第3讲 结构力学方法(一)

合集下载

结构力学常用的3种计算方法

结构力学常用的3种计算方法

结构力学常用的3种计算方法
结构力学是研究物体在外力作用下的变形和破坏规律的学科。

在结构力学中,常用的计算方法有三种,分别是静力学方法、动力学方法和有限元方法。

静力学方法是结构力学中最基本的计算方法之一。

它是通过分析物体在静力平衡状态下的受力情况,来计算物体的变形和破坏情况。

静力学方法适用于简单的结构体系,如梁、柱、桥梁等。

在静力学方法中,常用的计算工具有受力分析、弹性力学、杆件理论等。

动力学方法是结构力学中另一种常用的计算方法。

它是通过分析物体在动力平衡状态下的受力情况,来计算物体的变形和破坏情况。

动力学方法适用于复杂的结构体系,如飞机、汽车、船舶等。

在动力学方法中,常用的计算工具有振动分析、动力学理论、有限元方法等。

有限元方法是结构力学中最常用的计算方法之一。

它是通过将物体分割成许多小的单元,然后对每个单元进行分析,最后将所有单元的分析结果综合起来,来计算物体的变形和破坏情况。

有限元方法适用于各种结构体系,无论是简单的还是复杂的。

在有限元方法中,常用的计算工具有有限元分析软件、数值计算方法、计算机模拟等。

结构力学中的三种计算方法各有优缺点,应根据具体情况选择合适的方法进行计算。

静力学方法适用于简单的结构体系,动力学方法
适用于复杂的结构体系,有限元方法则适用于各种结构体系。

在实际工程中,常常需要综合运用这三种方法,以得到更加准确的计算结果。

结构力学基础讲义PPT(共270页,图文)

结构力学基础讲义PPT(共270页,图文)

alMM
B bM l
a l
b M
l
17
2. 多跨静定梁: 关键在于正确区分基本部分和附
属部分,熟练掌握截面法求控制截面 弯矩,熟练掌握区段叠加法作单跨梁 内力图。
多跨静定梁——由若干根梁用铰相连, 并用若干支座与基础相连而组成的静 定结构。
17:11
18
附属部分--依赖基本 部分的存在才维持几 何不变的部分。
17:11
24
3. 静定平面刚架 (1) 求反力。
切断C铰,考虑右边平衡,再分析左 边部分。求得反力如图所示:
C
17:11
25
3. 静定平面刚架
(2)作M图 (3)做Q、N图 (4) 校核
17:11M图
N图
Q图
26
§1-4 静定桁架
17:11
27
§1-4 静定桁架
* 桁架的定义:
——由若干个以铰(Pins)结点连接而成的 结构,外部荷载只作用在结点上。
对只有轴力的结构(桁架):
1组7:1合1 结构则应分别对待。
61
§1-5静定结构位移计算
3. 荷载作用下的位移计算
例:求△cy 1. 建立力状态,在C点加单位 EI
竖向力。
2. 建立各杆内力方程:
EI
3. 求位移:
17:11
62
§1-5静定结构位移计算
3. 荷载作用下的位移计算
积分注意事项:
⒈ 逐段、逐杆积分。 ⒉ 两状态中内力函数服从同一坐标系。 ⒊ 弯矩的符号法则两状态一致。
2. 三铰拱的数解法
* 内力计算: ⑴任一截面K(位置):KK截 截面 面形 形心 心处 坐拱 标X轴K切、线YK的倾角 K

结构力学 课堂笔记

结构力学 课堂笔记

第一章绪论一、教学内容结构力学的基本概念和基本学习方法。

二、学习目标∙了解结构力学的基本研究对象、方法和学科内容。

∙明确结构计算简图的概念及几种简化方法,进一步理解结构体系、结点、支座的形式和内涵。

∙理解荷载和结构的分类形式。

在认真学习方法论——学习方法的基础上,对学习结构力学有一个正确的认识,逐步形成一个行之有效的学习方法,提高学习效率和效果。

三、本章目录§1-1 结构力学的学科内容和教学要求§1-2 结构的计算简图及简化要点§1-3 杆件结构的分类§1-4 荷载的分类§1-5 方法论(1)——学习方法(1)§1-6 方法论(1)——学习方法(2)§1-7 方法论(1)——学习方法(3)§1-1 结构力学的学科内容和教学要求1. 结构建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称结构。

例如房屋中的梁柱体系,水工建筑物中的闸门和水坝,公路和铁路上的桥梁和隧洞等。

从几何的角度,结构分为如表1.1.1所示的三类:2. 结构力学的研究内容和方法结构力学与理论力学、材料力学、弹塑性力学有着密切的关系。

理论力学着重讨论物体机械运动的基本规律,而其他三门力学着重讨论结构及其构件的强度、刚度、稳定性和动力反应等问题。

其中材料力学以单个杆件为主要研究对象,结构力学以杆件结构为主要研究对象,弹塑性力学以实体结构和板壳结构为主要研究对象。

学习好理论力学和材料力学是学习结构力学的基础和前提。

结构力学的任务是根据力学原理研究外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的几何组成规律。

包括以下三方面内容:(1) 讨论结构的组成规律和合理形式,以及结构计算简图的合理选择;(2) 讨论结构内力和变形的计算方法,进行结构的强度和刚度的验算;(3) 讨论结构的稳定性以及在动力荷载作用下的结构反应。

建筑力学与结构3.pptx

建筑力学与结构3.pptx

第三节 轴向拉(压)杆的变形、虎克定律
一、纵向变形
若杆件原来长度为l,杆件在 轴向拉(压)变形后长度为l1,
长度的改变量称为纵向变形,用
△l表示。
l l1 l
单位长度内的纵向变形,称 为纵向线应变或线应变。即
l
l
符号:拉伸时为正值;压缩时为负值。
第三节 轴向拉(压)杆的变形、虎克定律
二、பைடு நூலகம்向变形
BD段:据对图(c)所示研究对象求解
Fx 0,15 FNBD 0, FNBD 15kN(拉)
(2)画轴力图见图(d)。
第二节 轴向拉(压)杆横截面上的应力
一、应力的概念
单位面积上的分布内力称为应力,它反映了内力在横
截面上的分布集度。
与截面垂直的应力称为正应力,用σ表示。
与截面相切的应力称为剪应力,用τ表示。
6、拉压杆内最大的正应力:
等直杆:
max
FN max A
变直杆: max
FN A
max
7、正应力的符号规定——同内力
拉伸——拉应力,为正值,方向背离所在截面。
压缩——压应力,为负值,方向指向所在截面。
8、公式的使用条件
(1) 轴向拉压杆 (2) 除外力作用点附近以外其它各点处。 (范围:不超过杆的横向尺寸)
• (一)内力的概念
物体在外力作用下,内部质点与质点之间的相互作 用力叫内力。
内力是由外力引起的,并随着外力的增大而增大。 (区别:外力是周围物体对研究对象施加的作用力, 包括约束反力。)
对构件来说,内力的增大是有限度的,当内力超 过限度时,构件就会发生破坏。所以研究构件的承载 能力必须先分析其内力。
3、平面假设:变形前的横截面,变形后仍保持为平面,且垂 直于杆轴线,各横截面沿杆轴线作相对平移

结构动力学

结构动力学

第一章概述1.动力荷载类型:根据何在是否随时间变化,或随时间变化速率的不同,荷载分为静荷载和动荷载根据荷载是否已预先确定,动荷载可以分为两类:确定性(非随机)荷载和非确定性(随机)荷载。

确定性荷载是荷载随时间的变化规律已预先确定,是完全已知的时间过程;非确定性荷载是荷载随时间变化的规律预先不可以确定,是一种随机过程。

根据荷载随时间的变化规律,动荷载可以分为两类:周期荷载和非周期荷载。

根据结构对不同荷载的反应特点或采用的动力分析方法不同,周期荷载分为简谐荷载(机器转动引起的不平衡力)和非简谐周期荷载(螺旋桨产生的推力);非周期荷载分为冲击荷载(爆炸引起的冲击波)和一般任意荷载(地震引起的地震动)。

2.结构动力学与静力学的主要区别:惯性力的出现或者说考虑惯性力的影响3.结构动力学计算的特点:①动力反应要计算全部时间点上的一系列解,比静力问题复杂且要消耗更多的计算时间②于静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响4.结构离散化方法:将无限自由度问题转化为有限自由度问题集中质量法:是结构分析中最常用的处理方法,把连续分布的质量集中到质点,采用真实的物理量,具有直接直观的优点。

广义坐标法:广义坐标是形函数的幅值,有时没有明确的物理意义,但是比较方便快捷。

有限元法:综合了集中质量法与广义坐标法的特点,是广义坐标的一种特殊应用,形函数是针对整个结构定义的;有限元采用具有明确物理意义的参数作为广义坐标,形函数是定义在分片区域的。

①与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系(结构)上插值(即定义形函数),而是采用了分片的插值(即定义分片形函数),因此形函数的公式(形状)可以相对简单。

②与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接直观的优点。

5.结构的动力特性:自振频率、振型、阻尼第二章分析动力学基础及运动方程的建立1.广义坐标:能决定质点系几何位置的彼此独立的量;必须是相互独立的参数2.约束:对非自由系各质点的位置和速度所加的几何或运动学的限制;(从几何或运动学方面限制质点运动的设施)3.结构动力自由度,与静力自由度的区别:结构中质量位置、运动的描述动力自由度:结构体系在任意瞬间的一切可能的变形中,决定全部质量位置所需要的独立参数的数目静力自由度:是指确定体系在空间中的位置所需要的独立参数的数目为了数学处理上的简单,人为在建立体系的简化模型时忽略了一些对惯性影响不大的因素确定结构动力自由度的方法:外加约束固定各质点,使体系所有质点均被固定所必需的最少外加约束的数目就等于其自由度4.有势力的概念与性质:有势力(保守力):每一个力的大小和方向只决定于体系所有各质点的位置,体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与各质点的运动路径无关。

结构力学第三章

结构力学第三章
第三章 静定结构的内力计算
§3-1 静定结构的一般概念 §3-2 静定平面刚架 §3-3 三铰拱 §3-4 静定桁架 §3-5 静定组合结构 §3-6 静定结构的特性
§3-1 静定结构的一般概念
一、静定结构的定义
定义:一个几何不变的结构,在荷载等因素作用下其结构的全部支座反力 和内力均可由静力平衡条件唯一确定的结构称静定结构
FxA
FxB
Fx
M
0 C
f
(2)支座反力
设拱轴线方程 y f已(x知) 。
任意截面K的内力为:
MK 0
MK
FyAx FP1(x a1) FxA y
M
0 K
FxA y
F 0 FQK FyA cos FP1 cos FxA sin FQ0K cos FxA sin
F 0 FNK FyA sin FP1 sin FxA cos (FQ0K sin FxA cos)
二、静定平面桁架的内力计算
静定平面桁架的内力计算方法:结点法、截面法及两法的联合应用。 1.结点法:
切取结点为隔离体用 Fx 0、求F解y 未0知的轴力。
例 求图示桁架内力
解:(1)支座反力
FyB 24 12 2kN()、FyA 8 2 6kN()、FxA 0
(2)内力(设各杆轴力以拉为正):
1.支座反力:
FyA
Fy0A
10(16 16
4)
7.5kN
FyB
Fy0B
10 4 16
2.5kN
F A
F B
Fx
M
0 C
f
7.58 10(8 4) 4
5kN
2、内力:集中荷载 F左P 右分段列内力方程。

d值法,反弯点法


向下移动,故 y1 取负值。 对底层框架柱,不考虑修正值 y1。
梁刚度变化时反弯点的修正
(3)上、下层层高变化时反弯点高度比的修正值 y2 和 y3 当与某柱相邻的上层或下层层高改变时,柱上端或下端的约束刚度
发生变化,引起反弯点移动,其修正值为 y2h 或 y3h。y2,y3 的分析方法 也与 yn 相仿,计算时可由附表 7.5 查取。
现讨论底层柱的D值。
c

0.5 K 2K
同理,当底层柱的下端为铰接时,可得
c

0.5K 1 2K
底层柱D值计算图式
综上所述,各种情况下柱的侧向刚度 D 值中系数 c 及梁柱线刚度比 K 按下表所列公
式计算。
柱侧向刚度修正系数 c
边柱
中柱
位置
简图
K
简图
K
c
一般层
K i2 i4 2ic
框架第2层脱离体图
(2)框架柱的侧向刚度——D值:一般规则框架中的柱
DV

K 2K
12ic h2源自c12ic h2
c

2
K K
框架柱侧向刚度计算公式
c 称为柱的侧向刚度修正系数,它反映了节点转动降低了 柱的侧向刚度,而节点转动的大小则取决于梁对节点转动的约束 程度。K ,c 1 这表明梁线刚度越大,对节点的约束能力 越强,节点转动越小,柱的侧向刚度越大。
计算方法,尚可进一步简化,这种忽略梁柱节点转角影响的计算方法称 为反弯点法。
在确定柱的侧向刚度时,反弯点法假定各柱上、下端都不产生转动, 即认为梁柱线刚度比为无限大。将趋近于无限大代入D值法 的公c 式, 可得 =1。 c因此,由式可得反弯点法的柱侧向刚度,并用D0表示为:

[理学]结构力学课件


R2
( M N Q )ds Rkck
(1) 建立虚力状态:在待求位移方向上加单位荷载; (2) 求虚力状态的单位荷载作用下,根据平衡条件,求出所有 的内力及反力 (3) 用位移公式计算所求位移,注意正负号问题。力与变形方向 一致时乘积取正,否则为负。计算出的位移结果为正值时,则
R1
a
b


b a
c1
小结:(1)形式是虚功方程,实质是几何方程;
(2)在拟求位移方向虚设一单位力,利用平衡条件求出与已知位移相
应的支座反力。构造一个平衡力系;
(3)特点是用静力平衡条件解决几何问题。
单位荷载其虚功正好等于拟求位移。
单位位移法的虚功方程 单位荷载法的虚功方程
平衡方程 几何方程
第一种本书称为“虚位移原理”,而将第二 种应用称为“虚力原理”。更确切的说法为,两 种应用的依据是上述两原理的必要性命题。上述 两原理都是充分、必要性命题。
广义位移的计算
作功的两方面因素:力、位移。与力相应的因子,称为广义力F; 与位移相应的因子,称为广义位移Δ。 广义力与广义位移的共轭关系是:它们的乘积是虚功。即:W=FΔ
1)广义力是单个力P,则广义位移是该力的作用点的全位移在 力的方向上的分量。
2)广义力是一个力偶,则广义位移是它所作用的截面的转角β。
步骤: 1.在拟求位移的方向上虚设单位荷载,利用平衡条件求支反 力。 2.利用虚力原理列出虚力方程进行求解,由于是在所求位移 处设置单位荷载,因此,这种解法又称单位荷载法。
c1 A
C
B
已知 c1 求
? 设虚力状态
a
b
R1 a P b 0
R1

建筑力学第三分册结构力学第五版课后答案

建筑力学第三分册结构力学第五版课后答案第一章:概述1.1 建筑力学的定义建筑力学是研究建筑结构受力及其反应的力学学科。

它研究建筑结构的受力机理、稳定性、及其设计、计算、分析和检查等问题。

1.2 结构力学的定义结构力学是研究结构的受力规律、变形规律和运动规律的力学学科。

它主要包括静力学、动力学和稳定性等内容。

第二章:力学基础知识2.1 力的基本概念和单位力是物体间相互作用的结果,是使物体发生形变或运动的原因。

国际单位制中,力的单位是牛顿(N)。

2.2 受力分析法受力分析法是研究物体受到的力及其相互作用关系的方法。

通过将力的作用分解为平行于坐标轴的分力,可以更好地理解和计算物体的受力情况。

2.3 静力学平衡原理静力学平衡原理是指物体处于静力学平衡状态时,受力矩和受力合力均为零。

静力学平衡原理是结构力学分析的基本原理之一。

第三章:结构受力分析3.1 构件受力特点分析在结构受力分析中,首先需要进行构件受力特点的分析。

通过分析构件的几何形状、受力方式等因素,可以确定构件的受力特点,为进一步的受力计算提供基础。

3.2 力的平衡方程力的平衡方程是应用静力学平衡原理进行受力计算的基本工具。

通过编写力的平衡方程,可以解得构件受力的未知量。

3.3 弹性力学基本原理弹性力学基本原理是研究物体受力引起的变形规律的基础理论。

根据弹性力学基本原理,可以确定受力物体在各个截面上的应力和应变分布,并进行受力计算。

第四章:结构稳定性4.1 构件轴向受压稳定性构件轴向受压稳定性是指构件在受到轴向压力作用时,其稳定性的能力。

具体的稳定性计算方法包括欧拉公式和截面弯曲稳定性。

4.2 构件受弯稳定性构件受弯稳定性是指构件在受到弯矩作用时,其稳定性的能力。

欧拉公式和弯矩拟心法是常用的稳定性计算方法。

4.3 构件抗侧稳定性构件抗侧稳定性是指构件在受到侧向力作用时,其稳定性的能力。

弯扭组合稳定性和刚度稳定性是常用的稳定性计算方法。

第五章:结构应力分析5.1 简单应力分析简单应力分析是指对于一维应力状态下的结构构件,通过应力分析计算其受力情况。

结构力学Ⅰ-1教案 - 重庆大学

结构力学Ⅰ-1教案课程名称:结构力学Ⅰ-1 适用专业、年级:土木工程2004级学年、学期:2006~2007学年,第一学期总学时:80学时任课教师:张来仪、陈朝晖、文国治、游渊、陈名弟等编写时间:2006年8月第1章绪论一、本章的教学目标及基本要求(1)了解结构力学课程的性质和讨论的内容。

(2)了解杆件结构分类。

(3)了解选取结构计算的原则;初步了解杆件结构怎样简化为计算简图。

(4)了解结构力学的学习方法。

二、本章各节教学内容及学时分配§1-1 结构力学的研究对象和任务(2学时)§1-2 杆件结构的计算简图§1-3 平面杆件结构的分类三、本章教学内容的重点和难点重点是掌握杆件结构常见支座和结点的基本类型及其计算简图的变形和受力特点。

难点是怎样将实际结构简化为计算简图。

四、本章教学内容的深化和拓宽适当介绍结构力学课程在土木工程专业教学计划中的地位和作用以及与后继专业课程的关系,以激发学生对本课程的重视和学习兴趣。

五、本章教学方式(手段)及教学过程中应注意的问题用多媒体课件介绍典型的房屋和桥梁工程结构,包括我国古代的和现代的一些伟大建筑物特点。

以增强学生的民族自蒙感和社会责任感。

六、本章的主要参考书目(一)结构力学(Ⅰ)龙驭球包世华主编,高等教育出版社,2001年1月(二)结构力学赵更新编,中国水利水电出版社,2004年4月(三)结构力学(上)李廉锟主编,高等教育出版社,1996年5月(四)结构力学(上)吴德伦主编,重庆大学出版社,1994年(五)结构力学(上)张来仪景瑞主编,中国建筑工业出版社,1997年(六)结构力学辅导—概念·方法·题解赵更新编,中国水利水电出版社,2001年七、各课时单元授课教案的具体内容§1-1 结构力学的研究对象和任务一、结构及按几何特征分类1、杆件结构2、薄壁结构3、实体结构二、结构力学的研究对象三、结构力学的任务§1-2 杆件结构的计算简图一、计算简图的定义二、选取计算简图的一般原则三、杆件结构的简化§1-3 平面杆件结构的分类一、梁二、拱三、刚架四、桁架五、组合结构第2章平面体系的几何组成分析一、本章的教学目标及基本要求本章的教学目标是:工程结构必然会受到荷载作用,必须学用几何不变体系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档