循环伏安法测定亚铁氰化钾

合集下载

循环伏安法测定铁氰化钾电化学性能概要

循环伏安法测定铁氰化钾电化学性能概要

• 实际由于电极等实验状态的变化, 两者(尤其是ΔEp) 与理论值容易产生较大偏差。 • 非可逆电极的ΔEp和ipa/ ipa不具有上述理论关系,原 则上其差异大小与不可逆性是一致的。
图形解析
可逆体系
ipa ipc
1
△Ep = 2.3RT / nF = 56.5/n mV ( 25℃)
循环伏安法与单扫描极谱法的不同
b. 4mmol.L-1完成4种扫描速度的测量: 5mV/s 、(10
mV/s)、20mV/s、40 mV/s进行测量。
Technique
Cyclic Voltammetry
Init E= 0.5V
Parameters High E=0.5V Low E=-0.1V Scan Rate Initial Scan-----Negative
• 循环伏安法与单扫描极谱法相似之处,都是以快速线性 扫描的形式对工作电极施加电压,记下i-E曲线,同样 有峰电流 ip和峰电位Ep,ip、Ep的表达式也分别相同。
• 对于可逆电极反应 ip=2.69×105n3/2D1/2v1/2Ac 其中:ip为峰电流(A),n为电子转移数,A为电极面 积(cm2),D为扩散系数(cm2/s),v为扫描速度 (V/s),c为浓度(mol/L)。由此可见,ip与v1/2和c都 是直线关系。由于Da和Dc大致相同,对于可逆电极反应 ipa/ ipc ≈1。
• 扫描开始时,从起始电压扫描至某一电压后,再反 向回扫至起始电压,构成等腰三角形电压。
U
三角波
t
Ag/Agcl
Fe(CN)6 e Fe(CN)6 0 0.36V(vs.NHE)
3
铂盘电极
4
• 电位向负扫描时出现:O + e == R • 电位向正扫描时出现:R == O + e • 一次扫描过程中完成一个氧化和还原过程的循 环,故此法称为循环伏安法。

铁氰化钾的循环伏安测试

铁氰化钾的循环伏安测试
铁氰化钾的循环伏安测试
铁氰化钾的循环伏安测试
一、实验目的 1. 学习固体电极表面的处理方法; 2. 掌握循环伏安仪的使用技术; 3. 了解扫描速率和浓度对循环伏安图的影 响。
LOGO
铁氰化钾的循环伏安测试
二、实验原理
铁氰化钾离子[Fe(CN)6]3-亚铁氰化钾离子[Fe(CN)6]4-氧 化还原电对的标准电极电位为0.36V 电极电位与电极表面活度的Nernst方程式为 φ=φθ’+ RT/Fln(C Ox/CRed) 在一定扫描速率下,从起始电位(-0.2V)正向扫描到转折电位 (+0.8V)期间,溶液中[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-, 产生氧化电流;当负向扫描从转折电位(+0.6V)变到原起始电位(0.2V)期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe (CN)6]4-,产生还原电流。为了使液相传质过程只受扩散控制,应 在加入电解质和溶液处于静止下进行电解。在0.1MNaCl溶液中[Fe( CN)6]4-的电子转移速率大,为可逆体系(1MNaCl溶液中,25℃时 ,标准反应速率常数为5.2×10-2 cm2s-1;)。
LOGO
0.7
Potential/V(vs.SCE)
LOGO
铁氰化钾的循环伏安测试
LOGO
铁氰化钾的循环伏安测试
结论
对于表面吸附控制的电极反应过程,峰电流ip与扫描速度呈正比 关系,即ip~V为一直线。(此关系也可利用标准曲线法的线性拟合功 能,以峰电流为横坐标,扫描速度的二分之一次方或扫描速度为纵坐 标,考察线性关系)将不同扫描速率的循环伏安曲线进行叠加。随着 扫描速度的增加,峰电流也增加。且分别测量他们的峰数据可以得到 峰电流与扫描速度的关系。根据电化学理论,对于扩散控制的电极过 程,峰电流ip与扫描速度的二分之一次方呈正比关系。用标准曲线法 中的线性拟合处理,得出峰电流ip与呈线性关系,R为扫描速度。 在误差的范围内K3 [Fe(CN)6]在KCl溶液中电极过程的具有可 逆性。 对于可逆体系,氧化峰电流ipa与还原峰电流ipc绝对值的比值 :ipa/ ipc=1。 从图中可以看出来随着扫描速率的增大氧化还原峰的 距离越来越大,即是可逆性实验步骤

循环伏安法测定铁氰化钾的电极反应过程

循环伏安法测定铁氰化钾的电极反应过程

实验三十四循环伏安法测定铁氰化钾的电极反应过程一、实验目的见《仪器分析实验》p123二、方法原理见《仪器分析实验》p123。

三、仪器和试剂1.JP—303型极谱分析仪2.铁氰化钾标准溶液:5.0×10-2mol/L3.氯化钾溶液:1.0mol/L四、实验步骤1.铁氰化钾试液的配置准确移取1.0mL5.0×10-2mol/L的铁氰化钾标准溶液于10mL的小烧杯中,加入1.0 mol/L 的氯化钾溶液5.0mL,再加蒸溜水4.0mL。

2.测量手续(1)打开303极谱仪的电源。

屏幕显示清晰后,输入当天的日期:××.××.××,按【INT】键。

(2)屏幕显示“运行方式”菜单后,选取“使用当前方法”项,按【YES】键。

屏幕将显示“线性循环伏安法”的方法参数菜单:导数(0~2)0量程(10e nA,e=1~4) 4扫描次数(1~8) 4扫描速率(50~1000mV/s)50起始电位(-4000~4000mV)-100终止电位(-4000~4000mV)600静止时间(0~999s)0如果显示的参数不符合,请按提示修改。

(3)测量铁氰化钾试液在教师指导下,置电极系统于10mL小烧杯的铁氰化钾试液里。

按【运行】键,运行自动完成后,“波高基准”项闪烁,用∧∨键确定“前谷”方法处理图谱,按【YES】键。

请记录波峰电位和波峰电流数据。

按两次【退回】键,再按【方法】键,选取“使用当前方法”项,按【YES】键,显示“线性循环伏安法”的方法参数菜单。

修改扫描速率为100mV,按【ENT】键。

再按【运行】键,照上述的过程一样进行测量。

直至完成扫描速率为50、100、150、200、250mV/s的测量。

上述的循环伏安图打印样本见附图。

五、结果处理见《仪器分析实验》p127五的1、3、5题。

六、问题讨论见《仪器分析实验》p128六的2题。

铁氰化钾溶液的循环伏安法研究

铁氰化钾溶液的循环伏安法研究

铁氰化钾溶液的循环伏安法研究铁氰化钾溶液的循环伏安法研究1、实验⽬的(1)学习固体电极表⾯的处理⽅法。

(2)掌握循环伏安仪的使⽤技术。

(3)了解电位扫描速率和电活性物质浓度对循环伏安图的影响。

2、实验原理铁氰化钾离⼦[Fe(CN)6]3-/亚铁氰化钾离⼦[Fe(CN)6]4-氧化还原电对的电极反应为:电极电位与电极表⾯电活性物质浓度间的关系符合Nernst⽅程式。

在⼀定扫描速率下,从起始电位(+0.8 V)负向扫描到转折电位(-0.2 V)时,⼯作电极表⾯的[Fe(CN)6]3-被还原⽣成[Fe(CN)6]4-,产⽣还原电流;当反向扫描从转折电位(-0.2 V)变化到起始电位(+0.8 V)时,在⼯作电极表⾯⽣成的[Fe(CN)6]4-被氧化⽣成[Fe(CN)6]3-,产⽣氧化电流。

为了使溶液相传质过程只受扩散控制,应加⼊⽀持电解质并在溶液处于静⽌状态下进⾏电解。

25℃时,在0.10 mol/L KCl 溶液中K3[Fe(CN)6]的扩散系数约为6.3×10-6 cm2 s-1,标准电极反应速率常数约为5.2×10-2 cm s-1,电⼦转移速率⼤,为可逆体系。

3、仪器与试剂天津兰⼒科LK9805电化学分析仪;玻碳盘电极(Φ3 mm);铂辅助电极;饱和⽢汞电极;超声波清洗仪;电解池。

K3[Fe(CN)6]溶液:1.0 mmol/L(含0.10 mol/L KCl)。

KCl溶液:0.10 mol/L。

4、实验步骤1)玻碳盘⼯作电极的预处理:⽤Al2O3粉末(粒径0.05 µm)将电极表⾯抛光,然后在蒸馏⽔中超声波清洗,再⽤蒸馏⽔清洗,待⽤。

2)K3[Fe(CN)6]溶液的循环伏安图:(1)不同扫描速率下K3[Fe(CN)6]溶液的循环伏安图取1.0 mmol/L K3[Fe(CN)6]溶液20 mL置于电解池中,放⼊玻璃碳圆盘电极、饱和⽢汞电极及铂辅助电极(玻璃碳圆盘电极为⼯作电极,铂丝电极为辅助电极,饱和⽢汞电极为参⽐电极),设置起始电位为+0.8 V,终⽌电位为-0.2 V,扫描速率(v)分别为10、25、50、75、100、150、200、250、500 mV s-1,进⾏循环伏安扫描,记录下循环伏安图中氧化峰、还原峰的峰电位和峰电流(i pa、i pc、E Pa、E Pc)。

循环伏安法测定铁氰化钾

循环伏安法测定铁氰化钾

实验原理
实验装置
实验设备
仪器
电化学工作站;玻碳电极;Pt电极,饱和甘汞电极; 电解池
试剂
0.01 molL-1 K3[Fe(CN)6] 2.0 molL-1 KNO3 0.5 molL-1 H2SO4
实验步骤
实验步骤
1.清洗玻璃仪器 准备1个小烧杯和1个50mL容量瓶,清洗干净,蒸馏水冲 洗2-3次,将小烧杯烘干放凉备用.
的值,填下表。
浓度(mol/L) 扫速(mV/s)
扫速开方
(mA)
(mA)
(mV/s)
i pa
i pc
(V)
(V)
E pa
E pc
数据处理
2.分别以ipa和ipc对v1/2作图,说明扫描速 率v对iP的影响。
峰电流和扫描速度关系表
v1/2
Ipa/*e-6A Ipc/*e-6A
3.162
-0.901
4. K3 [Fe(CN)6]溶液的循环伏安曲线 取一定量的测试液于电解池(50ml烧杯)中,插入三电极,连 接电极连线。设置扫描参数:起始电位600mV,终止电位200mV,扫描速度为20mV/s,取样间隔2mV,量程100mA ,然后开始扫描.
5. 不 同 扫 描 速 率K3 [Fe(CN)6]溶液的循环伏安曲线 在上述浓度的K3[Fe(CN)6]溶液中,分别以40mv/s、60mv/s 、80mv/s、100mv/s ,在+600mV - -200m V电位范围内扫 描,分别记录不同扫描速率下溶液的循环伏安曲线。
实验数据的处理及分析 判断电极反应的可逆性
实验原理
在一定扫描速率下 从起始电位(+0.4 V)正向扫 描到转折电位(-0.6 V)期间, 溶液中[Fe(CN)6]3-被还原生成 [Fe(CN)6]4-,产生还原电流; 当负向扫描从转折电位(-0.6 V) 变到原起始电位(+0.4 V)期 间,在指示电极表面生成的 [Fe(CN)6]4-被氧化生成 [Fe(CN)6]3-,产生氧化电流。

循环伏安法有关性质的测定铁氰化钾

循环伏安法有关性质的测定铁氰化钾

循环伏安法有关性质的测定铁氰化钾循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),一支参比电极,一支辅助(对)电极。

外加电压加在工作电极与辅助电极之间,反应电流通过工作电极与辅助电极,记录工作电极上得到的电流与施加电压的关系曲线。

循环伏安法施最重要的电分析化学研究方法之一。

在电化学、无机化学、有机化学、生物化学等研究领域广泛应用。

其优点有:(1)操作简单、快速、自动化程度高、重复和再现性好、测定结果准确;(2)灵敏度高,其测定最小灵敏度可达其测定最小灵敏度可达5 x 10-" (AN),测定范围广,其测定范围从5 x 10-"(A/V)到0.001(AN) ; (3)与价格昂贵的红外光谱等现代分析仪器相比,伏安法测定仪器价格低廉,适于用户自行测定和野战化验;(4)循环伏安法还可以对样品的总酸值、总碱值进行测定;(5)测定仪器体积小、重量轻、自动化程度高、操作要求简单、测定时间短。

可用于:(1)抗氧剂伏安测定技术; (2)总酸值(TA N)的测定技术;(3)总碱值(TBN)的测定技术;(4)反应过程可逆性的测定等。

其具体应用有:线性扫描伏安法测定丹参酮ⅡA、聚苯胺纳米管/壳聚糖修饰玻碳电极循环伏安法测定阿米卡星、循环伏安法沉积石墨基PbO_2电极及其超级电容器应用、用多壁碳纳米管修饰玻碳电极为工作电极循环伏安法测定辛硫磷、循环伏安法测定铁胺络合物还原强度、聚亚甲基蓝修饰铅笔芯电极-扫描循环伏安法测定果蔬酸度等。

【1】刘长久,李延伟,尚伟.电化学实验.北京:化学工业出版社.2011【2】王圣平.实验电化学.武汉:中国地质出版社.2010【3】王德岩,褚建林. 石化技术, Petrochemical Industry Technology, 2006年 02期实验仪器及试剂:超声波清洗机、CHI660电化学工作站、电解池、分析天平、容量瓶、烧杯、移液管、玻璃棒等;铁氰化钾、KCl、蒸馏水。

同济大学化学系 循环伏安(CV)实验

实验一循环伏安(CV)实验093858 张亚辉一、实验目的:掌握循环伏安法(CV)基本操作;掌握受扩散控制电化学过程的判别方法;了解可逆电化学过程及条件电极电位的测定;了解电化学—化学偶联反应过程的循环伏安特点。

并学会电化学工作站仪器的使用。

二、循环伏安法原理:扫描电压呈等腰三角形。

如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。

因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。

循环伏安法可用于研究化合物电极过程的机理、双电层、吸附现象和电极反应动力学.成为最有用的电化学方法之一三、实验步骤1.配制50mM铁氰化钾标准溶液,0.5 M的KCl溶液;2.移取0.5、1、2.5、5mL铁氰化钾标准溶液至25mL容量瓶中,再加入5mLKCl溶液,配制成1、2、5、10mmol铁氰化钾标准溶液,3.电极连接,参数设定(起始电位、电位扫描范围、扫描速度等)4.选取2mmmol铁氰化钾标准溶液,在扫描速率80mV/s下,测定电极未磨前的循环伏安曲线。

5.电极表面抛光后,改变扫描速率(10、20、40、80、160mV/s),测定峰电流随扫描速率的变化6.固定扫描速率,控制一定的扫描速率测定峰电流随浓度的变化;四、数据处理1.计算亚铁氰化钾的条件电极电位;E=0.059/2=0.0259V2. 下图为2mmol/L溶液在不同扫速(10、20、40、80、160mV/s)下的循环伏安曲线从图中可看出下半部伏安曲线不够平滑,有尖锐点。

我们把工作电极接到别组的装置上,曲线依旧。

故可判断是工作电极的问题,但是经我们反复打磨电极,还是不能得到完美的曲线。

因此,我们只好采用上半部的峰电流来做曲线,舍弃下半部的峰电流。

3.作出峰电流~扫速v 1/2图,判断是否是扩散控制过程;从下图可看出,峰电流与扫速的1/2方呈线性关系,是扩散控制过程4.作出峰电流~浓度工作曲线。

循环伏安法测定铁氰化钾的电极反应过程


也可认为电极反应是可逆的。
编辑ppt
66
实验原理
4.计算原理
对可逆体系的正向峰电流,由Randles-savcik方程
可表示为:
ip2.69105n32A D 12 1/2C
(1-3)
式中:ip为峰电流(A) A为电极面积(cm2)
n为电子转移数 D为扩散系数(cm2/s)
为扫描速度(V/s)
c为浓度(mol/L)
实验一 循环伏安法测定铁氰化
钾的电极反应过程
编辑ppt
11
实验目的
学习循环伏安法测定电极反应参数的基本原 理及方法 熟悉伏安仪使用技巧 学习固体电极表面的处理方法
编辑ppt
22
实验原理
1.循环伏安法 CV方法是将循环变化的电压施加于工作电极和对 电极之间,记录工作电极上得到的电流与施加电压的关 系曲线.此方法也称为三角波线性电位扫描方法.图1-1 表明了施加电压的变化方式.
2.循环伏安图分析
pc
20
dห้องสมุดไป่ตู้
阳极 i / 阴极
e
10
c
i
f
pc
0a
b
h
g
k
-10
ii
pa
pa
j
-20 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2
/v
图1-2 K3Fe(CN)6在KCL溶液中的循环伏安图
由图1-2 可见, 循环伏安图有两个 峰电流和两个峰电 位。ipc和 ipa分别表 示阴极峰值电流和 阳极峰值电流,对 应的阴极峰值电位 与阳极峰值电位分
编辑ppt
77
实验仪器及试剂
仪器:CHI660C电化学分析仪;圆盘型工作电极 铂丝辅助电极和饱和KCl参比电极组成电极系统。

循环伏安法测定铁氰化钾的电化学行为

循环伏安法测定铁氰化钾的电化学行为一、实验目的1、学习循环伏安法测定电极反应参数的基本原理及方法。

2、熟悉CHI660电化学工作站的使用。

3、学会使用伏安极谱仪。

4、学会测量峰电流和峰电位。

二、实验原理循环伏安法(cyclic voltammetry ,CV )是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图。

从伏安图的波形、氧化还原峰电流的数值及其比值、峰电位等可以判断电极反应机理。

可用来检测物质的氧化还原电位, 考察电化学反应的可逆性和反应机理, 判断产物的稳定性,研究活性物质的吸附和脱附现象; 也可用于反应速率的半定量分析等。

循环伏安在工作电极上施加一个线性变化的循环电压,记录工作电极上得到的电流与施加电压的关系曲线,对溶液中的电活性物质进行分析。

由于施加的电压为三角波,这种方法也称为三角波线性扫描极谱法。

U t + - + + -+ + - +三角波图1 电路的接法一次扫描过程中完成一个氧化和还原过程的循环,称为循环伏安法。

与汞电极相比,物质在固体电极上伏安行为的重现性差,其原因与固体电极的表面状态直接有关,因而了解固体电极表面处理的方法和衡量电极表面被净化的程度,以及测算电极有效表面积的方法,是十分重要的。

一般对这类问题要根据固体电极材料不同而采取适当的方法。

循环伏安法控制电极电位φ随时间t 从φi 线性变化增大(或减小)至某电位φτ后,相同速率线性减小(大)归到最初电位φi 。

其典型的CV 法响应电流对电位曲线(循环伏安图)如图1示。

图2. 循环伏安曲线图假如电位从φi 开始以扫描速度υ向负方向扫描, 置φi 较φ (研究电极的标 准电极电位)正得多, 开始时没有法拉第电流, 当电位移向φ 附近时, 还原电流 出现并逐渐增大, 电位继续负移时, 由于电极反应主要受界面电荷传递动力学控 A g /A g c l 铂盘电极制, 电流进一步增大, 当电位负移到足够负时, 达到扩散控制电位后, 电流则转至受扩散过程限制而衰减, 使i φ曲线上出现电流峰i pc , 对应的峰电位为φpc 。

循环伏安法测定铁氰化钾实验报告(华南师范大学)

实验四循环伏安法研究铁氰化钾的电极反应过程一、实验目的(1)学习电化学工作站的使用及固体电极表面的处理方法(2)掌握用循环伏安法判断电极过程的可逆性二、实验原理循环伏安法(CV法)是以等腰三角形的脉冲电压加在工作电极上,在电极上施加线形扫描电压,从设定的起始电压开始扫描,到达设定的终止电压后,再反向回扫至设定的起始电压。

如果前半部分电压由高向低扫描,电活性物质在电极上还原(Ox + n e Red),产生还原波;则后半部分电压由低向高扫描时,还原产物又会在电极上氧化(Red -n e Ox),产生氧化波。

得到的电流~电压曲线(i ~ E曲线)称为循环伏安图(CV图)。

一次三角波扫描,完成一个还原和氧化过程的循环。

Fe(CN)63- + e Fe(CN)64-铁氰化钾(K3Fe(CN)6)的峰电流(i p)与电极表面活度的关系式为:式中,n、c和v分别为电活性物质的电子转移数、浓度和扫描速率。

i p与v1/2、c成正比。

对于可逆体系,氧化峰电流(i pa)与还原峰电流(i pc)之比i pa / i pc≈ 1,氧化峰电位(E pa)与还原峰电位(E pc)之差∆E p = E pa- E pc≈ 0.059/n,条件电位Eө' = (E pa + E pc)/2。

如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差,∆E p > 0.059/n,i pa / i pc < 1。

甚至只有一个氧化或还原峰,电极过程即为不可逆。

由此可判断电极反应过程的可逆性。

三、仪器和试剂(1)仪器:CHI620E电化学工作站、三电极系统(玻碳电极、铂丝电极、参比电极)(2)试剂:1.0 × 10-2 mol·L-1 K3Fe(CN)6溶液、1.0 mol·L-1 KNO3溶液四、实验步骤1. 玻碳电极的处理用Al2O3粉将电极表面抛光,用去离子水清洗,超声。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、数据记录与处理
1、不同浓度的K4 [Fe(CN)6]溶液的i pa、i pc、E pa、E pc的值
表 1 不同浓度的K4 [Fe(CN)6]溶液的i pa、 i pc、E pa、 E pc的数值表浓度(mol·L-1)Ipa (A) Ipc (A) Epa(V)Epc(V) Ipa /Ipc ΔEp(V)
0.01 -1.228E-04 1.241E-04 0.241 0.136 0.990 0.105
0.02 -2.565E-04 2.431E-04 0.269 0.128 -1.055 0.141
0.04 -4.537E-04 4.433E-04 0.286 0.124 -1.023 0.162
0.06 -5.379E-04 5.721E-04 0.288 0.126 -0.940 0.162
0.08 -8.766E-04 8.403E-04 0.308 0.119 -1.043 0.189
(1)峰电流的叠加图
图 1 不同浓度下测定亚铁氰化钾循环伏安图叠加
(2)以i pa、i pc分别对K4 [Fe(CN)6]溶液浓度作图
图 2 氧化峰电流及还原峰电流与亚铁氰化钾浓度关系图
由图知:峰电流与浓度呈线性正比关系
2、不同扫描速率下0.04mol/L的氰化亚铁溶液的I pa、I pc、E pa、E pc
表2不同扫描速率下0.04mol/L的氰化亚铁溶液的I pa、I pc、E pa、E pc数值表
V(V·s-1) V^(1/2) Ipa (A) Ipc (A) Epa(V)Epc(V) Ipa /Ipc ΔEp(V)
0.02 0.1414 2.459E-04 2.377E-04 0.265 0.145 1.034 0.120
0.04 0.2000 -3.305E-04 3.155E-04 0.278 0.135 -1.048 0.143
0.06 0.2449 -3.869E-04 3.662E-04 0.287 0.129 -1.057 0.158
0.08 0.2828 -4.290E-04 4.021E-04 0.295 0.122 -1.067 0.173
0.10 0.3162 -4.627E-04 4.564E-04 0.301 0.116 -1.014 0.185
(1)峰电流的叠加图
(2)分别以Ipa 和Ipc对V1/2作图,说明峰电流与扫描速率间的关系
图 4 氧化峰电流及还原峰电流与扫描速率的关系图
由图可知:峰电流ip与V1/2成正比
3.电极的表面积
i P=2.69×105n3/2D1/2v1/2Ac
其中n为电子转移数,D为扩散系数(cm2/s),v为电位扫描速率(V/s)
K4 [Fe(CN)6]的扩散系数D=6.61×10-6 cm2/s,n=1,c=0.04mol/L
且由图又有i p=k v1/2k为i p与v1/2关系图的斜率
k=1.21×10-3(选取R2较大的斜率)
故k=2.69×105AD1/2c
则A= k/(2.69×105D1/2c)= 4.3x10-5cm2
4.从上述数据中均可以看出i pa∕i pc近似等于1,可以判定其为可逆电极,ΔEp 与59mV相差较远,可能原因在于磨电极时处理的ΔEp较大,在100mV以上,故而
误差较大。

相关文档
最新文档