复变函数与积分变换

合集下载

复变函数与积分变换

复变函数与积分变换

C f ( z )dz lim 1 f ( k ) zk . n k
n
3.积分的性质
g 设 f ( z ) , ( z ) 在曲线 C 上可积,则 C 1) C f ( z )dz C f ( z )dz , 与 C 反向; 2) C Kf ( z )dz K C f ( z )dz,K 为常数;
习题:
1.设C是正向圆周z 1, 计算下列各积分的值。 dz dz dz 1 ) ; 2) ; 3) ; i z2 cos z c c c ( z )( z 2) 2 解:
dz 1) 0; z2 c dz 2) 0; cos z c 4i 3) 2i ; i i c ( z )( z 2) 2 i4 2 2 dz 1
z re i
z x iy
(5)代数表示:
5.运算 1)相等; 2)四则运算,及运算规律; 3)共轭运算,及运算规律; 4) z z r r [cos( ) i sin( )]
1 2 1 2 1 2 1 2
5)
z1 r 1 [cos(1 2 ) i sin(1 2 )] z2 r2 r i (1 2 ) 1e . r2
2i
3.沿指定曲线计算下列各积分.
ez 1 ) z 2 dz, C : z 2 1; c ez 3) C ( z 1)( z 2) dz, C : z 3; eiz 3 2) 2 dz, C : z 2i ; z 1 2 c ez 4) 3 dz, C : z 2; C z
2 2
在区域x 0内连续,且 u v v u , 在区域x 0上成立时, 1, 2a x y x y 1 即,当a 时,函数f ( z )在区域x 0内是解析的。 2

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总

复变函数与积分变换公式汇总一、复变函数的基本概念和性质1. 复数集的定义:复数集是由实数和虚数构成的集合,形式为a + bi,其中a和b都是实数,i是虚数单位,满足i² = -12. 复变函数的定义:设有一个定义在平面上的函数f(z),其中z = x + yi是平面上的点,x和y是实数。

如果对任意给定的z都有唯一确定的复数w与之对应,那么称函数f(z)是复数域上的一个函数。

3.复变函数的连续性:如果在z0处存在一个复数A,使得当z趋于z0时,函数f(z)趋于复数A,则称函数f(z)在点z0处连续。

4.复变函数的可导性:如果函数f(z)在z0处连续,并且当z趋于z0时,函数f(z)的导数存在有一个有限的极限L,则称函数f(z)在z0处可导,并记为f'(z0)=L。

二、复变函数的常用公式1. 欧拉公式:e^(iθ) = cosθ + isinθ2. 增补公式:sinh(x + iy) = sinh(x)cos(y) + isin(y)cosh(x)3.多项式的根公式:设P(z)=aₙzⁿ+aₙ₋₁zⁿ⁻¹+…+a₀是一个非常数多项式,aₙ≠0,则P(z)=0在复数域存在n个根。

4.共轭根公式:如果z是复数P(z)=0的根,则z^*也是复数P(z)=0的根。

5. 辐角公式:对于复数z = x + yi,其中x和y是实数,辐角θ = arctan(y/x),其中-π < θ ≤ π。

6. 复数的模公式:对于复数z = x + yi,其中x和y是实数,模,z,= √(x² + y²)。

7. 三角和指数函数的关系:sinθ = (e^(iθ) - e^(-iθ))/(2i),cosθ = (e^(iθ) + e^(-iθ))/28. 三角函数和指数函数的关系:sin(ix) = i sinh(x),cos(ix) = cosh(x)。

三、复变函数的常用积分变换公式1.度量积分变换:对于复变函数f(z),定义如下的度量积分变换公式:∫(f(z)dz) = ∫(f(z₁)dz₁ + f(z₂)dz₂ + … + f(zₙ)dzₙ),(z₁,z₂,…,zₙ)为路径连续的点。

复变函数与积分变换课后答案

复变函数与积分变换课后答案

1 ∴ Res e z 1 ,1 1 .
2. 利用各种方法计算 f(z)在有限孤立奇点处的留数.
3z 2 (1) f z 2 z z 2 3z 2 解: f z 2 的有限孤立奇点处有 z=0,z=-2.其中 z=0 为二级极点 z=-2 为一级极 z z 2
1 1 2 解: z 1 sin z 2 2 z 1 sin z z 1 1 1 1 1 z 2 2 z 1 3 5 5! z z 3! z 1 ∴ Res f z , 0 1 3!
为在 c 内 tanπz 有 zk k
sin πz 由于 Res f z , zk cos πz
1 π
1 ∴ tan πzdz 2 πi Res f z , zk 2πi 2n 4ni c π k (2)
3 i 10
6. 计算下列积分.
(1)
π
0
cos m d 5 4 cos 1 π cos m d 2 π 5 4 cos
因被积函数为 θ 的偶函数,所以 I 令 I1
1 π sin m d 则有 2 π 5 4 cos
1 π eim d 2 π 5 4 cos
z 0
所以由留数定理.

AB
f z dz
BE
f z dz
EF
f z dz
C
FA
f z dz 2πi ln a


BE
f z dz

R
C
e x Ri ln a dx x Ri 2

复变函数与积分变换第1章复数与复变函数

复变函数与积分变换第1章复数与复变函数

点z1,z2之间的距离. 利用复数z的指数表示式作复数乘法与除法运算很方便.
假设
,则由式(1.5)可得
于是
页 退出
复变函数与积分变换
出版社 理工分社
由此可知:
①两个复数乘积的模等于它们各自模的乘积,两个复数乘积的辐角等于
它们各自辐角的和;
②两个复数商的模等于它们各自模的商,两个复数商的辐角等于分子辐
显然z和 是关于实轴
图1.6
页 退出
复变函数与积分变换
例1.6设 解因为
所以
,试求Re z,lm z和
出版社 理工分社
页 退出
复变函数与积分变换
例1.7求证:若|a|=1,则
证由

出版社 理工分社
页 退出
复变函数与积分变换
例1.8设复数
满足条件
求证
是内接于单位圆|z|=1的一个正三角形的顶点.
页 退出
复变函数与积分变换
出版社 理工分社
定义1.4设 为一点集,
如果对
,点集
是无穷点
集,则称z0为E的聚点或极限点,E的聚点全体通常记为E′;若
,但
则称z0为E的孤立点;若
,使得
,则称z0为E的外点.
定义1.5若点集E能完全包含在以原点为圆心,以某一个正数R为半径的圆域
内部,则称E为有界集,否则称E为无界集.
求其第三个顶
点.
解如图1.4将向量z2-z1绕z1旋转
得另一个向量,其终点就是所
求的第三个顶点z3(或z′3),根据复数乘法的几何意义可得
图1.3
图1.4
页 退出
复变函数与积分变换
所以 类似可得
出版社 理工分社

复变函数与积分变换(修订版-复旦大学)课后习题答案

复变函数与积分变换(修订版-复旦大学)课后习题答案

习题 七1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有⎰+∞⋅=0d sin )()(ωωωt b t f其中()⎰+∞⋅=0tdt sin π2)(ωωt f b当f (t )为偶函数时,则有⎰+∞⋅=0cos )()(ωωtd w a t f其中⎰+∞⋅=02tdt c f(t))(ωωos a证明:因为ωωωd G t f t i ⎰+∞∞-=e )(π21)(其中)(ωG 为f (t )的傅里叶变换()()()(cos sin )i tG f t edt f t t i t dt ωωωω+∞+∞--∞-∞==⋅-⎰⎰()cos ()sin f t tdt i f t tdt ωω+∞+∞-∞-∞=⋅-⋅⎰⎰当f (t )为奇函数时,t cos f(t)ω⋅为奇函数,从而⎰+∞∞-=⋅0tdt cos f(t)ωt sin f(t)ω⋅为偶函数,从而⎰⎰+∞∞-+∞⋅=⋅0.sin f(t)2tdt sin f(t)tdt ωω故.sin f(t)2)(0tdt iG ωω⋅-=⎰+∞有)()(ωωG G -=-为奇数。

ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+⋅=⋅=⎰⎰+∞∞-+∞∞-=01()sin d ()sin d 2ππi G i t G t ωωωωωω+∞+∞-∞⋅=⋅⎰⎰ 所以,当f(t)为奇函数时,有2()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞+∞=⋅⋅⎰⎰其中同理,当f(t)为偶函数时,有()()cos d f t a t ωωω+∞=⋅⎰.其中02()()cos πa f t tdt ωω+∞=⋅⎰ 2.在上一题中,设()f t =21,0,1t t t ⎧<⎪⎨≥⎪⎩.计算()a ω的值.解:1200111220012012011200222()()cos d cos d 0cos d πππ221cos d d(sin )ππ122sin sin 2d 0ππ2sin 4(cos )π2sin 4cos cos π2sin 4co a f t t t t t t t t t t t t t t t t t tt d t t t tdt ωωωωωωωωωωωωωωπωωωωωπωωπω+∞+∞=⋅=⋅+⋅=⋅=⋅=⋅⋅-⋅=⋅+⋅⎡⎤=+⋅-⎢⎥⎣⎦=+⎰⎰⎰⎰⎰⎰⎰⎰23s 4sin ωωπωπω-3.计算函数sin ,6π()0,6πt t f t t ⎧≤⎪=⎨≥⎪⎩的傅里叶变换. 解:[]6π6π6π6π6π02()()d sin d sin (cos sin )d 2sin sin d sin 6ππ(1)i t i t F f f t e t t e tt t i t ti t t t i ωωωωωωωω+∞---∞--=⋅=⋅=⋅-=-⋅=-⎰⎰⎰⎰4.求下列函数的傅里叶变换 (1)()tf t e -=解: []||(||)0(1)(1)2F f ()()d d d 2d d 1i t t i t t i t t i t i f te t e e t e te t e t ωωωωωωω+∞+∞+∞----+-∞-∞-∞+∞--+-∞==⋅==+=+⎰⎰⎰⎰⎰(2)2()t f t t e-=⋅解:因为22222/4F[].()(2)2.t t t t e ee e t t e ω-----==⋅-=-⋅而所以根据傅里叶变换的微分性质可得224()F()tG t e e ωω--=⋅=(3)2sin π()1tf t t =- 解:222202200sin π()F()()d 1sin π(cos sin )d 11[cos(π)cos(π)]sin πsin 2d 2d 11cos(π+)cos(π-)d d ()11sin ,||π20,|i tt G f e t t tt i t t t t t t t i t i t t t t t i t i t t t iωωωωωωωωωωωωω+∞--∞+∞-∞+∞+∞-∞+∞+∞==⋅-=⋅---+--⋅=-=---=----≤=⎰⎰⎰⎰⎰⎰利用留数定理当当|π.⎧⎪⎨⎪≥⎩(4)41()1f t t=+ 解:4444401cos sin ()d d d 111cos cos 2d d 11i tt t G e t t i t t t t t t t t t t ωωωωωω+∞+∞+∞--∞-∞-∞+∞+∞-∞==-+++==++⎰⎰⎰⎰⎰令41R(z)=1z +,则R(z)在上半平面有两个一级极1)i i +-+. R()d 2π[R())]2π[R()1)]i t i z i z t e t i Res z e i i Res z e i ωωω+∞-∞⋅=⋅⋅++⋅⋅-+⎰故.|244cos ||||d Re[d ]sin )1122i t t e t t t t ωωωωω+∞+∞--∞-∞=+++⎰⎰(5) 4()1tf t t =+ 解:4444()d 1sin cos d d 11sin d 1i t tG e t t t t t t t i t t t t t i tt ωωωωω+∞--∞+∞+∞-∞-∞+∞-∞=⋅+⋅=⋅-++⋅=-+⎰⎰⎰⎰ 同(4).利用留数在积分中的应用,令4R()=1zz z +则44|sin d ()Im(d )11sin22i tt tt e i t i t t t ie ωωωω+∞+∞-∞-∞-⋅⋅-=-++=-⋅⋅⎰⎰.5.设函数F (t )是解析函数,而且在带形区域Im()t δ<内有界.定义函数()L G ω为/2/2()()e d .L i t L L G F t t ωω--=⎰证明当L →∞时,有1p.v.()e d ()2πi t L G F t ωωω∞-∞→⎰ 对所有的实数t 成立.(书上有推理过程) 6.求符号函数 1,0sgn 1,0||t t t t t -<⎧==⎨>⎩的傅里叶变换. 解: 因为1F (())π().u t i δωω=+⋅把函数sgn()t 与u(t)作比较.不难看出 sgn()()().t u t u t =-- 故:[]11F[sgn()]F(())F(())π()[π()]π()22π()()t u t u t i i i i δωδωωδωδωωω=--=+⋅-+⋅--=+--=7.已知函数()f t 的傅里叶变换()00F()=π()(),ωδωωδωω++-求()f t解:[]000-100000001()F (F())=π()()d 2πF(cos )=cos d d 2π[()()]()cos i ti t i t i t i tf t e t t e te e e tf t tωωωωωωδωωδωωωωωδωωδωωω+∞-∞+∞--∞-+∞--∞=⋅++-⋅+=⋅=++-=⎰⎰⎰而所以8.设函数f (t )的傅里叶变换()F ω,a 为一常数. 证明1[()]().f at F a a ωω⎛⎫=⎪⎝⎭1F[()]()()d ()d()i t i t f at f at e t f at e at a ωωω+∞+∞---∞-∞=⋅=⋅⎰⎰解:当a >0时,令u=at .则11F[()]()()d u i a f at f u e u F a a a ωωω-+∞-∞⎛⎫=⋅= ⎪⎝⎭⎰当a <0时,令u=at ,则1F[()]()F()f at a aωω=-. 故原命题成立.9.设()[]();F F f ωω=证明()()[]()F f t ωω=--F .证明:()[]()()()()()[]()[]()()[]()()e d e d e d e d e d .i t i u i i u u i t F f t f uf t u t f u f uu u f t F t ωωωωωωω+∞+∞--∞-∞+∞+∞--⋅-⋅--∞-∞+∞-⋅--∞=⋅=-⋅--=⋅=⋅=⋅=-⎰⎰⎰⎰⎰10.设()[]()F F f ωω=,证明:()[]()()()0001cos 2F f t F F t ωωωωωω⋅=-++⎡⎤⎣⎦以及()[]()()()0001sin .2F f t F F t ωωωωωω⋅=--+⎡⎤⎣⎦ 证明:()[]()()()()()0000000e +e cos 21e e 22212i t i t i t i t F f t F t f t F F f f t t F F ωωωωωωωωω--⎡⎤⋅=⋅⎢⎥⎣⎦⎧⎫⎡⎤⎡⎤=+⋅⋅⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭=-++⎡⎤⎣⎦同理:()[]()()(){}()()0000000e e sin 21e e 212i t i t i t i t Ff t F f t t i F F f f t t i F F i ωωωωωωωωω--⎡⎤-⋅=⋅⎢⎥⎣⎦=-⎡⎤⎡⎤⋅⋅⎣⎦⎣⎦=--+⎡⎤⎣⎦ 11.设()()π0,0sin ,0t 200e ,t t t f g t t t -⎧<⎧≤≤⎪==⎨⎨≥⎩⎪⎩,其他计算()*f g t . 解:()())*(d f y g y t f g t y +∞-∞-=⎰当t y o -≥时,若0,t <则()0,f y =故()*f g t =0.若0,0,2t y t π<≤<≤则()()()0()d sin d *t ty f y g y e y t f g t y t y -=⋅--=⎰⎰若,0..222t t y t y t πππ>≤-≤⇒-≤≤则()()2sin d *ty t e y t f g y t π--⋅-=⎰故()()()20,01,0sin cos e *221e .1e 22t t t t t t f g t t πππ--<⎧⎪⎪<≤-+=⎨⎪⎪>+⎩12.设()u t 为单位阶跃函数,求下列函数的傅里叶变换.()()()0e sin 1at f t u t t ω-=⋅()()()()()()()00000000002002e sin e e sin e e e e e 211e d d d d e 2d 2at i t at i t i t i t ati ta i t a i t ttG F t u f t t t i i i t t a i ωωωωωωωωωωωωωωωω+∞-∞+∞+∞+∞+--------+--++⎡⎤⎡⎤⎣∞⎣⎦⎦=====-=⋅⋅⋅⋅⋅-⋅⋅++⎰⎰⎰⎰⎰解:习题八1.求下列函数的拉普拉斯变换.(1)()sin cos f t t t =⋅,(2)4()etf t -=,(3)2()sin f t t= (4)2()f t t =, (5)()sinh f t bt=解: (1) 1()sin cos sin 22f t t t t =⋅=221121(())(sin 2)2244L f t L t s s ==⋅=++(2)411(())(e )24tL f t L s -==+(3)21cos 2()sin 2t f t t -==221cos21111122(())()(1)(cos2)222224(4)t L f t L L t s s s s -==-=⋅-⋅=++(4)232()L t s = (5)22e e 111111(())()(e )(e )22222bt bt bt bt bL f t L L L s b s b s b ---==-=⋅-⋅=-+-2.求下列函数的拉普拉斯变换.(1)2,01()1,120,2t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩(2)cos ,0π()0,πt t f t t ≤<⎧=⎨≥⎩解: (1) 1220011(())()e 2e e (2e e )st st st s s L f t f t dt dt dt s +∞-----=⋅=⋅+=--⎰⎰⎰(2)πππ2011e (())()e cos e (1e )1s ststsL f t f t dt t dt s s -+∞---+=⋅=⋅=+++⎰⎰3.设函数()cos ()sin ()f t t t t u t δ=⋅-⋅,其中函数()u t 为阶跃函数, 求()f t 的拉普拉斯变换.解:20222(())()e cos ()e sin ()e cos ()e sin e 11cos e 1111st st st st st stt L f t f t dt t t dt t u t dtt t dt t dts t s s s δδ+∞+∞+∞---+∞+∞---∞-==⋅=⋅⋅-⋅⋅=⋅⋅-⋅=⋅-=-=+++⎰⎰⎰⎰⎰4.求图8.5所表示的周期函数的拉普拉斯变换解:2()e 1(())1e (1e )Tst T T as as f t dt as aL f t s s ---⋅+==---⎰5. 求下列函数的拉普拉斯变换.(1)()sin 2tf t lt l=⋅ (2)2()e sin5t f t t -=⋅(3)()1e t f t t =-⋅ (4)4()e cos4t f t t-=⋅(5()(24)f t u t =- (6()5sin 23cos 2f t t t =-(7) 12()e t f t t δ=⋅ (8) 2()32f t t t =++解:(1)222222221()sin [()sin ]221()(())(sin )[()sin ]22112()22()()tf t lt t lt l lt F s L f t L lt L t lt l ll ls s l s l l s l s l =⋅=--⋅==⋅=--⋅-'=-=-⋅=+++(2)225()(())(e sin 5)(2)25t F s L f t L t s -==⋅=++21(3)()(())(1e )(1)(e )(e )1111()1(1)t t t F s L f t L t L L t L t ss s s s ==-⋅=-⋅=+-⋅'=+=--- (4)424()(())(ecos 4)(4)16ts F s L f t L t s -+==⋅=++ (5)1,2(24)0,t u t >⎧-=⎨⎩其他22()(())((24))=(24)e 1=e =e st stsF s L f t L u t u t dtdt s∞-∞--==--⋅⎰⎰(6)222()(())(5sin 23cos2)5(sin 2)3(cos2)210353444F s L f t L t t L t L t s ss s s ==-=--=⋅-⋅=+++ (7)12332213(1)()22()(())(e )()()t F s L f t L t s s δδδΓ+Γ==⋅==-- (8)2221()(())(32)()3()2(1)(232)F s L f t L t t L t L t L s s s ==++=++=++6.记[]()()L f s F s =,对常数0s ,若00Re()s s δ->,证明00[e ]()()s t L f s F s s ⋅=-证明:00000()()00[e ]()e ()e ()e()e ()s t s tsts s ts s t L f s f t dtf t dt f t dt F s s ∞-∞∞---⋅=⋅⋅=⋅=⋅=-⎰⎰⎰7 记[]()()L f s F s =,证明:()()[(t)()]()n nF s L f t s =-⋅证明:当n=1时,0()()e st F s f t dt +∞-=⋅⎰0()[()e ][()e ]()e (())st stst F s f t dt f t dt t f t dt L t f t s+∞--+∞+∞-''=⋅∂⋅==-⋅⋅=-⋅∂⎰⎰⎰所以,当n=1时, ()()[(t)()]()n nFs L f t s =-⋅显然成立。

复变函数及积分变换重点公式归纳

复变函数及积分变换重点公式归纳

复变函数及积分变换重点公式归纳复变函数是指定义在复数域上的函数,其自变量和函数值都是复数。

复变函数可以表示为两个实变量的函数,即f(z)=u(x,y)+iv(x,y),其中u(x,y)和v(x,y)是实变量的函数。

复变函数的积分变换是指对复变函数进行积分变换,得到新的复变函数。

在复变函数的积分变换中,有一些重要的公式需要归纳,包括:1.度量公式:对于复变函数f(z)=u(x,y)+iv(x,y),其微分形式为dz=dx+idy。

根据度量公式,有dx=\frac{1}{2}(dz+d\bar{z}),dy=\frac{1}{2i}(dz-d\bar{z})。

2.柯西-黎曼方程:对于复变函数f(z)=u(x,y)+iv(x,y),满足柯西-黎曼方程的充要条件是u_x=v_y和u_y=-v_x。

3.柯西-黎曼积分定理:对于一个闭合曲线C,如果复变函数f(z)在C内解析(即在C内柯西-黎曼方程成立),那么有\oint_C f(z)dz=0。

4.柯西积分公式:对于一个有界区域D和在D内解析的复变函数f(z),柯西积分公式为\oint_C \frac{f(z)}{z-a} dz=2\pi i f(a),其中C是D内包围点a 的闭合曲线。

5.柯西积分公式的推广:对于一个有界区域D和在D内解析的复变函数f(z),柯西积分公式的推广形式为\oint_C \frac{f(z)}{(z-a)^n} dz=2\pi i \frac{f^{(n-1)}(a)}{(n-1)!},其中C是D内包围点a的闭合曲线。

6.柯西积分公式的应用:柯西积分公式可以用于计算复变函数的积分,如计算围道上的积分或者在无穷远处的积分等。

7.柯西主值公式:对于一个有界区域D和在D内解析的复变函数f(z),柯西主值公式为\frac{1}{2\pi i}\int_C \frac{f(z)}{z-a} dz=PV\frac{1}{2\pii}\int_C \frac{f(z)}{z-a} dz=PVf(a)+\frac{1}{2}f(a),其中PV表示柯西主值。

复变函数与积分变换 国外经典教材

复变函数与积分变换 国外经典教材

标题:探讨复变函数与积分变换在国外经典教材中的应用概述复变函数与积分变换是数学中重要的概念,它们在国外的经典教材中得到了深入研究与广泛应用。

本文将着重探讨这两个主题在国外经典教材中的具体内容和应用。

首先将介绍复变函数和积分变换的基本概念,然后分别从国外的经典教材中选取具有代表性的章节,深入分析其相关内容与应用。

最后将总结复变函数与积分变换在国外经典教材中的重要性和价值。

一、复变函数的基本概念1.1 复数与复平面在国外经典教材中,复变函数往往是以复数和复平面为基础展开讨论的。

复数的概念包括实部与虚部,复平面则是用来表示复数的二维平面。

复数的运算规则、复平面中复数的表示等内容,在教材中都有详细的讲解和丰富的例题。

1.2 复变函数的基本性质复变函数的基本性质是复分析领域的核心内容之一。

在国外经典教材中,通常会深入讨论复变函数的连续性、可导性、解析性等概念,以及相关的定理与推论。

这些内容对于理解复变函数的本质和特点具有重要意义。

1.3 应用举例:洛伦兹变换洛伦兹变换是相对论中重要的基本概念,它可以通过复变函数的方法来进行深入的解释和推导。

国外经典教材中往往会从复变函数的角度来探讨洛伦兹变换的数学原理,这为学生提供了一种全新的视角来理解这一重要的物理现象。

二、积分变换的基本概念2.1 积分变换的定义积分变换是数学中重要的分析工具,它在国外的经典教材中得到了深入的探讨。

教材通常会从积分变换的定义开始,介绍其基本的概念和性质,为后续的应用做好铺垫。

2.2 傅里叶变换傅里叶变换是积分变换领域中的一大重要内容,国外经典教材中对其进行了详细的学习和讨论。

从傅里叶级数到傅里叶变换,教材往往会从浅显到深入地介绍其理论基础和具体应用。

2.3 应用举例:信号处理在现代科学与工程技术中,信号处理是一个非常重要的领域。

积分变换在信号处理中有着广泛的应用,国外经典教材往往会通过具体的案例和实践来说明积分变换在信号处理中的重要性和实用价值。

复变函数与积分变换经典PPT—复变函数.ppt

复变函数与积分变换经典PPT—复变函数.ppt


由上例可知

(z
1 a)n1
dz

2i, 0,
n0 n 0,
此处不妨设 a z0,
则有
1
1
1,
2 i (z z0 )n dz 0,
n1 n 1.
四、小结与思考
本课所讲述的复合闭路定理与闭路变形原
理是复积分中的重要定理, 掌握并能灵活应用它 是本章的难点.
1
2
3
CF
A
A
F
B4
D1 E C1 B
D
E
问题的提出 C
C1
复合闭路定理D
C2 C3
典型例题
小结与思考
一、.
z 2 z 1
因为 z 2 是包含 z 1 在内的闭曲线,
根据本章第一节例4可知,
1 dz 2i.
z 2 z 1 由此希望将基本定理推广到多连域中.
y C1
解 C1 和 C2 围成一个圆环域, 函数 ez 在此圆环域和其边界
z
C2 o1
2x
上处处解析, 圆环域的边界构成一条复合闭路,
根据闭路复合定理, ez dz 0. z
例3 求

(z
1 a)n1
dz
,

为含
a
的任一简单闭
路,n 为整数.

解 因为a 在曲线内部,
a
1
BB
BB
即 f (z)dz f (z)dz 0,
C
C1
或 f (z)dz f (z)dz.
C
C1
CF
A A F B
D1 E C1 B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数与积分变换
一、复变函数
复数是数学中的一种特殊的数,可以表示为 a+bi 的形式,其中 a 和 b 都是实数,而 i 是虚数单位,满足i²=-1、复变函数则是将复数作为输入和输出的函数,即 f(z)。

在复变函数中,z 表示复数的变量。

复变函数的基本运算包括加法、减法、乘法和除法。

与实函数类似,复变函数也可以用级数展开,例如幂级数和三角级数等。

通过级数展开可以对复变函数进行分析和计算。

复变函数的导数和积分与实函数的导数和积分有一些区别。

复变函数的导数称为复导数,而复变函数的积分称为复积分。

复导数可以通过求偏导数来计算,而复积分则需要对路径进行积分。

二、积分变换
积分变换是一种数学工具,用于将一个函数从一个变量域转换到另一个变量域。

它可以将一个函数从时间域转换到频率域,或者从空间域转换到动量域等。

积分变换的基本思想是将函数表示为函数的积分形式,然后对该积分进行变换。

在实数域上,最常见的积分变换是拉普拉斯变换和傅里叶变换。

拉普拉斯变换是将函数从时间域(或空间域)转换到复频域的变换,而傅里叶变换则是将函数从时间域(或空间域)转换到复频率域(或动量域)的变换。

在复数域(复平面)上,积分变换有另一种形式,称为夫琅禾费变换。

夫琅禾费变换的定义与拉普拉斯变换相似,但是它可以处理复变函数,而
不仅仅是实变函数。

积分变换在工程学科中有着广泛的应用。

它可以用于信号处理、控制
理论、电路分析、图像处理等领域。

例如,通过对信号进行拉普拉斯变换
或傅里叶变换,可以将时域的微分方程转化为频域的代数方程,从而更方
便地进行分析和计算。

三、复变函数与积分变换的关系
例如,拉普拉斯变换可以看作是将一个函数从实数轴上的一个点(t)转移到复频率轴上的另一个点(s)的过程。

类似地,夫琅禾费变换可以
看作是将函数从复平面上的一个点(z)转移到另一个点(w)的过程。

通过复变函数的分析,可以推导出积分变换的性质和定理。

例如,复
变函数的零点和极点可以用来推导拉普拉斯变换的部分分式展开定理。


拉普拉斯变换的性质又可以用来推导复变函数的一些性质。

总结起来,复变函数与积分变换之间存在着紧密的关系。

复变函数是
积分变换的基础,而积分变换则为复变函数的分析提供了有效的工具。


们的研究不仅有着理论上的意义,还广泛应用于科学和工程的实际问题中。

相关文档
最新文档