卡尔曼滤波的原理说明(通俗易懂)
卡尔曼滤波算法原理

卡尔曼滤波算法原理一、引言卡尔曼滤波(Kalman Filtering)是一种数学方法,用于模拟系统的状态并估计它的未来状态。
它在模拟和估计过程中可以融合各种不同类型的信息,使它们变得更准确,同时也可以处理噪声和不确定性。
卡尔曼滤波算法是一种用于处理系统和测量噪声较大的现实世界中的信号的有用工具,其应用范围涵盖了科学,工程和技术,广泛应用于航空、语音处理、图像处理、机器人、控制、通信和其他领域。
二、原理卡尔曼滤波算法基于两个假设:1. 系统的未来状态只取决于它当前的状态。
2. 测量噪声是有规律的,可以用统计方法进行估计。
卡尔曼滤波算法通过利用当前的状态估计和测量结果来更新估计值,从而利用历史数据改善未来状态的估计。
卡尔曼滤波算法通过两个步骤来实现:预测和更新。
预测步骤:预测步骤基于当前的状态估计值,使用模型计算出未来状态的估计值,这一步骤称为预测步骤,是融合当前状态估计值和模型之间的过程。
更新步骤:在更新步骤中,将估计的状态与测量的状态进行比较,并根据测量值对估计值进行调整,从而使估计值更准确。
三、应用卡尔曼滤波算法被广泛应用于航空、语音处理、图像处理、机器人、控制、通信等多个领域,可以用于估计各种复杂的系统状态,如航空器的位置和姿态、机器人的位置和速度、复杂的动力学系统的状态和参数、图像跟踪算法的参数等。
卡尔曼滤波算法也被广泛用于经济分析和金融预测,用于对市场的行为及其影响进行预测,以便更有效地做出决策。
四、结论卡尔曼滤波算法是一种有效的数学方法,可以有效地处理系统和测量噪声较大的现实世界中的信号,并在多个领域得到广泛应用,如航空、语音处理、图像处理、机器人、控制、通信等,也被广泛用于经济分析和金融预测。
简单介绍卡尔曼滤波定义和基本原理

定义简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”,是一种以状态变量的线性最小方差递推估算的方法。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
应用卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度. 在很多工程应用(雷达, 计算机视觉)中都可以找到它的身影. 同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要话题.比如,在雷达中,人们感兴趣的是跟踪目标,但目标的位置,速度,加速度的测量值往往在任何时候都有噪声.卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计。
这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑).实例分析现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。
下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的是实际温度值。
首先你要根据k-1时刻的温度值,来预测k 时刻的温度。
因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。
然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。
由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。
究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的协方差(covariance)来判断。
卡尔曼滤波做回声的原理

卡尔曼滤波器是一种有效的递归滤波器,它估计线性动态系统的状态。
虽然卡尔曼滤波器主要用于线性系统和线性估计,但它也可以通过扩展应用于非线性系统。
回声消除(Echo Cancellation)是声学信号处理中的一个经典问题,它涉及到从混合信号中分离出原始信号和回声。
卡尔曼滤波器用于回声消除的原理基于以下几个关键点:1. 系统模型:首先,需要建立一个数学模型来描述原始信号和回声之间的关系。
这个模型通常包含状态空间模型,其中状态变量表示信号的当前估计,而控制输入则可以是清除信号或噪声。
2. 观测模型:观测模型描述了系统状态与可观测输出之间的关系。
在回声消除的应用中,观测信号通常是麦克风接收到的混合信号,即原始信号和回声的叠加。
3. 预测:卡尔曼滤波器使用预测步骤来估计下一个状态。
在这个步骤中,滤波器会根据系统模型和当前的估计来预测状态变量的未来值。
4. 更新:在更新步骤中,滤波器使用观测数据来修正预测状态。
这个步骤包括计算卡尔曼增益,它是观测值与预测值之间差异的权重,用于调整状态估计。
5. 回声消除:在回声消除的应用中,卡尔曼滤波器的输出可以用来生成一个清除信号,该信号是原始信号和回声的差值。
这个差值是通过对混合信号进行滤波来实现的,滤波器设计得能够识别并抑制回声成分。
6. 反馈:最后,清除信号可以反馈到系统中,与原始信号混合,以减少回声的影响。
这种反馈机制是回声消除中关键的一环,它需要仔细调整,以避免引入噪声或影响原始信号的质量。
使用卡尔曼滤波器进行回声消除的关键挑战在于模型的准确性、卡尔曼增益的计算以及如何处理非线性效应。
实际应用中,可能需要对卡尔曼滤波器进行适当的修改或扩展,例如使用扩展卡尔曼滤波器(EKF)或无迹卡尔曼滤波器(UKF)来处理非线性特性。
此外,回声消除算法还需要考虑实时性和计算效率,以便在实际通信系统中得到应用。
卡尔曼滤波原理

卡尔曼滤波原理卡尔曼滤波(Kalman Filtering)是一种用于估计、预测和控制的最优滤波方法,由美国籍匈牙利裔数学家卡尔曼(Rudolf E. Kalman)在1960年提出。
卡尔曼滤波是一种递归滤波算法,通过对测量数据和系统模型的融合,可以得到更准确、更可靠的估计结果。
在各种应用领域,如导航、机器人、航空航天、金融等,卡尔曼滤波都被广泛应用。
1. 卡尔曼滤波的基本原理卡尔曼滤波的基本原理是基于状态空间模型,将系统的状态用随机变量来表示。
它假设系统的状态满足线性高斯模型,并通过线性动态方程和线性测量方程描述系统的演化过程和测量过程。
具体而言,卡尔曼滤波算法基于以下两个基本步骤进行:1.1 预测步骤:通过系统的动态方程预测当前时刻的状态,并计算预测的状态协方差矩阵。
预测步骤主要是利用前一时刻的状态和控制输入来预测当前时刻的状态。
1.2 更新步骤:通过系统的测量方程,将预测的状态与实际测量值进行融合,得到最优估计的状态和状态协方差矩阵。
更新步骤主要是利用当前时刻的测量值来修正预测的状态。
通过不断迭代进行预测和更新,可以得到连续时间上的状态估计值,并获得最优的估计结果。
2. 卡尔曼滤波的优势卡尔曼滤波具有以下几个优势:2.1 适用于线性系统与高斯噪声:卡尔曼滤波是一种基于线性高斯模型的滤波方法,对于满足这些条件的系统,卡尔曼滤波能够给出最优的估计结果。
2.2 递归计算:卡尔曼滤波是一种递归滤波算法,可以在每个时刻根据当前的测量值和先前的估计结果进行迭代计算,不需要保存过多的历史数据。
2.3 最优性:卡尔曼滤波可以通过最小均方误差准则,给出能够最优估计系统状态的解。
2.4 实时性:由于卡尔曼滤波的递归计算特性,它可以实时地处理数据,并及时根据新的测量值进行估计。
3. 卡尔曼滤波的应用卡尔曼滤波在多个领域都有广泛的应用,以下是一些典型的应用例子:3.1 导航系统:卡尔曼滤波可以用于导航系统中的位置和速度估计,可以结合地面测量值和惯性测量传感器的数据,提供精确的导航信息。
卡尔曼滤波原理

卡尔曼滤波原理卡尔曼滤波是一种用于状态估计的数学方法,它能够通过对系统的动态模型和测量数据进行融合,来估计系统的状态。
卡尔曼滤波广泛应用于导航、控制、信号处理等领域,其优势在于能够有效地处理不确定性,并且具有较高的估计精度。
卡尔曼滤波的核心思想是利用系统的动态模型和测量数据来逐步更新对系统状态的估计。
在每个时间步,卡尔曼滤波都会进行两个主要的步骤,预测和更新。
预测步骤利用系统的动态模型和上一时刻的状态估计,来预测当前时刻的状态。
更新步骤则利用测量数据来修正预测的状态估计,从而得到更准确的状态估计值。
通过不断地迭代预测和更新步骤,卡尔曼滤波能够逐步收敛到系统的真实状态。
卡尔曼滤波的有效性来自于对系统动态模型和测量数据的合理建模。
在实际应用中,需要对系统的动态特性进行深入分析,以建立准确的状态转移模型。
同时,还需要对测量数据的特性进行充分了解,以建立准确的观测模型。
只有在系统动态模型和观测模型都能够准确地描述系统的行为时,卡尔曼滤波才能够发挥其最大的作用。
除了基本的线性卡尔曼滤波之外,还有一些扩展的卡尔曼滤波方法,用于处理非线性系统或者非高斯噪声。
其中,扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)是两种常用的方法。
EKF通过在状态转移模型和观测模型的非线性部分进行泰勒展开,来近似非线性系统的动态特性,从而实现状态估计。
而UKF则通过选取一组特定的采样点,来近似非高斯噪声的影响,以实现更准确的状态估计。
总的来说,卡尔曼滤波是一种非常强大的状态估计方法,它能够有效地处理系统的不确定性,并且具有较高的估计精度。
在实际应用中,需要充分了解系统的动态特性和测量数据的特性,以建立准确的模型,从而实现对系统状态的准确估计。
同时,还可以根据实际情况选择合适的卡尔曼滤波方法,以满足不同应用场景的需求。
通过合理的建模和选择合适的方法,卡尔曼滤波能够为各种领域的应用提供有效的支持。
卡尔曼滤波的原理说明(通俗易懂)

卡尔曼滤波的原理说明(通俗易懂)以下是为大家整理的卡尔曼滤波的原理说明(通俗易懂)的相关范文,本文关键词为尔曼,滤波,原理,说明,通俗易懂,尔曼,滤波,原理,说明,学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
卡尔曼滤波的原理说明在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名RudolfemilKalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《AnewApproachtoLinearFilteringandpredictionproblems》(线性滤波与预测问题的新方法)。
如果对这编论文有兴趣,可以到这里的地址下载:/~welch/kalman/media/pdf/Kalman1960.pdf 简单来说,卡尔曼滤波器是一个“optimalrecursivedataprocessingalgorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(IntroductiontotheKalmanFilter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
卡尔曼滤波器原理

卡尔曼滤波器原理
卡尔曼滤波器是一种利用估计值和测量值之间关系,对信号进行统计处理的滤波器。
其基本原理是通过利用系统状态方程和观测方程将系统状态和观测数据进行融合,从而减小误差和噪声,提高估计精度。
卡尔曼滤波器常用于飞行控制、导航、数据处理等领域,在现代自动控制领域具有广泛的应用。
其主要特点是可用于非线性、非高斯信号的滤波,能够自适应地调整估计精度和系统控制策略,具有多种优秀的性能指标,如最小均方误差、最小方差增益等。
卡尔曼滤波的原理说明

Kalman滤波在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。
跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。
1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。
1957年于哥伦比亚大学获得博士学位。
我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。
对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。
他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。
近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。
假设我们要研究的对象是一个房间的温度。
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。
假设你对你的经验不是100%的相信,可能会有上下偏差几度。
我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。
假设我们要研究的对象是一个房间的温度。
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。
假设你对你的经验不是100%的相信,可能会有上下偏差几度。
我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。
另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。
我们也把这些偏差看成是高斯白噪声。
好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。
下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的是实际温度值。
首先你要根据k-1时刻的温度值,来预测k时刻的温度。
因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。
然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。
由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。
究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance 来判断。
因为Kg^2=5^2/(5^2+4^2),所以Kg =0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23) =24.56度。
可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。
到现在为止,好像还没看到什么自回归的东西出现。
对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。
算法如下:((1-Kg)*5^2)^0.5 =2.35。
这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。
他运行的很快,而且它只保留了上一时刻的covariance。
上面的Kg,就是卡尔曼增益(Kalman Gain)。
他可以随不同的时刻而改变他自己的值,是不是很神奇!
下面就要言归正传,讨论真正工程系统上的卡尔曼。
3.卡尔曼滤波器算法
(The Kalman Filter Algorithm)
在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。
下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随机变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。
但对于卡尔曼滤波器的详细证明,这里不能一一描述。
首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k) =A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k) =H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k) 分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1) =A X(k-1|k-1)+B U(k) (1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1) 的covariance还没更新。
我们用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q (2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。
结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)
其中Kg为卡尔曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)
到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。
但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) (5)
其中I 为1的矩阵,对于单模型单测量,I=1。
当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。
这样,算法就可以自回归的运算下去。
卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。
根据这5个公式,可以很容易的实现计算机的程序。
下面,我会用程序举一个实际运行的例子。
4.简单例子
(A Simple Example)
这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。
所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。
根据第二节的描述,把房间看成一个系统,然后对这个系统建模。
当然,我们建的模型不需要非常地精确。
我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A =1。
没有控制量,所以U (k)=0。
因此得出:
X(k|k-1)=X(k-1|k-1) (6)
式子(2)可以改成:
P(k|k-1)=P(k-1|k-1) +Q (7)
因为测量的值是温度计的,跟温度直接对应,所以H =1。
式子3,4,5可以改成以下:
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) (8)
Kg(k)= P(k|k-1) / (P(k|k-1) + R) (9)
P(k|k)=(1-Kg(k))P(k|k-1) (10)
现在我们模拟一组测量值作为输入。
假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。
为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。
他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。
但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。
我选了X(0|0) =1度,P(0|0)=10。
该系统的真实温度为25度,图中用黑线表示。
图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。