圆 C
的面积为 4π . 20、(2016 年全国 III 卷)已知直线 l : x 3y 6 0 与圆 x2 y2 12 交于 A, B 两点,过 A, B 分别作 l
2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。
2017年高考文科数学试题全国Ⅰ卷全国卷高考真题精校Word版含答案

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
12560分。
在每小题给出的四个选项中,只有一项是符合题一、选择题:本大题共分,共小题,每小题目要求的。
????0???22xx|3x|x B1A==,则.已知集合,3???|xx ABABAB= ??..??2??3???x|x?ABRCADB=..??2??2n.nkgxx…,.为评估一种农作物的种植效果,选了块地作试验田)分别为这,块地的亩产量(单位:,21x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是n Axx…xBxx…x 的标准差,..,,,,,的平均数nn2211Cxx…xDxx…x 的中位数,的最大值,.,,.,,nn21123 .下列各式的运算结果为纯虚数的是222Di(1+i)i B (1-i)C(1+i)i(1+i)A....4ABCD.正方形内切圆中的黑色部分和白色部分关于正方形如图,正方形内的图形来自中国古代的太极图.. 在正方形内随机取一点,则此点取自黑色部分的概率是的中心成中心对称ππ11 CAD B....82442y25FCx-=1PCPFxA(1,3).APF△是双曲线上一点,且:的坐标是.已知与的右焦点,则是轴垂直,点 3 的面积为1123 D B C A ....22336ABMNQ为所在棱的中点,则在这四个正方为正方体的两个顶点,,.如图,在下列四个正方体中,,,ABMNQ 不平行的是体中,直接与平面x?3y?3,??x?y?1,zy=x+y 7x的最大值为满足约束条件.设,则??y?0,?A0 B1 C2 D3 ....sin2x?y 8.的部分图像大致为函数.1?cosxf(x)?lnx?ln(2?x) 9,则.已知函数f(x)f(x)0,2AB0,2 )单调递减在(.)单调递增在(.f(x)f(x)1,0=1Cy=Dy= x)对称对称的图像关于点(..的图像关于直线nn10n1000??23两个空白框中,可以分别填入的最小偶数,那么在.如图是为了求出满足和AA>1000n=n+1BA>1000n=n+2 和.和.CA≤1000n=n+1DA≤1000n=n+2和..和sinB?sinA(sinC?cosC)?0、、、、==2cb11ABCAcBaCa,.△,的内角的对边分别为,。
2017届高考数学年(文科) 直线与圆、圆锥曲线的概念、方程与性质专题练习答案

不等式与线性规划解析一、选择题1.解析:由a⊥b可得a·b=0,即1×2+(-2)×m=0,解得m=1.所以|b|==。
故选D.2.解析:由已知可得a·b=1×2cos 60°=1.所以b·(b-a)=b2-a·b=22-1=3.故选B.3.解析:根据程序框图,知当i=4时,输出S,因为第一次循环得到:S=S0-2,i=2;第二次循环得到:S=S0-2-4,i=3;第三次循环得到:S=S0-2-4-8,i=4;所以S0-2-4-8=-4.解得S0=10.故选D.4.解析:将这列数分布为:1,2,3,3,2,1;2,3,4,4,3,2;3,4,5,5,4,3;4,5,6,6,5,4;…,发现如果每6个数成一组,每组的第一个数(或最后一个数)依次为1,2,3,4,…,每组的数都是先按1递增两次,再相等一次,最后按1递减两次;因为2016=336×6,所以第2016个数是336.故选B.5.解析:第一次执行循环体,r=90,m=135,n=90,不满足退出循环的条件;第二次执行循环体,r=45,m=90,n=45;第三次执行循环体,r=0,m=45,n=0,满足退出循环的条件。
故输出的m值为45.故选C.6.解析:由题设得3+4=-5,9+24·+16=25,所以·=0,∠AOB=90°,所以S△OAB=|OA||OB|=,同理S△OAC=,S△OBC=,所以S△ABC=S△OBC+S△AOC+S△ABO=。
故选C.7.解析:由已知归纳可得第n行的第一个数和最后一个数均为,其他数字等于上一行该数字“肩膀”上的两个数字的和,故A(15,2)=++++…+=+2(-)=,故选C.8.解析:第一次循环:n=2,x=2t,a=1;n=2<4,第二次循环:n=4,x=4t,a=3;第三次循环:n=6,x=8t,a=3;n=6>4,终止循环,输出38t。
2017年全国统一高考数学试卷(文科)全国卷1(详解版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2017•新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)(2017•新课标Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)(2017•新课标Ⅰ)下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)(2017•新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)(2017•新课标Ⅰ)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.6.(5分)(2017•新课标Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A.B.C.D.7.(5分)(2017•新课标Ⅰ)设x,y满足约束条件,则z=x+y的最大值为()A.0B.1C.2D.38.(5分)(2017•新课标Ⅰ)函数y=的部分图象大致为()A.B.C.D.9.(5分)(2017•新课标Ⅰ)已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)(2017•新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=()A.B.C.D.12.(5分)(2017•新课标Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
2017年高考真题全国一卷文科数学(解析版附后)

2017年高考真题全国一卷文科数学(解析版附后)2017年高考真题全国一卷文科数学(解析版附后)一、选择题1.已知集合 $A=\{x|x\}$,则 $A\cap B=$A。
$A$B。
$B$C。
$B=\{x|x<\frac{3}{2}\}$___改写:已知集合 $A$ 和 $B$,其中 $A$ 是由所有小于 2 的 $x$ 组成的集合,$B$ 是由所有满足 $3-2x>0$ 的 $x$ 组成的集合。
则 $A$ 和 $B$ 的交集为 $\{x|x<\frac{3}{2}\}$,故选C。
2.为评估一种农作物的种植效果,选了$n$ 块地作试验田。
这$n$ 块地的亩产量(单位:kg)分别为$x_1,x_2,\dots,x_n$。
下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A。
$x_1,x_2,\dots,x_n$ 的平均数B。
$x_1,x_2,\dots,x_n$ 的标准差C。
$x_1,x_2,\dots,x_n$ 的最大值D。
$x_1,x_2,\dots,x_n$ 的中位数改写:为评估一种农作物的种植效果,选了 $n$ 块地作试验田。
设这 $n$ 块地的亩产量分别为 $x_1,x_2,\dots,x_n$。
下列指标中可以用来评估这种农作物亩产量稳定程度的是标准差,故选 B。
3.下列各式的运算结果为纯虚数的是A。
$i(1+i)^2$B。
$i^2(1-i)$C。
$(1+i)^2$D。
$i(1+i)$改写:下列各式中,只有 A 和 B 的运算结果为纯虚数。
故选 AB。
4.如图,正方形 $ABCD$ 内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是A。
$\frac{1}{4}$B。
$\frac{\pi}{8}$C。
$\frac{1}{2\pi}$D。
$\frac{4}{y^2}$改写:如图,正方形 $ABCD$ 内的图形来自中国古代的太极图。
2017年高考全国名校试题数学分项汇编专题08 直线与圆(解析版)

一、填空题1. 【2016高考冲刺卷(6)【江苏卷】】在平面直角坐标xOy 中,已知点)0,4(),0,1(B A ,若直线0=+-m y x 上存在点P 使得12PA PB =,则实数m 的取值范围是2. 【2016高考冲刺卷(5)【江苏卷】】直线21ax by +=与圆221x y +=相交于A B ,两点(其中a b ,是实数),且AOB ∆是直角三角形(O 是坐标原点),则点()P a b ,与点()00O ,之间距离的最大值为 ▲ . 2【解析】∵△AOB 是直角三角形(O 是坐标原点), ∴圆心到直线21ax by +=的距离2d =,即22224d a b==+, 整理得2242a b +=,则点P (a ,b )与点Q (0,0)之间距离222221423d a b b b b =+-+=-∴当b=0时,点P (a ,b )与点Q (0,023. 【2016高考冲刺卷(1)【江苏卷】】过点(4,0)P -的直线l 与圆22:(1)5C x y -+=相交于,A B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 .【答案】340x y ±+=【解析】如果直线l 与x 轴平行,则(15,0),(15,0)A B -+,A 不是PB 中点,则直线l 与x 轴不平行;设:4l x my =-,圆心C 到直线l 的距离21d m =+,令AB 中点为Q ,则225,335AQ d PQ AQ d =-==-,在Rt CPQ ∆中222PQ CQ PC +=,得2252521d m==+,解得3m =±,则直线l 的方程为340x y ±+=. 4. 【2016高考押题卷(2)【江苏卷】】已知圆O:122=+y x ,点),(00y x P 是直线0323:=-+y x l 上的动点,若在圆C 上总存在两个不同的点A 、B ,使PB PA PB PA ⋅=⋅21,则0x 的取值范围是5. 【南京市2016届高三年级第三次模拟考试】在平面直角坐标系xOy 中,圆M :(x -a )2+(y +a -3)2=1(a >0),点N 为圆M 上任意一点.若以N 为圆心,ON 为半径的圆与圆M 至多有一个公共点,则a 的最小值为 ▲ . 【答案】3 【解析】试题分析:由题意得圆N 与圆M 内切或内含,即12MN ON ON ≤-⇒≥,又1ON OM ≥-,所以3OM ≥22(3)330a a a a +-⇒≥≤或(舍),因此a 的最小值为3 6. 【南京市、盐城市2016届高三年级第二次模拟考试】已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为▲________.【答案】22[2,2]22-+ 【解析】试题分析:由题意得:2=OP ,所以P 在以O 为圆心2为半径的圆上,即此圆与圆M 有公共点,因此有:222221211(4)922OM a a a -<<+⇒≤+-≤⇒-≤≤+.7. 【2016高考冲刺卷(2)【江苏卷】】已知圆O :422=+y x ,若不过原点O 的直线l 与圆O 交于P 、Q 两点,且满足直线OP 、PQ 、OQ 的斜率依次成等比数列,则直线l 的斜率为 ▲ .8. 【2016高考押题卷(3)【江苏卷】】若曲线02:22=-+x y x M 与曲线0:2=+-my y mxy C 有四个不同的交点,则实数m 的取值范围是 .【答案】]33,0()0,33[Y -. 【解析】由题意知曲线M 圆心为)0,1(M ,半径为1的圆,曲线0:2=+-my y mxy C 可化为0)(=+-m y mx y ,即0=y 或0=+-m y mx ,当0=y 时,圆02:22=-+x y x M 与其相交,且有两个不同的交点;则所求问题转化为圆02:22=-+x y x M 与直线0=+-m y mx 也有两个交点.所以圆心)0,1(M 到直线0=+-m y mx 的距离小于半径1,即211m <+,解之可得3333m -<<,注意到当0=m 时,圆02:22=-+x y x M 与曲线0:2=+-my y mxy C 只有两个不同的交点,不合题意,所以0≠m ,故实数m 的取值范围是33(,0)(0,)-U . 9. 【2016高考押题卷(1)【江苏卷】】已知圆22:2C x y +=,直线:240l x y +-=,点00(,)P x y 在直线l 上.若存在圆C 上的点Q ,使得45OPQ ∠=o (O 为坐标原点),则0x 的取值范围为_______.10. 【2016年第四次全国大联考【江苏卷】】 在平面直角坐标系xOy 中,圆221x y +=交x 轴于,A B 两点,且点A 在点B 左边,若直线+30x y m +=上存在点P ,使得2PA PB =,则m 的取值范围为_______. 【答案】13[,1]3-【解析】由题意得:(1,0),(1,0)A B -,设(,)P x y,则由2PA PB=得222222516(1)2(1)()39x y x y x y ++=-+⇒-+=,因此圆22516()39x y -+=与直线+30x y m +=有交点,即5||4133 1.233m m +≤⇒-≤≤11. 【 2016年第二次全国大联考(江苏卷)】在平面直角坐标系xOy 中,点(3,0)A ,动点P 满足2PA PO =,动点(3,45)()Q a a a +∈R ,则线段PQ 长度的最小值为_______. 【答案】15【解析】设(,)P x y ,则由2PA PO =得222222(3)4()(1)4x y x y x y -+=+⇒++=,即动点P 在圆上运动,因为(3,45)()Q a a a +∈R ,因此动点Q 在直线43150x y -+=上运动,所以线段PQ长度的最小值为|415|12.55-+-= 12. 【盐城市2016届高三年级第三次模拟考试】已知线段AB 的长为2,动点C 满足CA CB λ⋅=u u u r u u u r (λ为常数),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值是 ▲ .13. 【南通市2016届高三下学期第三次调研考试数学试题】在平面直角坐标系xOy 中,圆()221:12C x y -+=,圆()()2221:C x m y m m -++=,若圆2C 上存在点P 满足:过点P 向圆1C 作两条切线,,PA PB 切点为,A B ,ABP ∆的面积为1,则正数m 的取值范围是 .【答案】1,323⎡⎤+⎣⎦【解析】试题分析:设()P x y ,,设PA ,PB 的夹角为2θ. △ABP 的面积S=221112sin 212PA PA PA PC θ=⋅⋅=. 由322122PA PC PA ==+,解得2PA =, 所以12PC =,所以点P 在圆22(1)4x y -+=上.所以222(1)()2m m m m --+-+≤≤, 解得1323m +≤≤.14. 【江苏省苏北三市(徐州市、连云港市、宿迁市)2016届高三最后一次模拟考试】已知经过点3(1,)2P 的两个圆12,C C 都与直线11:2l y x =,2:2l y x =相切,则这两圆的圆心距12C C 等于 .15. 【江苏省苏锡常镇四市2016届高三教学情况调研(二)数学试题】若直线340x y m +-=与圆222440x y x y ++-+=始终有公共点,则实数m 的取值范围是▲ . 【答案】[010],【解析】试题分析:因为22(1)(2)1x y ++-=,所以由题意得:|342|1|5|5010.5m m m -+⨯-≤⇒-≤⇒≤≤16. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 ▲ . 【答案】2.3【解析】试题分析:由题意得:232.1243m m m --=≠⇒=- 17. 【江苏省苏中三市(南通、扬州、泰州)2016届高三第二次调研测试数学试题】在平面直角坐标系xOy 中,过点()2,0P -的直线与圆221x y +=相切于点T ,与圆()()2233x a y -+-=相交于点,R S ,且PT RS =,则正数a 的值为 ▲ .【答案】4二、解答题1. 【2016高考押题卷(2)【江苏卷】】(本小题满分14分)一条形如斜L 型的铁路线MON 在经过某城市O 时转弯而改变方向,测得tan 3MON ∠=-,因市内不准建站,故考虑在郊区A 、B 处分别建设东车站与北车站,其中东车站A 建于铁路OM 上,且OA=6km ,北车站B 建于铁路ON 上,同时在两站之间建设一条货运公路,使直线AB 经过货物中转站Q ,已知Q 站与铁路线OM 、ON 的垂直距离分别为2km 710. 现以点O 为坐标原点,射线OM 为x 轴的正半轴,建立如图所示的直角坐标系.(1)若一货运汽车以236hkm /的速度从车站A 开往车站B,不计途中装卸货物时间,则需要多长时间;(2)若在中转站Q 的正北方向6km 有一工厂P,为了节省开支,产品不经中转站而运至公路上C 处,让货车直接运走,试确定点C 的最佳位置. 【答案】(1)15分钟 (2)C (1,5)【解析】(1)由已知得(6,0)A ,直线ON 的方程为3y x =-, 设00(,2)(0)Q x x >,由03271010x +=及图00x >得04x =,(4,2)Q ∴ ∴直线AQ 的方程为(6)y x =--,即60x y +-=,2. 【南京市、盐城市2016届高三年级第二次模拟考试】 (本题满分14分)如图,某城市有(第17题)OMNAB PQ••••x y •C一块半径为1(单位:百米)的圆形景观,圆心为C,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处(图中阴影部分)只有一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆C 相切的小道AB.问:A,B两点应选在何处可使得小道AB最短?【答案】当A,B两点离道路的交点都为2-2(百米)时,小道AB最短.【解析】解法一:如图,分别由两条道路所在直线建立直角坐标系xOy.答:当A,B两点离道路的交点都为2-2(百米)时,小道AB最短.…………14分3. 【南通市2016届高三下学期第三次调研考试数学试题】(本小题满分14分)某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD为中心在圆心的矩形,现计划将矩形ABCD区域设计为可推拉的窗口.(1)若窗口ABCD 为正方形,且面积大于214m (木条宽度忽略不计),求四根木条总长的取值范围;(2)若四根木条总长为6m ,求窗口ABCD 面积的最大值.【答案】(1)215x <<2)274m 【解析】试题分析:(1)长度与面积关系问题,可以考虑利用解不等式求范围,先根据直线与圆位置关系得弦长与圆心到直线距离(即正方形边长一半)关系,再根据面积大于214m 得一根木条长范围,注意四根木条将圆列表如下:a31,2⎛⎫ ⎪⎝⎭323,22⎛⎫ ⎪⎝⎭()'f a +0 -()f aZ 极大值]所以当32a =时,()max349216f x f ⎛⎫== ⎪⎝⎭,即max 74S =4. 【盐城市2016届高三年级第三次模拟考试】(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y C +=的左顶点为A ,右焦点为F ,,P Q 为椭圆C 上两点,圆222:(0)O x y r r +=>.(1)若PF x ⊥轴,且满足直线AP 与圆O 相切,求圆O 的方程; (2)若圆O 3,P Q 满足34OP OQ k k ⋅=-,求直线PQ 被圆O 截得弦长的最大值.【答案】(1)2245x y +=(26【解析】试题分析:(1)确定圆O 的方程,就是确定半径的值,因为直线AP 与圆O 相切,所以先确定直线方程,即确定点P 坐标:因为PF x ⊥轴,所以3(1,)2P ±,根据对称性,可取3(1,)2P ,则直线AP 的方程为1(2)2y x =+,根据圆心到切线距离等于半径得5r =(2)根据垂径定理,求直线PQ 被圆O 截得弦长的最大值,就是求圆心O 到直线PQ 的距离的最小值. 设直线PQ 的方程为y kx b =+,则圆心O 到直线PQ 的距离21d k =+,利用34OP OQ k k ⋅=-得1212340x x y y +=,化简得221212(34)4()40k x x kb x x b ++++=,利用直线方程与椭圆方程联立方程组并结合韦达定理得(2)易知,圆O 的方程为223x y +=. ① 当PQ x ⊥轴时,234OP OQ OP k k k ⋅=-=-,。
2017年全国高考数学(文科)真题汇总(6套)附答案

第 1页(共 15页)
A.60 B.30 C.20 D.10 7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 8.(5 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测宇 宙中普通物质的原子总数 N 约为 1080,则下列各数中与 最接近的是( )
当 k=2 时,满足进行循环的条件,执行完循环体后,k=3,S= ,
当 k=3 时,不满足进行循环的条件, 故输出结果为: ,
故选:C. 【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采 用模拟循环的方法解答.
4.(5 分)若 x,y 满足
,则 x+2y 的最大值为( )
A.1 B.3 C.5 D.9 【分析】画出约束条件的可行域,利用目标函数的最优解求解目标函数的最值即 可.
该三棱锥的体积=
=10.
故选:D.
【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能 力,属于基础题.
7.(5 分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的( ) A.充分而不必要条件 B.必要而不充分条件
第 6页(共 15页)
C.充分必要条件 D.既不充分也不必要条件 【分析】 , 为非零向量,存在负数λ,使得 =λ ,则向量 , 共线且方向相 反,可得 • <0.反之不成立,非零向量 , 的夹角为钝角,满足 • <0,而
19.(14 分)已知椭圆 C 的两个顶点分别为 A(﹣2,0),B(2,0),焦点在 x 轴上,离心率为 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M,N,过 D 作 AM 的垂线交 BN 于点 E.求证:△BDE 与△BDN 的面积之比为 4:5. 20.(13 分)已知函数 f(x)=excosx﹣x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间[0, ]上的最大值和最小值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 2 5
B. 2 3 C. 3
D.1
第 1 页(共 6 页)
ቤተ መጻሕፍቲ ባይዱ
10(2012 广东文)在平面直角坐标系 xOy 中,直线 3x 4 y 5 0 与圆 x2 y2 4 相交于 A, B 两点,
则弦 AB 的长等于( B )
( A) 3 3
(B) 2 3
(C)
(D)
11.(2013 陕西文)已知点 M(a,b)在圆 O : x2 y2 1 外, 则直线 ax + by = 1 与圆 O 的位置关系是( B )
2.(2012 浙江文)设 a∈R ,则“a=1”是“直线 l1:ax+2y=0 与直线 l2 :x+(a+1)y+4=0 平行的( A )
A 充分不必要条件 B 必要不充分条件 C 充分必要条件
D 既不充分也不必要条件
3.(2014 湖南文)若圆 C1 : x2 y2 1 与圆 C2 : x2 y2 6x 8 y m 0 外切,则 m ( C )
A.21 B.19 C.9 D. 11
4.(2012 山东文)圆 (x 2)2 y2 4 与圆 (x 2)2 ( y 1)2 9 的位置关系为( B )
(A)内切 (B)相交 (C)外切 (D)相离
5.(2013 江西文)若圆 C 经过坐标原点和点(4,0),且与直线 y=1 相切,则圆 C 的方程是
A. 2x y 5 0 或 2x y 5 0 C. 2x y 5 0 或 2x y 5 0
B. 2x y 5 0 或 2x y 5 0 D. 2x y 5 0 或 2x y 5 0
第 2 页(共 6 页)
的垂线与 x 轴交于 C, D 两点,则| CD | ____4_________.
21、(2016 年浙江)已知 a R ,方程 a2 x2 (a 2) y2 4x 8 y 5a 0 表示圆,则圆心坐标是_____,
半径是______.【答案】 (2, 4) ;5.
4 的距离为
5 ,则圆 C 的方程为____ (x 2)2 y2 9. ______
5
19、(2016 年全国 I 卷)设直线 y=x+2a 与圆 C:x2+y2-2ay-2=0 相交于 A,B 两点,若
,则圆 C
的面积为 4π . 20、(2016 年全国 III 卷)已知直线 l : x 3y 6 0 与圆 x2 y2 12 交于 A, B 两点,过 A, B 分别作 l
。
【答案】 (x 2)2 ( y 3)2 25 24
6.(2012 安徽文)若直线 x y 1 0 与圆 (x a)2 y2 2 有公共点,则实数 a 取值范围是( C )
( A) [3, 1]
(B) [1,3]
(C) [3,1]
(D) (, 3] [1, )
7.(2013 安徽文)直线 x 2 y 5 5 0 被圆 x2 y2 2x 4 y 0 截得的弦长为( C )
(A) 相切
(B) 相交
(C) 相离
(D) 不确定
12.(2014 浙江文) 已知圆 x2 y2 2x 2 y a 0 截直线 x y 2 0 所得弦的长度为 4,则实数 a 的值为(
B )A. 2
B. 4
C. 6
D. 8
13.(2013 天津文)已知过点 P(2,2)的直线与圆(x-1)2+y2=5 相切,且与直线 ax-y+1=0 垂直,则 a 等于(
则圆 C 的标准方程为 (x 2)2 ( y 1)2 4 。
15、(2016 年北京)圆(x+1)2+y2=2 的圆心到直线 y=x+3 的距离为( C )
(A)1 (B)2 (C) 2 (D)2 2
16、(2016 年山东)已知圆 M: x2 + y2 - 2ay = 0(a > 0) 截直线 x + y = 0 所得线段的长度是 2 2 ,则圆 M
与圆 N:(x- 1)2 + ( y - 1)2 = 1 的位置关系是( B )
(A)内切(B)相交(C)外切(D)相离
17、(2016
年上海)已知平行直线
l1
:
2x
y
1
0, l2
:
2x
y
1
0
,则
l1, l2
的距离___
25 5
____
18、(2016 年天津)已知圆 C 的圆心在 x 轴的正半轴上,点 M (0, 5) 在圆 C 上,且圆心到直线 2x y 0
22.(2015 北京文)圆心为 1,1 且过原点的圆的方程是( D )
A. x 12 y 12 1
B. x 12 y 12 1
C. x 12 y 12 2
D. x 12 y 12 2
23.(2015 年广东理)平行于直线 2x y 1 0 且与圆 x2 y2 5 相切的直线的方程是( D )
1
1
C ) A.- B.1 C.2 D.
2
2
【简解】圆心为 O(1,0),由于 P(2,2)在圆(x-1)2+y2=5 上,∴P 为切点,OP 与 P 点处的切线垂直.
2-0 ∴KOP=2-1=2,又点 P 处的切线与直线 ax-y+1=0 垂直.∴a=KOP=2,选 C.
14.(2014 山东文)圆心在直线 x 2 y 0 上的圆 C 与 y 轴的正半轴相切,圆 C 截 x 轴所得弦的长为 2 3 ,
学员姓名 授课老师
授课日期及时段
学科教师辅导教案
年级
高三
辅导科目
课时数
2h
第
2017 年 月 日 : — :
数学 次课
历年高考试题集锦——直线和圆
1.(2012 辽宁文)将圆 x2+y2 -2x-4y+1=0 平分的直线是( C )
(A)x+y-1=0 (B) x+y+3=0 (C)x-y+1=0 (D)x-y+3=0
(A)1
(B)2 (C)4
(D) 4 6
8.(2014 安徽文)过点 P( 3,1)的直线 l 与圆 x2 y2 1有公共点,则直线 l 的倾斜角的取值范围是(
D)
A(. 0, ]
6
B(. 0, ]
3
C.[0, ]
6
D.[0, ]
3
9.(2012 福建文)直线 x 3y 2 0 与圆 x2 y 2 4 相交于 A, B 两点,则弦 AB 的长度等于( B )