物理竞赛复赛模拟卷与答案

合集下载

40届中学生物理竞赛复赛试题

40届中学生物理竞赛复赛试题

1、一个物体在水平面上做匀速直线运动,突然受到一个与运动方向相同的恒力作用,则物体之后将做何种运动?A、继续做匀速直线运动B、做匀加速直线运动C、做匀减速直线运动D、做曲线运动(答案:B。

解析:物体原本做匀速直线运动,说明所受合力为零。

当施加一个与运动方向相同的恒力时,合力不再为零,且方向与运动方向一致,因此物体会做匀加速直线运动。

)2、关于光的折射现象,下列说法正确的是?A、光从光密介质进入光疏介质时,折射角大于入射角B、光从光疏介质进入光密介质时,折射角大于入射角C、折射角总是等于入射角D、光在任何介质中传播时,折射角都小于入射角(答案:A。

解析:根据折射定律,光从光密介质(折射率较大的介质)进入光疏介质(折射率较小的介质)时,折射角会大于入射角。

)3、一个弹簧振子在振动过程中,当它经过平衡位置时,下列说法正确的是?A、速度为零,加速度最大B、速度最大,加速度为零C、速度和加速度都为零D、速度和加速度都达到最大(答案:B。

解析:在平衡位置,弹簧振子的位移为零,因此回复力(即弹簧力)也为零,加速度为零。

同时,由于振子在此位置动能最大,所以速度最大。

)4、关于电容器的电容,下列说法正确的是?A、电容是描述电容器储存电荷能力的物理量B、电容越大的电容器,其储存的电荷量一定越多C、电容与电容器两端的电压成正比D、电容与电容器所带电荷量成正比(答案:A。

解析:电容是描述电容器储存电荷能力的物理量,与电容器两端的电压或所带电荷量无关,它只与电容器本身的性质有关。

)5、在静电场中,下列关于电场线和等势面的说法正确的是?A、电场线总是垂直于等势面B、电场线可以与等势面相交C、沿电场线方向,电势逐渐升高D、等势面上各点的电场强度大小相等(答案:A。

解析:电场线总是垂直于等势面,且由高电势指向低电势。

电场线与等势面不能相交,否则在该点会有两个不同的电势值。

沿电场线方向,电势逐渐降低。

等势面上各点的电势相等,但电场强度大小不一定相等。

高中物理竞赛复赛模拟卷(三)参考答案 .doc

高中物理竞赛复赛模拟卷(三)参考答案 .doc

高中物理竞赛复赛模拟卷(三)参考答案第一题(18分)如图所示时,设小环与重物的速率分别为v 1和v 2;加速度大小分别为a 1和a 2,则 1.由机械能守恒,可得222121212sin Mv mv MgL +⨯=θ ① 而θθsin cos 21v v =②联立①、②可得(考虑到M=2m ) θ31sin 2gL v =θθ22cos sin 2gL v =2.由牛顿第二定律: 对小环:1cos ma T =θ③ 对重物:Ma T Mg =-θsin 2④小环相对重物与绳的结点作圆周运动,以该结点(即重物)为参照物,则有1sin v v =θ(v 为m 相对M 的速度)⑤212cos sin /a a v L θθ-=⑥并考虑到M=2m ,联立各式得 θsin 3mg T = 第二题(20分)1.'q 是q 的球面镜像电荷。

如图所示,可以肯定镜像电荷'q 一定在对称轴上,设其电量为'q ,距球心O 的间距为r ,则考察对称轴与球面的两交点B 、'B 的电势,可得r R q KR d q KU B -+-='① rR q K R d q K U B +++=''② 而球接触,0'==U U B③联立①、②、③得'Rq q d=-dR r 2=2.要使带电小球d 能在圆周上做匀速圆周运动,必须使轨道上各点的电势相等。

然而由两点电荷(A 与'A 处的)在空间产生的电场中等势面若是1个球面,则该等势面的电势一定为零。

由此可知A 与'A 互为镜像电荷。

由1的结论易得:2',''R R q q r r r =-=(其中''OA r =),解出:q rRq R r q d R r -=-=='','2 第三题(18分)取与金属环上一小段孤长一起做加速运动的坐标系,该坐标系与构成金属晶格的离子相连。

第28届全国中学生物理竞赛复赛试题(清晰扫描版)及参考解答

第28届全国中学生物理竞赛复赛试题(清晰扫描版)及参考解答

第28届全国中学生物理竞赛复赛试题参考解答及评分标准一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b += (1) a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4) 由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-= (7)根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+ (8) 由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9) 可以证明,彗星绕太阳作椭圆运动的机械能为 s2Gmm E =a-(10) 式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v (11) 得图1P=v(12)代入有关数据得414.3910m sP-⨯⋅v=(13)设P点速度方向与SP的夹角为ϕ(见图2),根据开普勒第二定律[]sin2P P Prϕθσ-=v(14)其中σ为面积速度,并有πabTσ=(15)由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ= (16)解法二取极坐标,极点位于太阳S所在的焦点处,由S引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r、θ表示彗星的椭圆轨道方程为1cospreθ=+(1)其中,e为椭圆偏心率,p是过焦点的半正焦弦,若椭圆的半长轴为a,根据解析几何可知()21p a e=-(2)将(2)式代入(1)式可得()θcos112eear+-=(3)以eT表示地球绕太阳运动的周期,则e1.00T=年;以ea表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e1.00AUa=,根据开普勒第三定律,有3232a Ta T=e e(4)在近日点0=θ,由(3)式可得1rea=-0(5)将Pθ、a、e的数据代入(3)式即得0.895AUPr=(6)可以证明,彗星绕太阳作椭圆运动的机械能s2GmmE=a-(7)式中m为彗星的质量.以Pv表示彗星在P点时速度的大小,根据机械能守恒定律有2s s122PPGmm Gmmmr a⎛⎫+-=-⎪⎝⎭v(8)可得P=v(9)代入有关数据得414.3910m sP-⨯⋅v=(10)设P点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v,再根据角动量守恒定律,有()sinP P Pr rϕθ-=v v00(11)根据(8)式,同理可得=v(12)由(6)、(10)、(11)、(12)式并代入其它有关数据127ϕ= (13)评分标准:本题20分解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.二、参考解答:1.建立如图所示坐标系Oxy.两杆的受力情况如图:1f为地面作用于杆AB的摩擦力,1N为地面对杆AB的支持力,2f、2N为杆AB作用于杆CD的摩擦力和支持力,3N、4N分别为墙对杆AB和CD的作用力,mg为重力.取杆AB和CD构成的系统为研究对象,系统平衡时, 由平衡条件有431N N f+-=(1)120N mg-=(2)以及对A点的力矩()3411sin sin sin cos cos cos022mgl mg l l N l N l l CFθθαθθα⎛⎫+---+-=⎪⎝⎭即()3431sin sin cos cos cos022mgl mgl N l N l l CFθαθθα---+-=(3)式中CF待求.F是过C的竖直线与过B的水平线的交点,E为BF与CD的交点.由几何关系有sin cot CF l αθ= (4) 取杆CD 为研究对象,由平衡条件有422cos sin 0N N f θθ+-= (5) 22sin cos 0N f mg θθ+-= (6) 以及对C 点的力矩41cos sin 02N l mgl αα-= (7) 解以上各式可得41tan 2N mg α=(8) 331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+ ⎪⎝⎭ (9)13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+ ⎪⎝⎭ (10)12N mg = (11)21sin tan cos 2N mg θαθ⎛⎫=-⎪⎝⎭ (12) 21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13) CD 杆平衡的必要条件为22c f N μ≤ (14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+ (15)AB 杆平衡的必要条件为11A f N μ≤ (16)由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤- (17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得 arctan 0.38521.1α︒≤= (18) 将题给的数据代入(17)式,经数值计算可得19.5α≥︒ (19) 因此,α的取值范围为 19.521.1α≤≤(20)评分标准:本题20分第1问15分(1)、(2)、(3)式共3分,(4)式1分,(5)、(6)、(7)式共3分,(9) 、(10) 式各1分,(12)到(17)式各1分.第2问5分(18)式1分,(19)式3分,(20)式1分. 三、参考解答:'解法一1. 设在时刻t ,小球和圆筒的运动状态如图1所示,小球位于P 点,绳与圆筒的切点为T ,P 到T 的距离即绳的拉直部分的长度为l圆筒的角速度为ω,小球的速度为v .小球的速度可以分解成沿着绳子方向的速度1v 和垂直于绳子方向的速度2v 两个分量.根据机械能守恒定律和角动量守恒定律有()()()()22222001211112222M R m R M R m ωωω+=++v v (1) 2220012+=++MR mR MR mR ml ωωωv v (2)因为绳子不可伸长,1v 与切点T 的速度相等,即ωR =1v (3) 解(1)、(2)、(3)式得()()02222ωωml R m M ml R m M ++-+= (4) ()()022222ωmlR m M l R m M +++=v (5) 由(4)式可得l = (6)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(6)式,当0=ω得=L (7) 这便是绳的总长度L .3.如图2所示,从时刻t 到t t +∆,切点T 跟随圆筒转过一角度1t ωθ∆=∆,由于绳子的拉直部分的长度增加了l ∆,切点相对圆筒又转过一角度2lRθ∆=∆,到达T '处,所以在t ∆时间内,切点转过的角度12lt Rθθωθ∆∆=∆=+∆+∆ (8)切点从T 变到T '也使切线方向改变了一个同样的角度θ∆,而切线方向的改变是小球具有垂直于绳子方向的速度2v 引起的,故有2tlθ∆∆=v (9) 由(1)、(2)、(3)式可得 ()20l ωω=+v (10)2()2t由(8)、(9)、(10)三式得0l R t ω∆=∆ (11) (11)式表示l 随t 均匀增加,故l 由0增加到L所需的时间为0s L t R ω== (12)解法二1.撤去插销后两个小球的运动情况相同,故可取一个小球作为对象进行研究,先研究任何时刻小球的速度.在t 时刻,相对卫星系统质心参考系小球运动状态如图1所示,绳子的拉直部分与圆筒面的切点为T ,小球到切点T 的距离即绳的拉直部分的长度为l ,小球到转轴O 的距离为r ,圆筒的角速度为ω.由于圆筒的转动和小球相对圆筒的运动,绳将展开,切点位置和绳的拉直部分的长度都要改变.首先考察小球相对于圆筒的运动.在t 时刻,OT 与固定在圆筒上的半径0OP 的夹角为φ,如图2所示.由于小球相对圆筒的运动,经过时间t ∆,切点从圆筒上的T 点移到T '点,OT '与0OP 的夹角变为φφ+∆,绳的拉直部分的长度由l 变为l ',小球由P 运动到P ',PP '便是小球相对圆筒的位移.当t ∆很小时l l '≈,故PP l l φφ''=∆≈∆于是小球相对圆筒的速度大小为ll tφφφω∆==∆v (1) 方向垂直于TP .φω是切点相对圆筒转动的角速度. 再考察圆筒相对质心参考系的转动,即与圆筒固连在一起的转动参考系相对质心参考系的运动.当圆筒的角速度为ω时,位于转动参考系中的P 点(小球所在处)相对质心系的速度r ωω=v (2)方向垂直于OP .可以把ωv 分解成沿着TP 方向的分量1ωv 和垂直TP 方向的分量2ωv ,如图3所示,即1R ωω=v(3)2l ωω=v (4)小球相对质心系的速度 v 是小球相对圆筒的速度和圆筒参考系中的P 点相对质心系速度的合成,由图3可得v 的2m12φω+ v大小=v (5)因 l R φ= (6) 故有=v (7)因为系统不受外力作用,故系统的动能和角动量守恒,故有()()222220011112222M R mR M R m ωωω+=+v (8) ()2220012MR mR MR mR ml ωωφωωω+=+++v v v (9)由(7)、(8)两式有()22220mM mφωωωωφ=+++ (10)由(1)、(3)、(4)、(6)、(9)各式得()20mM mφωωφωω=+++ (11) 由(10)、(11)两式得φωωωω+=+0 故有0ωωφ= (12)上式说明绳子与圆筒的切点相对圆筒转动的角速度等于卫星的初始角速度,是一个恒量,将(12)式代入(11)式得φ=(13) 由(6)、(13)两式得l = (14)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(14)式,当0=ω得绳总长度, 即L = (15) 3.因φω是一个恒量,φ随时间的t 的变化规律为t 0ωφ= (16) 当0=ω时,由(13)式可得卫星停旋时的φs φ=(17) 设卫星停转所用的时间为s t ,由(16)、(17)式得0s s t φω==(18) 评分标准:本题25分.解法一第1问12分.(1)、(2)式各3分,(3)式2分,(6)式4分.第2问3分.(7)式3分.第3问10分.(8)、(9)式各3分,(10)式2分,(11)、(12)式各1分.解法二第1问18分.(1)式3分,(2)式2分,(7)式2分,(8)式3分,(9)式3分,(12)式2分,(14)式3分,第2问3分.(15)式3分.第3问4分.(16)式2分,(17)式1分,(18)式1分.四、参考解答:1.根据题意,粒子的初速度只有y 方向和z 方向的分量,设它们为0y v 和0z v .因为粒子在z 方向不受电场力和磁场力作用,故粒子在z 方向以初速度0z v 作匀速运动.粒子在Oxy 面内的运动可以看作由以下两部分运动的合成:可把粒子在y 方向的初速度表示为 001001y y y y =-++v v v v (1) 其中0010y E B =-v (2) 沿y 负方向.与01y v 相关的磁场力 010Bx y f q B =-v (3) 沿x 负方向.粒子受到的电场力0E Ex f f qE == (4)沿x 正方向.由(2)、(3)、(4)式可知,粒子在x 方向受到的电场力和磁场力正好抵消,故粒子以大小为E B 的速度沿y 负方向运动.除此之外,由(1)式可知,粒子还具有初速度00200y y E B =+v v (5) 沿y 正方向,与02y v 相关的磁场力使粒子以速率02y v 在Oxy 面内作匀速圆周运动,以r 表示圆周运动的半径,有202020y y q B mr=v v (6) 可得020y m r qB =v (7)由周期的定义和(7)式可得圆周运动的周期02mT =qB π (8) (8)式表明,粒子运动的周期与粒子在y 方向的初速度无关.经过时间T 或T 的整数倍所考察的粒子就能同时回到Oyz 平面.2.增加的电场2E对粒子在Oxy 平面内的运动无影响,但粒子在z 方向要受到此电场力作用.以z a 表示在此电场力作用下的加速度,有 0c o s z m a q E t ω= (9) 或0cos z qE a =t mω (10) 这是简谐运动的加速度,因而有 2z a =z ω- (11) 由(10)、(11)可得t mqE z ωωcos 102-= (12) 因未增加电场时,粒子在z 方向作初速度为0z v 的匀速运动,增加电场后,粒子在z 方向的运动是匀速运动与简谐运动的叠加,即有0021cos z qE z t t mωω=-v (13)粒子在Oxy 平面内的运动不受电场2E的影响.设0ω为粒子在Oxy 平面内作圆周运动的角速度,则有202πqB T mω== (14) 由图示可得与圆周运动相联系的粒子坐标随时间t 的变化关系()01cos x r t ω'=- (15) 0sin y r t ω'= (16)考虑到粒子在y 方向还具有速度为01y v 的匀速运动,并利用(2)、(5)、(7)、(14)以及己知条件,可得带电粒子的运动规律:000001cos y E qB m x t qB B m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭v (17) 0000000siny E E qB m y t t B qB B m⎛⎫=-++ ⎪⎝⎭v (18) 00020cos z mE qB z t t qB m=-v (19)评分标准:本题20分.第1问12分.(2)、(3)、(4)式共5分,(5)、(6)、(7)式共4分,(8)式及相关说明共3分.第2问8分.(12)式2分,(14)式到(19)式各1分. 五、答案与评分标准本题15分.1.01TV V L I I e ⎛⎫-- ⎪ ⎪⎝⎭ (2分),L I (2分),0ln 1L T I V I ⎛⎫+ ⎪⎝⎭ (2分),01TVV L VI VI e ⎛⎫-- ⎪ ⎪⎝⎭(1分).2.0.62V (2分);0.54V (2分);49mW (2分);6.0Ω (2分).六、参考解答:在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积02B V V = (1) 根据题意,活塞M 向右移动过程中,B 中气体压强不变,用B T 表示B 室中气体末态的温度,有00BBV V T T =(2)由(1)、(2)式得02B T T = (3)由于隔板N 是导热的,故A 室中气体末态的温度02A T T = (4) 下面计算此过程中的热量m Q .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即 05()2A A Q R T T =- (5) 由(4)、(5)两式得052A Q RT = (6)B 室中气体经历的是等压过程,在过程中B 室气体对外做功为00()B B W p V V =- (7) 由(1)、(7)式及理想气体状态方程得 0B W R T = (8)内能改变为05()2B B U R T T ∆=- (9) 由(4)、(9)两式得052∆=B U RT (10)根据热力学第一定律和(8)、(10)两式,B 室气体吸收的热量为 072=∆+=B B B Q U W RT (11) 由(6)、(11) 两式可知电加热器提供的热量为06m A B Q Q Q RT =+= (12) 若0m Q Q =,B 室中气体末态体积为02V ,A 室中气体的末态温度02T .2.若0m Q Q >,则当加热器供应的热量达到m Q 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量0m Q Q -是A 、B 中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为AT ',有 00055(2)(2)22m AA Q Q R T T R T T ''-=-+- (13) 由(12)、(13)两式可求得00455AQ T T R '=+ (14) B 中气体的末态的体积02BV =V ' (15) 3. 若0m Q Q <,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积BV ''小于02V ,即02BV V ''<.设A 、B 两室中气体末态的温度为A T '',根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量05()2A AQ R T T ''=- (16) B 室中气体经历的是等压过程,吸收热量0005()()2B AB Q R T T p V V ''''=-+- (17)利用理想气体状态方程,上式变为()072B AQ R T T ''=- (18) 由上可知006()A B AQ Q Q R T T ''=+=- (19) 所以A 室中气体的末态温度 006AQ T T R''=+ (20) B 室中气体的末态体积 00000(1)6BA V QV T V T RT ''''==+ (21) 评分标准:本题20分.得到0m Q Q =的条件下(1)、(4)式各1分;(12)式6分,得到0m Q Q >的条件下的(14)式4分,(15)式2分;得到0m Q Q <的条件下的(20)式4分,(21)式2分.七、答案与评分标准:本题20分.1. 3R (3分) 2. 6R (3分)第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分. 八、参考解答:1. 反应能()()332p n H He Q m m m m c ⎡⎤=+-+⎣⎦(1)式中c 为光速.代入数据得0.764MeV Q =- (2) 上式表明这是一吸能核反应.2.为了求入射质子阈能,反应前后各粒子都应沿同一直线运动.设质子的入射速度大小为p v ,反应后32He 的速度大小为3He v ,中子的速度大小为n v ,根据动量守恒和能量守恒有33p p n n He He m m m =+v v v (3)33222p p n n He He 111222m m m Q =++v v v (4)由(3)、(4)式可得3333322n n p p p n22He He n p n p He He He220m m m m m m m m Q m m m ⎛⎫⎛⎫+--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v (5) 令333332n nHe He p n pHe 2p p 2Hep He22m m m a m m m b m m m m c Qm ⎫+⎪=⎪⎪⎪=-⎬⎪⎪-⎪=+⎪⎭v v (6) 把(6)式代入(5)式得2n n 0a b c ++=v v (7)(7)式有解的条件是240b ac -≥ (8)由(6)式可知,c 可能大于零,亦可能小于零.若0c <,则(8)总成立,中子速度一定有解,反应一定能发生;若0c >,则由 (6)、(8)两式得33n 2He p p n pHe 12m m m Q m m m +≥+-v (9) 即只有当入射质子的动能满足(9)式时,中子速度才有解,反应才能发生,所以入射质子的阈能为3pn p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭ (10) 利用(1)式,在忽略2Q 项的情况下,(10)式可简化为 3p H1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(11) 代入有关数据得 1.02MeV th T = (12)3.由动量守恒和能量守恒有33p p n n He He =+m m m v v v (12)33222p p n n He He 111222m m m Q =++v v v (13) 以θ表示反应中产生的中子速度方向与入射质子速度方向的夹角,如图所示,根据余弦定律有 ()()()33222n n p p n p n p He He 2cos m m m m m θ=+-v v v v v (14)令2p p p 12T m =v (15) 2n n n 12T m =v (16) 3332He He He 12=T m v (17) 把(15)、(16)、(17)式代入(13)、(14)两式得3He Q T T T =--p n (18)p p m v33n n p p He He 222m T m T m T θ=+- (19)由(18)、(19)式,消去3He T 后,得()3333p p HeHe n nnHe He 0m m T Q m T m m θ---=+ (20)令3nHe S θ=,()333p p HeHe nHe m m T Q m R m m --=+ (21)得n 20T R -= (22)根据题给的入射质子的动能和第1问求得的反应能Q 的值,由(21)式可知0R >,故(22)式的符合物理意义的S = (23)将具体数据代入(21)、(23)式中,有n 0.132MeV T = (24) (如果得到 131.0=n T MeV ,也是对的.)第2问的其他解法解法一为了研究阈能,只考虑碰撞前后各粒子都沿同一直线运动的情况.若碰撞后32He 和中子的速度相同,即粘在一起运动(完全非弹性碰撞),则在碰撞过程中损失的机械能最多,若所损失的机械能正好等于反应能,则入射质子的动能最小,这最小动能便是阈能. 设质子的入射速度大小为p v ,反应后32He 和中子的速度大小为v ,根据动量守恒和能量守恒有3p p n He ()m m m =+v v (1)322p p n He 11()22m m m Q =++v v (2) 由(1)、(2)式可得 33n 2He p p n pHe 12m m m Q m m m +=+-v (3) 所以阈能为3p n p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(4) 利用第1问中的(1)式,并注意到32H 1<<Q m c有333332n pHe H H 2H H 11111⎛⎫==- ⎪ ⎪+-⎛⎫⎝⎭+⎪ ⎪⎝⎭Q m m m m m c Q m m c 在忽略2Q 项的情况下,(4)式可简化为 3p H 1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(5) 代入有关数据得 1.02M e Vth T = (6)第2问8分(1)、(2)式各3分,(4)式或(5)式1分,(6)式1分. 解法二在牛顿力学中可以证明,质点系的总动能可以表示为质点系的总质量以质心速度运动的动能即所谓质心动能与各质点相对质心运动的动能之和.若质点系不受外力作用,则质点系的动量守恒,质心速度不变,故质心动能亦恒定不变;如果质点系内部的相互作用导致质点系机械能的变化,则可变化的机械能只能是各质点相对质心运动的动能. 在本题中,如果质子p 与氚31H 发生反应后,生成的中子n 和氦32He 相对质心都静止,则质子p 与氚31H相对质心运动的动能之和全部转化成反应能,反应后系统的动能只有质心的动能,在这请况下,转化成其他形式能量的机械能最多,入射质子的动能最小,这最小动能便是阈能.所以入射质子的阈能等于系统质心的动能与反应能之和.以p 'v 和3H 'v 分别表示质子p 和氚31H 相对质心的速度,有3322p p H H 1122Q =m m ''+v v (1) 因系统质心的速度 3p p c p H=+m m m v v (2)而33p H p p c p Hm m '=-=+v v v v m (3) 33p p c Hp H0m m '=-=-+v v v m (4)由(1)、(3)、(4)式得 332H p pp H12m Q m m m =+v (5) 在牛顿力学中,系统的总质量是恒定不变的,这就导致系统质心的动能在反应前后恒定不变的结论,但在本题中,损失掉的机械能导致系统总质量的变化,使反应前系统的总质量与反应后系统的总质量不相等,即33p n H He +≠+m m m m .如果仍沿用牛顿力学的结论,对一个孤立系统,其质心速度是不会改变的,故反应后质心的动能应为 ()()33222c n c p c c 2He H 111222=+=++Q E m m m m cv v v 而 ()33322p p p 2c 2222p H Hp HQ 1122m m Q QQ c c c m m m m m =⋅=⋅⋅++v v 由此可见,在忽略2Q 的条件下 ()()3322n p He H 1122c c m m m m +=+v v 而入射质子的阀能 ()32p H 12th c T m m Q =++v (6) 由(2)、(5)、(6)式得 3p H 1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(7) 代入有关数据得 1.02MeV th T = (8)第2问8分(1)、(5) 、(6)式各2分, (7)式1分,、(8)式1分. 解法三考虑反应前后各粒子都沿同一直线运动的情况,若入射质子与与静止的31H 发生完全非弹性碰撞,即反应后产生的中子和32He 以相同的速度运动,则入射质子的动能就是阈能.以10m 表示质子的静止质量,20m 表示31H 的静止质量,30m 表示中子的静止质量,40m 表示31He 的静止质量,设质子的入射速度大小为p v ,反应后32He 和中子的速度大小都为v ,根据动量守恒和能量守恒有1pm m m +=v(1)222120m m c m c m c++=(2)式中1m 是质子的动质量.由(1)、(2)两式得 1p 120+m m m v v =(3)把(3)式代入(1)式,经整理得 ()()2222221201p 3040+-=+m m c m m m c v (4)由 1m =(5)可得221p221102-=m m m cv (6)若入射质子的阈能为th E ,有22110th m c m c E =+ (7) 由(4)、(6)、(7)式可得 ()()2230401020202thm m m m E m +-+= (8)利用题给条件并引入反应能,得 333p n H HeH2th m m m m E Q m +++=(9)或有 ()3333p 2H p H H H22th Q+m m m m c E Q Q m m ++=≈ (10)代入有关数据得 1.02M e Vth T = (11) 第2问8分(1)、(2) 、(8)式各2分, (9)或(10)式1分, (11)式1分。

宝应县中学高中物理竞赛复赛模拟卷(二)答案与分析

宝应县中学高中物理竞赛复赛模拟卷(二)答案与分析

高中物理竞赛复赛模拟试题(二)答案与分析第一题(25分)本题中,物体受耗散力的作用,做减幅振动。

物体在水平方向仅受弹性力x F 20-=和摩擦力、合力为: mg x F μ±-=20合物体向左运动时,第二项取正号,向右运动取负号,设弹性力与滑动摩擦力平衡时的位置为a.ma m g a 2.0020±==±-μ显然,物体速度为零时的位置在m x 2.00≤≤区间时,静摩擦力能与弹性力平衡,物体将静止。

1、开始时,物体从x 0向左运动,受力为:)(2020a x mg x F --=+-=μ合由此可知,物体从00→x 是作平衡点为x=a 的简谐振动的一部分,振幅和周期分别为:m a x A 9.001=-= s k m T 4.1/2==π从00→x 运动时间为1t ∆,如图所示,物体在x=0处反弹,速度大小不变,方向相反。

2、物体向右运动受力为:)(2020a x mg F +-=--=μ合所以物体向右运动可看成是平衡点为x=-a 的简谐振动的一部分,周期不变: s k m x T 4.1/2==3、由于在x=0,振动的总能量对于平衡点为a 和-a 的振动是相等的,所以两振动的振幅一样,即物体从x=0向右运动到m a x a A x 7.02011=-=-=处再向左运动,时间为2t ∆(如图)。

显然,2/21T t t =∆+∆①同理,物体从x 1=0.7m 处向左运动(振幅m a x A 5.012=-=)经碰撞后向右运动至.3.0212m a x x =-=时间仍为半个周期②从x 2=0.3m 再向左运动,其振幅为m a x A 1.023=-=,以m a x 2.0==为平衡点,所以运动至x=0.1m 处物体停止,这一段时间也是半个周期。

③所以物体运动的时间为: )(1.2)2/(3s T t =⨯=∆④物体克服摩擦力做功为: )(122/)(2/)(220J kx kx A =-⑤评分标准:结果①、8分;②、4分;③、4分;④、4分;⑤、5分。

第36届物理竞赛复赛模拟题(第9套)_解析

第36届物理竞赛复赛模拟题(第9套)_解析

【题号】1 【解析】(1)如图,刚刚释放时,整根链子贴着球面以相同速率下滑。

考虑整根链子滑动一段微小位移l ∆时的速度v ∆,此速度对应的动能应由链子下滑过程中的部分重力势能转化而来。

计算重力势能变化时,可等效地认为链子顶端长为l ∆的一小段直接转移到了末端。

记链子线密度为λ,则该段的质量为l λ∆,重力势能变化为1lg (1cos60)2P E R gR l λλ∆=-∆-=-∆, 则由机械能守恒()0K P E E ∆+=, 以及动能22126K E L v R v πλλ=∆=∆, 得到23gv l π∆=∆,另一方面,链子上每一点均做圆周运动,由于刚刚释放时速度为零,向心加速度均为零,只有大小处处相等的切向加速度T a 。

而在讨论一段微小过程中的速度变化时,总可视为匀加速直线运动,满足:全国中学生物理竞赛复赛模拟试题第九套(解析与评分标准)满分32022T v a l ∆=∆, 比较上两式,即可得到32T g a π=.(2)设刚刚释放时,相对顶端转过θ角处的链条张力为()F θ,其下方的链条质量为 ()()3m R πθλθ=-,假设链条整体向下有一微小位移l ∆,根据第一小问已知,链条获得的下滑速度v ∆满足 23gv l π∆=∆.而具体对该段链条而言,受到重力、球面支持力与()F θ三个力,其中支持力处处垂直于位移方向,不做功,因此其动能增量来源于重力势能减小与力()F θ所做的功,即21()()2P m v F l E θθ∆=-∆-∆, 计算重力势能变化量时,与第一小问一样,视为顶端l ∆的部分直接移到底端,则 1lg (cos cos60)lg (cos )2P E R R λθλθ∆=-∆-=-∆-, 代入前式,并将2v ∆表达式代入,整理得3()(cos +1)2F gR θλθθπ=-, 其极值点通过0dFd θ=确定,此时 3(sin )02m gR λθπ-+=, 解得3arcsin28.522m θπ=≈, 此时()0.1163m F gR θλ≈,链条顶端,底端显然张力均为零,否则顶端、底端极小范围内的链条将有无穷大的加速度。

高中物理竞赛复赛模拟试题(有答案)

高中物理竞赛复赛模拟试题(有答案)

复赛模拟试题一1.光子火箭从地球起程时初始静止质量(包括燃料)为M 0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。

要求火箭在25年(火箭时间)后到达目的地。

引力影响不计。

1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M 0ˊ,试问M 0/ M 0ˊ的最小值是多少?分析:光子火箭是一种设想的飞行器,它利用“燃料”物质向后辐射定向光束,使火箭获得向前的动量。

求解第1问,可先将火箭时间a 250=τ(年)变换成地球时间τ,然后由距离R 求出所需的火箭速度。

火箭到达目的地时,比值00M M '是不定的,所谓最小比值是指火箭刚好能到达目的地,亦即火箭的终速度为零,所需“燃料”量最少。

利用上题(本章题11)的结果即可求解第2问。

解:1)火箭加速和减速所需时间可略,故火箭以恒定速度υ飞越全程,走完全程所需火箭时间(本征时间)为a 250=τ(年)。

利用时间膨胀公式,相应的地球时间为221c υττ-=因υτR=故221c Rυτυ-=解出()10220222021096.0111-⨯-=⎪⎪⎭⎫ ⎝⎛-≈+=c R c c Rc c ττυ可见,火箭几乎应以光速飞行。

(2)、火箭从静止开始加速至上述速度υ,火箭的静止质量从M 0变为M ,然后作匀速运动,火箭质量不变。

最后火箭作减速运动,比值00M M '最小时,到达目的地时的终速刚好为零,火箭质量从M 变为最终质量0M '。

加速阶段的质量变化可应用上题(本章题11)的(3)式求出。

因光子火箭喷射的是光子,以光速c 离开火箭,即u=c ,于是有21011⎪⎪⎭⎫ ⎝⎛+-=ββM M (1)c βυ=为加速阶段的终速度,也是减速阶段性的初速度。

对减速阶段,可应用上题(本章题11)的(4)式,式中的m 0以减速阶段的初质量M 代入。

又因减速时必须向前辐射光子,故u=-c ,即有21011⎪⎪⎭⎫⎝⎛+-=ββM M (2) 由(1)、(2)式,得1020222022010441411⨯=≈-=-+='ττββc R c R M M2.如图52-1所示,地面上的观察者认为在地面上同时发生的两个事件A 和B ,在相对地面以速度u (u 平行于x 轴,且与正方向同向)运动的火箭上的观察者的判断正确的是( )A 、A 早于B B 、B 早于AC 、A 、B 同时发生D 、无法判断解:在地面(S 系)上,,A B x x x -=∆0=-=∆A B t t t ,在火箭(S '系)中,⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-='-'='∆22c ux t r c ux t r t t t A A B B A B ()()B A A A B x x c uxt t r -+-=2()B A Ax x c ux -=2因0>r ,0>u ,0<-B Ax x ,故0<'∆t 。

物理竞赛复赛试题及答案

物理竞赛复赛试题及答案

物理竞赛复赛试题及答案一、选择题(每题5分,共20分)1. 光在真空中的传播速度是()A. 299,792,458 m/sB. 299,792,458 km/hC. 299,792,458 km/sD. 299,792,458 m/h2. 根据牛顿第三定律,作用力和反作用力的大小()A. 相等B. 不相等C. 相等但方向相反D. 相等且方向相同3. 一个物体的动能与其速度的关系是()A. 正比B. 反比C. 无关D. 正比且平方关系4. 电场中某点的电势与该点到参考点的电势差成正比()A. 正确B. 错误二、填空题(每题5分,共20分)1. 根据库仑定律,两点电荷之间的力与它们电荷量的乘积成正比,与它们距离的平方成______。

2. 一个物体从静止开始做匀加速直线运动,其加速度为a,经过时间t后,其速度为______。

3. 根据欧姆定律,电阻R、电流I和电压V之间的关系是V = ______。

4. 光的折射定律表明,入射角和折射角的正弦值之比等于两种介质的折射率之比,即sinθ1/sinθ2 = ______。

三、计算题(每题10分,共40分)1. 一辆汽车以20 m/s的速度行驶,突然刹车,刹车时的加速度为-5m/s²。

求汽车完全停止所需的时间。

2. 一个质量为2 kg的物体从10 m的高度自由落体,忽略空气阻力,求物体落地时的速度。

3. 一个电路中包含一个5 Ω的电阻和一个9 V的电池,求电路中的电流。

4. 一个光波的波长为600 nm,求其频率。

四、实验题(每题20分,共20分)1. 描述如何使用弹簧秤测量物体的重力,并解释实验原理。

答案:一、选择题1. A2. A3. D4. B二、填空题1. 反比2. at3. IR4. n1/n2三、计算题1. 4 s2. √(2gh) = √(2*9.8*10) m/s ≈ 14.1 m/s3. I = V/R = 9/5 A = 1.8 A4. f = c/λ = (299,792,458)/(600*10^-9) Hz ≈ 5*10^14 Hz四、实验题1. 将物体挂在弹簧秤的挂钩上,读取弹簧秤的示数即为物体的重力。

第28届全国中学生物理竞赛复赛模拟试卷及参考答案与评分标准

第28届全国中学生物理竞赛复赛模拟试卷及参考答案与评分标准

第28届全国中学生物理竞赛复赛模拟试卷题号-一--二二三四五六七八总分得分复核本卷共八题,满分160分。

计算题的解答应写出必要的文字说明、方程式和重要的演算步 骤。

只写出最后结果的不能得分。

有数字计算的题,答案中必须明确写出数值和单位。

填 空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程。

一、填空题.(本题共4小题,共25分)1•图1所示的电阻丝网络,每一小段电阻同为 r ,两个端点 A 、B 间等效电阻R i = 。

若在图1网络中再引入3段斜电阻丝, 每一段电阻也为r ,如图2所示,此时A 、B 间等效电阻R 2= ____________________________得分 阅卷复核 — —图1图22 •右图为开尔文滴水起电机示意图。

从三通管左右两管口 形成的水滴分别穿过铝筒 厲、A ?后滴进铝杯B 1、B 2,当滴了一段 时间后,原均不带电的两铝杯间会有几千伏的电势差。

试分析其 原理。

图中铝筒 厲用导线与铝杯B 2相连;铝筒A 2用导线与B 1相连。

3.受迫振动的稳定状态由下式给出x =Acos (・t •「),A- _________ h , 二 arcta n「2。

其中 h =H ,而 H cos (,t )为胁迫力,v '(Oo 一⑷2)2 +4目2国2国-国m2一:=—,其中-dX是阻尼力。

有一偏车轮的汽车上有两个弹簧测力计,其中一条的固 mdt有振动角频率为 「0 =39.2727s ,,另外一条的固有振动角频率为 「0二78.5454s 」,在汽车运行的过程中,司机看到两条弹簧的振动幅度之比为7。

设1为小量,计算中可以略去,已知汽车轮子的直径为1m ,则汽车的运行速度为 ___________________ 。

4 •核潜艇中U 238核的半衰期为4.5 109年,衰变中有0.7%的概率成为U 234核,同时 放出一个高能光子,这些光子中的93%被潜艇钢板吸收。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理竞赛复赛模拟卷 1.试证明:物体的相对论能量E与相对论动量P的量值之间有如下关系: 20222EcpE

2. 在用质子)(11P轰击固定锂)(73Li靶的核反应中,(1)计算放出α粒子的反应能。(2)如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到α粒子的能量有多大?有关原

子核的质量如下:H11,1.007825;He42,4.002603;Li73,7.015999.

3. 一个处于基态的氢原子与另一个静止的基态氢原子碰撞。问可能发生非弹性碰撞的最小速度为多少?如果速度较大而产生光反射,且在原速度方向和反方向可以观察到光。问这种光的频率与简正频率相差多少?氢原子的质量为1.67×10-27kg,电离能

JeVE181018.26.13。

4. 如图11-136所示,光滑无底圆筒重W,内放两个重量均为G的光滑球,圆筒半径为R,球半径为r,且r2p

1p3p

图51-21 r

1O

2O

GAB

图11-136 5. 两个完全相同的木板,长均为L,重力均为G,彼此以光滑铰链A相连,并通过光滑铰链与竖直墙相连,如图(甲)所示。为使两木板达水平状态保持平衡,问应在何处施加外力?所施加的最小外力为多大?

6. 如图11-505所示,屋架由同在竖直面内的多根无重杆绞接而成,各绞接点依次为1、2……9,其中绞接点8、2、5、7、9位于同一水平直线上,且9可以无摩擦地水平滑动。各绞接点间沿水平方向上的间距和沿竖直方向上的间距如图所示,绞接点3承受有竖直向下的压力P/2,点1承受有竖直向下的压力P,求绞接点3和4间杆的内力。

7. 一平直的传送带以速度v=2m/s匀速运行,传送带把A点处的零件运送到B点处,A、B两点之间相距L=10m,从A点把零件轻轻地放到传送带上,经过时间t=6s,能送到B点,如果提高传送带的运动速率,零件能较快地传送到B点,要让零件用最短的时间从A点传送到B点处,说明并计算传送带的运动速率至少应多大?如要把求得的速率再提高一倍,则零件传送时间为多少(2/10smg)?

8. 一物体以某一初速度v0开始做匀减速直线运动直至停止,其总位移为s,当其位移为2/3s时,所用时间为t1;当其速度为1/3v0时,所用时间为t2,则t1、t2有什么样的关系?

lllll

l

8

146

257

9

3P2

p

图11-505

vtBA

D

C1t2t

0v03

1v

O 图12-31

A1 2

L,G L,G

(甲) 1F1

G (乙)

AB 2 F

G (丙)

x'1F 9.一根长为1m具有小内截面的玻璃管,两端开口,一半埋在水中。在上端被覆盖后,把玻璃管提升起来并取出水面。问玻璃管内留下的水柱高度为多少。

10. 静止的原子核衰变成质量为m1,m2,m3的三个裂片,它们的质量损为Δm。若三裂片中每两片之间速度方向的夹角都是120°,求每个裂片能量。

11.玻璃圆柱形容器的壁有一定的厚度,内装一种在紫外线照射下会发出绿色荧光的液体,即液体中的每一点都可以成为绿色光源。已知玻璃对绿光的折射率为n1,液体对绿光的折射率为n2。当容器壁的内、外半径之比r:R为多少时,在容器侧面能看到容器壁厚为零?

12.(1)用折射率为2的透明物质做成内半径、外半径分别为a、b的空心球,b远大于a,内表面涂上能完全吸光的物质。问当一束平行光射向此球时被吸收掉的光束横截面积为多大?(注意:被吸收掉的光束的横截面积,指的是原来光束的横截面积,不考虑透明物质的吸收和外表面的反射。)图33-114所示是经过球心的截面图。 (2)如果外半径b趋于a时,第(1)问中的答案还能成立?为什么?

13.真空中有一个半径为R的均匀透明球,今有两束相距为2d(d≤R)对称地(即两光束与球的一条直径平行并且分别与其等距离)射到球上,试就球的折射率n的取值范围进行讨论 (1)n取何值时两束光一定在球内相交? (2)n取何值时两束光一定在球外相交? (3)如果n、d、R均已给定,如何判断此时两束光的交点是在球内还是在球外。

O1i

2iB

A

CD1

n

2n

b a

ddi

O 14.一点电荷+q和半径为a的接地导体的球心相距为h,求空间的电势分布。 15.电荷q均匀分布在半球面ACB上,球面的半径为R,CD为通过半球顶点C与球心O的轴线,如图41-91。P、Q为CD轴线上在O点两侧,离O点距离相等的两点,已知P点的电势为Up,试求Q点的电势UQ。

1.试证明:物体的相对论能量E与相对论动量P的量值之间有如下关系: 20222EcpE

证明:222222cmmccpE 22222202222

1cccmccm

22

22

420

c

c

cm

20420Ecm

 20222EcpE 读者可试为之,从202EE

入手证明它等于22cp。

2. 在用质子)(11P轰击固定锂)(73Li靶的核反应中,(1)计算放出α粒子的反应能。(2)如果质子能量为1兆电子伏特,问在垂直质子束的方向观测到α粒子的能量有多大?有关原

子核的质量如下:H11,1.007825;He42,4.002603;Li73,

7.015999. 解:(1)核反应方程如下: HeHePLi42421173 静质量 0M 1M 3M 2M

q 2p1p3p

图51-21 动 能 0E 1E 3E 2E 由总质量和总能量守恒:

233222211200cEMcEMcEMc

EM

由反应能Q的定义得: )()(1032EEEEQ 23210)]()[(cMMMM

5.931]002603.42)007825.1015999.7[( 35.17(兆电子伏特)

[其中:28272)/10997925.2()1066.1(1秒米千克cu 6105.931

兆电子伏特 =931.5兆电子伏特]

(2)设锂靶是静止的,根据动量守恒,可知,反应所产生的两个相同的α粒子(He42核),

应沿入射质子的方向对称分开,如图51-21所示。 由动量守恒定律有

321ppp 矢量321,,ppp合成的三角形,两底角皆为θ,又因32MM,因而有 32EE 已知反应能Q=17.35兆电子伏特,且

132EEEQ其中11E兆电子伏特,可得

)(21132EQEE

)135.17(21 =9.175(兆电子伏特) 即反应所生成的α粒子其能量为9.175兆电子伏特。 α粒子飞出方向与入射质子的方向之间的夹角为θ,因此 cos221222123ppPPP

由于MEP22

,得:

cos22121221133EEMMEMEMEM

代入反应能Q的定义式:

132EEEQ

cos21132121131232MEEMMEMMEMM

将上式中质量数改为质量比得 cos21132121131232AEEAAEAAEAAQ

其中11A,432AA,代入上式: cos4322112EEEEQ

所以 2112432cosEEEQE 0825.0175.9114335.17175.92 所以 6185

由此可知,在垂直于质子束的方向上观察到He42的能量近似就是9.175兆电子伏特。

3. 一个处于基态的氢原子与另一个静止的基态氢原子碰撞。问可能发生非弹性碰撞的最小速度为多少?如果速度较大而产生光反射,且在原速度方向和反方向可以观察到光。问这种光的频率与简正频率相差多少?氢原子的质量为1.67×10-27kg,电离能 JeVE181018.26.13。

解:处于基态的氢原子能量为1112EE,第二激发能量为.1222EE被氢原子吸收的最小能量子为 JEEEEE18341211121016.122

我们必须求出在碰撞中能量损失为以上数值的最小速度。如果碰撞是完全非弹性的,则

碰撞中能量损失最大,碰撞后的速度将是.2初动能和末动能之差为

42)2(22222mmm



这个值应等于最小的能量子

42m

E

因此

smmE41026.64

在非弹性碰撞后,两个原子的速度为

sm4

1013.32

本题第二间的解答与多普勒效应有联系。对于比光速小很多的速度,相对速度之比给出频率相对变化的极好近似。故有

0204841009.21009.2103:1026.6

两束光的频率按此比率稍小于或稍大于简正频率 4. 如图11-136所示,光滑无底圆筒重W,内放两个重量均为G的光滑球,圆筒半径为R,球半径为r,且r试求圆筒发生倾倒的条件。 分析:如果对两个小球和无底圆筒分别隔离分析受力再列方程组,较复杂,采取整体法较好。 解:根据物体平衡条件,列出以下方程: 选择两个小球作为研究对象,则在竖直方向上有 N-2G=0 (1) 以整体为研究对象,若翻倒必以A为轴逆时针方向旋转,在临界态下对A的力矩和为零。此时,系统受力情况为:两物体的重力,桌面对球支持力N,筒的重力W,它们对A的力矩不为零,桌面对筒的支持力过A点,力矩为零,故有

r1O

2O

GAB

图11-136

相关文档
最新文档