龙驭球《结构力学Ⅰ》(第3版)辅导系列-第16~18章【圣才出品】
龙驭球《结构力学Ⅰ》(第3版)章节题库-虚功原理与结构位移计算(中册)(圣才出品)

8(b)所示,结点 K 处的竖向位移为
.
4 / 25
圣才电子书
十万种考研考证电子书、题库视频学习平台
图 5-8
【答案】
【解析】此结构为二次超静定,要求结点 K 的位移,可以取其一静定基本结构(图 5-
9(a)),在此基本结构上 K 处虚设一竖向单位力,画出其弯矩图(图 5-9(b)),再与已知
的原结构的弯矩图图乘即可求得 K 点竖向位移.
图 5-9
此题选取的基本结构可以有多种形式,相应的 图也不一样,与 M 图图乘时的计算量 就不同.所以在选择基本结构时应尽量使图乘时的计算量小(弯矩图分布范围小且简单).
4.已知图 5-10(a)所示弯矩图,图 5-10(b)中由 (已知)产生的 C 截面竖向位
MA=0 有
(拉).
要求铰 C 处的竖向位移,需要画出此结构的弯矩图(图 5-13(c));然后在结构上 C 处
虚设一竖向单位力(图 5-13(d)),求出此时 AC 杆弯矩和 EG 杆轴力,然后图乘得 C 点竖
向位移为
7 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台
挠度大
.
【答案】
图 5-18
10 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台
【解析】(1)结构为静定,图 5-18(a)、(b)两图的唯一区别是在图 5-18(a)中竖 向支座链杆处会有变形,而图 5-18(b)中没有,静定结构的支座移动不会引起内力,所以 两结构的弯矩图完全一样.
移等于
.
5 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 5-10 【答案】 【解析】(1)选一基本结构,在 C 处虚设一竖向单位力,作 图(图 5-11).
龙驭球《结构力学Ⅱ》配套题库-课后习题(结构的稳定计算)【圣才出品】

第 16 章 结构的稳定计算
15-1 图示刚性杆 ABC 在两端分别作用重力 FP1、FP2。设杆可绕 B 点在竖直面内自 由转动,试用两种方法对下面三种情况讨论其平衡形式的稳定性: (a)FP1<FP2。(b)FP1>FP2。(c)FP1=FP2。
侧相对转角
,弹性铰 C 两侧相对转角为2 (2 1) ,所以
,
图 16-9
由
,可得
其中
,
要求行列式为 0,直接可以解得,
,
所以临界荷载
(2)解法二,能量法
求总势能
应变能为铰
B、C
的应变能之和,U
1 2
k
(
2 B
c2 )
1 2
k (512
812
5
2 2
)
6 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台
故 根据
,故 FP
2kl
6EI l2
15-5 试用两种方法求图示结构的临界荷载 FPcr。设各杆 I=∞,弹性铰相对转动的 刚 度系数为 k。
5 / 32
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 16-8
解:(1)解法一,静力法
体系失稳时,产生的微小位秱如图 16-9 所示。独立角位秱为 , ,则弹性铰 B 两
,则
或者 q k cos
6
(2)解法二,按小挠度理论计算
平衡条件为,
整理得到,
,则
所以分支点的临界荷载为
或者 q k 6
15-3 试用两种方法求图示结构的临界荷载 FPcr。设弹性支座的刚度系数为 k。
龙驭球《结构力学Ⅰ》(第3版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

目 录第一部分 名校考研真题第1章 绪 论第2章 结构的几何构造分析第3章 静定结构的受力分析第4章 影响线第二部分 课后习题第1章 绪 论第2章 结构的几何构造分析第3章 静定结构的受力分析第4章 影响线第三部分 章节题库第1章 绪 论第2章 结构的几何构造分析第3章 静定结构的受力分析第4章 影响线第四部分 模拟试题龙驭球《结构力学Ⅰ》(第3版)配套模拟试题及详解第一部分 名校考研真题第1章 绪 论本章不是考研复习重点,暂未编选名校考研真题,若有最新真题会在下一版中及时更新。
第2章 结构的几何构造分析一、判断题图2-1所示体系的几何组成为几何不变体系,无多余约束。
( )[厦门大学2011研]图2-1二、选择题1.图2-2所示平面体系的几何组成是( )。
[浙江大学2010研]A .几何不变,无多余约束 B .几何不变,有多余约束C .几何常变D.几何瞬变图2-2图2-3错【答案】如图2-1(b ),分别视ABD 和基础为刚片Ⅰ和Ⅱ,两刚片通过链杆AC 、BE 和D 处的支座链杆相连,三根链杆相交于一点O ,故该体系为几何瞬变体系。
【解析】A【答案】如图2-3所示,把大地看成刚片3,刚片1和2形成瞬铰(1,2),刚片1和3形成瞬铰(1,3),刚片2和3形成无穷远处瞬铰(2,3),三个铰不共线,因此是无多余约束的几何不变体系。
【解析】2.图2-4(a )所示体系的几何组成是( )。
[武汉大学2012研、郑州大学2010研、华南理工大学2007研、河海大学2007研]A .无多余约束的几何不变体系B .几何可变体系C .有多余约束的几何不变体系D.瞬变体系图2-4三、填空题1.图2-5所示体系是几何________变体系,有________个多余约束。
[重庆大学2006研]图2-52.如图2-6(a )所示体系的几何组成为________体系。
[南京理工大学2011研]图2-6A【答案】鉴于刚片与构件可以等效互换,所以可将图2-4(a )所示体系替换为图2-4(b )所示体系,然后通过依次去除C 支座链杆与CE 杆、D 支座链杆与DE 杆所组成的二元体,以及二元体A-E-B 后,可知原体系为无多余约束的几何不变体系。
龙驭球《结构力学Ⅰ》(第3版)笔记和课后习题详解(上册)(静定结构的受力分析)【圣才出品】

第2章 结构的几何构造分析2.1 复习笔记一、几何构造分析的几个概念1.几何不变体系和几何可变体系在不考虑材料应变的条件下,体系的位置和形状是不能改变的,该体系称为几何不变体系,否则称为几何可变体系。
2.自由度(1)表述1一个体系运动时能产生的独立运动方式的个数称为自由度的个数。
(2)表述2一个体系运动时可以独立改变的坐标数目为自由度的个数。
注:凡是自由度的个数大于零的体系都是几何可变体系。
3.约束与多余约束(1)约束:减少体系自由度的装置。
一个支杆相当于一个约束;一个铰相当于两个约束;一个刚结点相当于三个约束。
(2)多余约束:不能减少体系自由度的约束。
一个体系有多个约束时,只有非多余约束对体系的自由度有影响。
4.瞬变体系与常变体系(1)一个几何可变体系发生微小的位移后,在短暂的瞬时转换成几何不变体系,称为瞬变体系;(2)如果一个几何可变体系可以发生大位移,则称为常变体系。
注1:瞬变体系仍属于可变体系,是可变体系的特例。
可变体系包含瞬变体系与常变体系。
注2:一般来说,在任一瞬变体系中必然存在多余约束,即瞬变体系既是可变体系,又是有多余约束的体系。
5.瞬铰两根不平行的链杆连接两个刚片,两杆的延长线交于点O,则两杆的约束相当于在O 点起一个铰的作用,这个铰称为瞬铰。
(1)在某刚片发生微小转动时,此刚片的瞬时运动与此刚片在O点用铰与另一刚片相连接时的运动情况完全相同;(2)在刚片运动的过程中,与两根链杆相应的瞬铰也随着在改变。
6.无穷远处的瞬铰(1)两根平行的链杆连接两个刚片,瞬铰在无穷远处。
此时,刚片可以有瞬时平动。
(2)射影几何中关于∞点和∞线的四点结论:①每个方向有一个∞点;②不同方向有不同的∞点;③各∞点都在同一∞线上;④各有限点都不在∞线上。
二、平面几何不变体系的组成规律——铰结三角形规律1.三个点之间的连接方式整体,且没有多余约束。
2.一个点与一个刚片之间的连接方式一个刚片与一个点用两根链杆相连,且三个铰不在一直线上,则组成几何不变的整体,且没有多余约束。
结构力学龙驭球第三版课后习题答案课件

根据空间力矩的定义和性质,计算力对点 的矩和力对轴的矩。
03 材料力学部分习题答案
材料力学基 础
总结词
掌握材料力学的基本概念、原理和公 式。
详细描述
这部分习题答案将提供关于材料力学 基础知识的详细解释,包括应力和应 变的概念、胡克定律、弹性模量等, 以便学生更好地理解材料力学的基本 原理和公式。
振动分析
总结词:掌握振动分析的基本原理和方 法
掌握振动分析中常用的计算方法和技巧, 如模态分析和谱分析。
熟悉振动分析中常用的数学模型和方程, 如单自由度系统和多自由度系统的振动 方程。
详细描述
理解振动分析的基本概念和原理,包括 自由振动和受迫振动。
05 弹性力学部分习题答案
弹性力学基础
总结词
详细描述了弹性力学的基本概念、假设、基本方程和解题方法。
详细描述
这部分内容主要介绍了弹性力学的基本概念,包括应力和应变、胡克定律等。同时,也介绍了弹性力 学的基本假设,如连续性、均匀性、各向同性等。此外,还详细阐述了弹性力学的基本方程,包括平 衡方程、几何方程和物理方程,并给出了相应的解题方法。
平面问题
总结词
针对平面问题的解题技巧和思路进行了 深入探讨。
这部分习题答案将针对剪切与扭转的受力分析、应力和应变计算进行详细的解析,包括剪切与扭转的受力分析、 应力和应变计算等,帮助学生理解剪切与扭转的基本概念和计算方法。
04 动力学部分习题答案
动力学基础
详细描述
总结词:掌握动力学基本概 念和原理
01
掌握牛顿第二定律、动量定
理、动量矩定理等基本原理。
02
VS
详细描述
该部分内容主要针对平面问题进行了深入 的探讨,包括平面应力问题和平面应变问 题。对于平面应力问题,介绍了如何利用 应力函数和叠加原理求解;对于平面应变 问题,则介绍了如何利用格林函数和积分 变换等方法进行求解。此外,还对平面问 题的基本假设和简化方法进行了阐述。
(NEW)龙驭球《结构力学Ⅰ》(第3版)笔记和课后习题(含考研真题)详解(下册)

①设想先在结点B加一个阻止转动的附加约束阻止结点B转动,然后再 加载荷。载荷在附加约束处产生约束力矩 ,且结构发生如图8-11(b)所示变形。
②解除附加约束,使结构恢复到原来状态,相当于在原有附加约束力矩 处施加力偶( ),力偶使结构产生变形,如图8-1-1(c)。
(1)忽略侧移的影响,用力矩分配法计算; (2)忽略每层梁的竖向荷载对其他各层的影响,把多层刚架分解,一 层一层地单独计算。
3.在水平荷载作用下忽略刚架的结点转角——反弯点法 多层多跨刚架采用反弯点法,基本假设是把刚架中的横梁简化为刚性 梁。
七、超静定结构各类解法的比较和合理选用
1.基本方程直接解法和渐近解法的比较 (1)直接解法是首先建立基本方程,通常是一组线性代数方程,然后 采用直接法求解这组线性代数方程;
(a) 弯矩方程可以表示为
(b)
(3)采用力矩分配法求得基本结构在荷载作用下的附加反力 和弯 矩。
(4)假设
,基本结构产生附加反力 和弯矩 。
(5)根据位移法的基本方程(a),求出节点线位移
然后按式(b)可作出弯矩图。 六、近似法
1.忽略剪力和轴力引起的变形。 2.在竖向荷载作用下忽略刚架的侧移——分层计算法 分层计算法就是忽略侧移影响的一种近似法,采用两个近似假设:
③把图8-1-1(b)、(c)所示两种情况叠加,就得到结构实际的变形, 如图8-1-1(a)所示。此时将图8-1-1(b)、(c)两种情况下的杆端弯 矩叠加,可得图8-1-1(a)实际情况下的杆端弯矩。
二、多结点的力矩分配
1.多结点转动的连续梁和无侧移刚架的计算
对于具有多个结点转动的连续梁和无侧移刚架,只要逐次对每一个结点 应用单结点的基本运算,就可以渐近方式求出解答,求出杆端弯矩。
龙驭球《结构力学Ⅱ》(第3版)章节题库-第十一章至第十八章【圣才出品】
(2)利用已知(a)作弯矩图。MP, M 1 如图 12-3
图 12-3 (3)图乘法计算系数和常数
5 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台
(4)确定基本未知量 (5)作最后弯矩图如 12-4。
图 12-4 3.对图 12-5a 所示刚架选择计算方法,并作 M 图。
分配系数为
“固端弯矩”为杆 CE、BD 因其两端有相对线位移△1=1 所产生的杆端弯矩,即
力矩分配计算(过程略)可得 图,如图 12-5c 所示。由杆端弯矩求得杆端剪力为
由此求得
7 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台
(4)求自由项 F1p 用力矩分配法求荷载作用下图 12-5b 所示基本结构的 Mp 图,分 配系数同上。固端弯矩为
3 / 52
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 12 章 超静定结构总论
1.图 12-1 所示结构各杆 EI 均为常数。试问求图示结构内力时采用什么计算方法最简 便?(各小题均可简化到只有一个基本未知量。)
图 12-1
解:(a)力法;(b)半结构,位移法(或力矩分配法);(c)分解荷载,半结构,力法: (d)半结构,位移法(或力矩分配法);(e)q 作用下,取半结构,位移法;FP 分解,在 反对称分量下取半结构,无剪力分配法;(f)取 结构,力法。
图 12-5
6 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台
解:(1)分析可知,若仅用力法或位移法求解,基本未知量过多。又因结点 D 有竖向 线位移,不能单独用力矩分配法,可运用位移法与力矩分配法联合求解。
龙驭球《结构力学Ⅱ》(第3版)课后习题-第十五章至第十八章【圣才出品】
解:采用刚度法求解
图 15-3
2 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台
由振动控制方程,
由
可得,1 49,2 245,3 588
三
层
刚
架
的
自
振
频
率
为
即三层刚架的主振型为
Y(1) (0.333,0.667,1.000)T Y(2) (0.667,0.667,1.000)T
图 15-7 解:(1)图中为静定结构,所以采用柔度法,先求柔度系数。 施加单位位移,得到弯矩图 15-8 如下
9 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 15-8
图乘得到, 1P
3FPl3 24EI
,
2P
FPl3 32EI
11
3l3 24EI
, 22
l3 48EI
,
12
21
l3 32EI
(2)计算 D 值
16EI ml 3
m1 2
,
m2 2
m
16EI ml 3
16EI l3
3m
16EI ml 3
48EI l3
10 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台
(3)计算位移幅值 (4)计算惯性力 (5)叠加做弯矩图,如图 15-8(d)所示 15-9 图示桁架,杆分布质量不计,各杆 EA 为常数,质量上作用竖向简谐荷载
1 m
2
21I1 (22
) I1 12 I2
1 m
2
)I2
1 P 2 P
0 0
解得 I1 0.16F , I2 0.66F
龙驭球《结构力学Ⅰ》(第4版)笔记和课后习题(含考研真题)详解(静定结构的受力分析)【圣才出品】
第3章静定结构的受力分析3.1 复习笔记本章详细论述了各类静定结构的受力分析过程与步骤,包括静定平面桁架、静定多跨梁、静定平面刚架、组合结构和三铰拱,介绍了隔离体的最佳截取方法,以及静定结构内力计算的虚位移法。
重视静定结构的基本功训练,有助于培养驾驭基本原理解决复杂问题的能力,为超静定结构的分析与求解打下坚实基础。
一、静定平面桁架桁架由杆件铰接而成,其杆件只承受轴力,杆件截面上应力分布均匀,主要承受轴向拉力和压力,因而能够充分发挥材料的作用,经常使用于大跨度结构中。
1.桁架的类别与组成规律(见表3-1-1)表3-1-1 桁架的类别与组成规律2.桁架杆件内力的求解方法(见表3-1-2)表3-1-2 桁架杆件内力的求解方法二、梁的内力计算的回顾1.截面内力分量符号规定如图3-1-1(图中所示方向为正方向)所示:(1)轴力以拉力为正;(2)剪力以绕微段隔离体顺时针转向为正;(3)在水平杆件中,当弯矩使杆件下部受拉(上部受压)时,弯矩为正。
图3-1-12.截面法(见表3-1-3)表3-1-3 截面法3.荷载与内力之间的微分关系(1)在连续分布的直杆段内,取微段dx为隔离体,如图3-1-2所示。
图3-1-2(2)由平衡条件导出微分关系为(Ⅰ)4.荷载与内力之间的增量关系(1)在集中荷载处,取微段为隔离体,如图3-1-3所示。
图3-1-3(2)由平衡条件导得增量关系为5.荷载与内力之间的积分关系如图3-1-4所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-4。
图3-1-4表3-1-4 内力的积分公式及几何意义6.分段叠加法作弯矩图(1)分段叠加法步骤①求支反力:根据整体受力平衡求出支座反力;②选取控制截面:集中力作用点、集中力偶作用点的左右两侧、分布荷载的起点和终点都应作为控制截面;③求弯矩值:通过隔离体平衡方程求出控制截面的弯矩值;④分段画弯矩图:控制截面间无荷载作用时,用直线连接即可;控制截面间有分布荷载作用时,在直线连接图上还需叠加这一段分布荷载按简支梁计算的弯矩图。
龙驭球《结构力学Ⅰ》(第3版)名校考研真题-力法(中册)(圣才出品)
第6章力法一、选择题1.图6-1所示结构的弯矩图轮廓是(选项见图)()。
[浙江大学2012研]图6-1【答案】A【解析】B项,将支座位移分成正对称和反对称两种情况来分析,在Δ/2正对称位移作用下,弯矩图为0;在Δ/2反对称位移作用下,弯矩图为反对称。
CD两项,根据竖杆的弯矩图判断出CD两项的两柱都有水平方向的剪力且方向相同,但由于原结构上无荷载作用,不满足∑=0F。
x2.设图6-2所示结构在荷载作用下,横梁跨中产生正弯矩。
现欲使横梁跨中产生负弯矩,应采用的方法是()。
[哈尔滨工业大学2012研]A.减小加劲杆刚度及增大横梁刚度B.增大加劲杆刚度及减小横梁刚度C.增加横梁刚度D.减小加劲杆刚度图6-2【答案】B【解析】本题关键在于中间的竖杆。
当竖杆EA→0时,相当于没有竖杆,这时水平杆为简支梁,跨中弯矩为正弯矩;当竖杆EA→∞时,相当于刚性支座杆,这时水平杆为双跨梁,跨中弯矩为负弯矩。
因此增大劲杆刚度会使跨中产生负弯矩;同样如果减小横梁刚度,也就相当于劲杆的刚度相对增加了。
3.图6-3(a)、(b)所示两结构(EI=常数),右端支座均沉降Δ=1,两支座弯矩关系为()。
[西南交通大学2009研]A.M B>M DB.M B=M DC.M B<M DD.MB=-M D图6-3【答案】C【解析】画出6-3(a)、(b)两图对应的图及支座位移引起的位移图,分别见图6-3(c)、(d)、(e)、(f),对应的力法方程分别为δ11X1+Δ1C=0和。
两式系数的关系为:,[因为图乘时图6-3(c)中斜杆的长度大于图6-3(e)中相应直杆的长度],因此,而,所以M B<M D。
二、填空题1.原结构及温度变化(E 1I1,)下的M图如图6-4所示,若材料的有关特性改为(E2I2,),且/=1.063,E1I1/E2I2=1.947,以外侧受拉为正,则M B=________。
[天津大学2008研]图6-4【答案】61.84kN·m【解析】根据已知条件得:,因此M B缩小为原来的2.07倍,即M B2=128/2.07=61.84kN·m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非完善体系的失稳形式是极值失稳。
(2)小扰度理论
设
,
,得平衡条件
解得
图 16-9 与大扰度相比,对于非完善体系,小扰度理论未能得出临界荷载会逐渐减小的结论。
3.几点认识 (1)一般来说,完善体系是分支点失稳,非完善体系是极值点失稳; (2)分支点特征是在交叉点出现平衡形式的二重性; (3)极值点失稳特征是只存在一个平衡路径,但平衡路径上出现极值点; (4)结构稳定问题只有根据大扰度理论才能得出精确的结论; (5)小扰度理论在分支点失稳问题中通常能得出临界荷载的正确值。
10 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 16-2 解:(1)解法一,按大挠度理论计算 体系变形图,如图 16-3 所示。
图 16-3
平衡条件为
2aq
FR
2a ka
sin sin
2aq a sin
FR
a cos
0
整理得到, a2 sin (6q k cos ) 0 ,则 0 或者 q k cos
三、有限自由度体系的稳定—静力法和能量法 确定临界荷载的方法
5 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台
静力法:根据临界状态的静力特征而提出来的方法。 能量法:根据临界状态的能量特征而提出来的方法。 1.静力法 在原始平衡路径之外寻找新的平衡路径,确定二者的交叉点,求出临界荷载。
图 16-3
(1)大扰度理论
倾斜位置的平衡条件为:
考虑到
,得
第一个解为:
,这就是原始平衡形式(下图由直线 OAB 表示)。
2 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 16-4
第二个解为:
,这就是新的平衡形式(上图有曲线 AC 表示)。
A 点为分支点,对应的临界荷载为:
十万种考研考证电子书、题库视频学习平台
是位移 θ 的二次抛物线。
图 16-11
四、无限自由度体系的稳定—静力法 与有限自由度的区别:平衡方程是微分方程。
弹性曲线的微分方程
改写为:
其中
,解
引入边界条件得
图 16-12
7 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 16-1
FP 1 Fcr 时,压杆处于稳定的直线平衡状态;
FP 2 Fcr 时,压杆可能处于直线平衡状态,也可能处于曲线的平衡状态。
2.极值点失稳(非完善体系)
1 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 16-2 在荷载极值点处,平衡路径由稳定平衡转为不稳定平衡。 特征:平衡形式不会出现分支现象。 二、两类稳定问题计算简例 1.单自由度完善体系的分支点失稳
新平衡为的平衡条件
由
,得
图 16-10
2.能量法
在原始平衡路径之外寻找新的平衡路径,应用新平衡状态的势能驻值原理,求出临界荷
载。Βιβλιοθήκη 弹簧应变能,荷载势能
体系的势能为:
应用驻值条件
,得
取非零解,得 临界状态的能量特征:势能为驻值,且位移有非零解。
6 / 74
圣才电子书
讨论势能
2.单自由度非完善体系的极值点失稳
3 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)大扰度理论 平衡条件: 解得
图 16-6
由
,得
相应的极值荷载为
图 16-7
4 / 74
圣才电子书
十万种考研考证电子书、题库视频学习平台
6
所以分支点的临界荷载为 qcr
k 6
11 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)解法二,按小挠度理论计算
平衡条件为, 2aq 2a 2aq a ka a 0
整理得到, a2 (6q k) 0 ,则 0 或者 q k
6
所以分支点的临界荷载为 qcr
非零位移条件
展开,得
图 16-13
五、无限自由度体系的稳定—能量法 以图示体系为例说明
令压杆的变形曲线为
图 16-14
8 / 74
圣才电子书
弯曲应变能为
十万种考研考证电子书、题库视频学习平台
与 FP 相应的位移
荷载势能为
体系的势能为
由势能驻值条件
,得
令
,
矩阵形式
,则
可简写为 由非零条件,得 最小根即为临界荷载。
16.2 课后习题详解
9 / 74
圣才电子书 十万种考研考证电子书、题库视频学习平台
15-1 图示刚性杆 ABC 在两端分别作用重力 FP1、FP2。设杆可绕 B 点在竖直面内自 由转动,试用两种方法对下面三种情况讨论其平衡形式的稳定性: (a)FP1<FP2。(b)FP1>FP2。(c)FP1=FP2。
路径Ⅱ的平衡是不稳定平衡,分支点 A 处的临界平衡状态也是不稳定的。对于这类具
有不稳定分支点的完善体系,在进行稳定验算时,按非完善体系进行。
(2)小扰度理论
若
,则倾斜位置的平衡条件为:
得
图 16-5 路径Ⅱ的平衡是随遇平衡。 小扰度理论能够得出临界荷载的正确结果,但不能反映倾角较大时平衡路径Ⅱ的下降趋 势。
图 16-1
解:(1) FP1 FP2 当 0 时,刚性杆处于稳定平衡; 当 时,刚性杆处于不稳定平衡。 (2) FP1 FP2 当 0 时,刚性杆处于不稳定平衡; 当 时,刚性杆处于稳定平衡。 (3) FP1 FP2 角取任意值,刚性杆都会处于一种静止或动态平衡状态。
15-2 试用两种方法求图示结构的临界荷载 qcr。假定弹性支座的刚度系数为 k。
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 16 章 结构的稳定计算
16.1 复习笔记
一、两类稳定问题的概述 稳定平衡状态:受到轻微干扰偏离原来位置,在干扰消失后,能回到原来的平衡状态。 不稳定平衡状态:受到轻微干扰偏离原来位置,在干扰消失后,继续偏离。 中性平衡状态:由稳定平衡到不稳定平衡过渡的中间状态。 失稳:随荷载逐渐增大,结构的原始平衡位置可能由稳定平衡状态转化为不稳定状态。 1.分支点失稳(完善体系)